Low supply current: 250 µA max
Very low input bias current: 1 pA max
Low offset voltage: 750 µV max
Single-supply operation: 5 V to 26 V
Dual-supply operation: ±2.5 V to ±13 V
Rail-to-rail output
Unity gain stable
No phase reversal
SC70 package
APPLICATIONS
Line-/battery-powered instruments
Photodiode amplifiers
Precision current sensing
Medical instrumentation
Industrial controls
Precision filters
Portable audio
ATE
Precision JFET Amplifier
AD8641/AD8642
1
OUT
VEE
+IN
AD8641
2
TOP VIEW
(Not to Scale)
3
Figure 1. 5-Lead SC70 (KS-5)
NC
1
AD8641
–IN
2
TOP VIEW
+IN
3
(Not to Scale)
EE
4
NC = NO CONNECT
Figure 2. 8-Lead SOIC (R-8)
1
OUT
–IN A
+IN A
V–
AD8642
2
3
TOP VIEW
(Not to Scale)
4
Figure 3. 8-Lead SOIC (R-8)
OUT A
1
V–
AD8642
2
TOP VIEW
3
(Not to Scale)
4
–IN A
+IN A
Figure 4. 8-Lead MSOP (RM-8)
5
4
8
7
6
5
8
7
6
5
8
7
6
5
VCC
–IN
NC
VCC
OUT
NC
V+
OUT B
–IN B
+IN B
V+
OUT B
–IN B
+IN B
05072-101
05072-102
05072-063
05072-064
GENERAL DESCRIPTION
The AD8641/AD8642 are low power, precision JFET input
amplifiers featuring extremely low input bias current and railto-rail output. The ability to swing nearly rail-to-rail at the
input and rail-to-rail at the output enables designers to buffer
CMOS DACs, ASICs, and other wide output swing devices in
single-supply systems. The outputs remain stable with
capacitive loads of more than 500 pF.
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
The AD8641/AD8642 are suitable for applications utilizing
multichannel boards that require low power to manage heat.
Other applications include photodiodes, ATE reference level
drivers, battery management, and industrial controls.
The AD8641/AD8642 are fully specified over the extended
industrial temperature range of –40°C to +125°C. The AD8641
is available in 5-lead SC70 and 8-lead SOIC lead-free packages.
The AD8642 is available in 8-lead MSOP and 8-lead SOIC leadfree packages.
Input Voltage Range –13 +10 V
Common-Mode Rejection Ratio CMRR VCM = -13 V to +10 V 90 107 dB
Large Signal Voltage Gain A
VO
Offset Voltage Drift ∆VOS/∆T –40°C < TA < +125°C 2.5 µV/°C
OUTPUT CHARACTERISTICS
Output Voltage High V
OH
I
Output Voltage Low V
OL
I
Output Current I
OUT
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = ±2.5 V to ±13 V 90 107 dB
Supply Current/Amplifier I
SY
–40°C < TA < +125°C 330 µA
DYNAMIC PERFORMANCE
Slew Rate SR 3 V/µs
Gain Bandwidth Product GBP 3.5 MHz
Phase Margin
Ø
O
NOISE PERFORMANCE
Voltage Noise eN p-p f = 0.1 Hz to 10 Hz 4.2 µV p-p
Voltage Noise Density e
Current Noise Density i
N
N
70 750 µV
0.25 1 pA
0.5 pA
RL = 10 kΩ, VO = –11 V to +11 V 215 290 V/mV
+12.95 V
= 1 mA, –40°C to +125°C +12.94 V
L
–12.95 V
= 1 mA, –40°C to +125°C –12.94 V
L
±12 mA
200 290 µA
60 Degrees
f = 1 kHz 27.5 nV/√Hz
f = 1 kHz 0.5 fA/√Hz
Rev. A | Page 4 of 16
AD8641/AD8642
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Rating
Supply Voltage 27.3 V
Input Voltage VS– to VS+
Differential Input Voltage ±Supply Voltage
Output Short-Circuit Duration Indefinite
Storage Temperature Range
Operating Temperature Range –40°C to +125°C
Junction Temperature Range
Lead Temperature Range (Soldering, 60 Sec) 300°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those listed in the operational sections
of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Absolute maximum ratings apply at 25°C, unless otherwise noted.
2
θJA is specified for the worst-case conditions, i.e., θJA is specified for devices
soldered on circuit boards for surface-mounted packages.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. A | Page 5 of 16
AD8641/AD8642
TYPICAL PERFORMANCE CHARACTERISTICS
80
VSY =
0
0
±13V
–0.60
–0.55
–0.50
–0.45
0
0.5
1.0
VSY =±2.5V
–0.60
–0.55
–0.50
–0.45
0
0.05
–0.40
–0.35
–0.30
–0.25
–0.20
–0.15
–0.10
–0.05
VOS (mV)
0.10
Figure 5. Input Offset Voltage
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
OFFSET VOLTAGE (µV/°C)
Figure 6. Offset Voltage Drift
0
0.05
–0.40
–0.35
–0.30
–0.25
–0.20
–0.15
–0.10
–0.05
VOS (mV)
0.10
Figure 7. Input Offset Voltage
0.35
0.15
0.20
0.25
0.30
0.40
0.45
0.50
0.55
0.60
05072-002
VSY =
±13V
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
05072-003
0.15
0.20
0.25
0.30
0.40
0.45
0.50
0.55
0.35
0.60
05072-004
FREQUENCY
NUMBER OF AMPLIFIERS
FREQUENCY
70
60
50
40
30
20
10
16
14
12
10
8
6
4
2
0
70
60
50
40
30
20
10
20
18
16
14
12
10
8
6
NUMBER OF AMPLIFIERS
4
2
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
TCVOS (µV/°C)
Figure 8. Offset Voltage Drift
4.5
VSY = ±13V
4.0
T
= 25°C
A
3.5
3.0
2.5
2.0
1.5
INPUT BIAS (pA)
1.0
0.5
0
–0.5
–15 –13 –11 –9 –7 –5 –3 –1 1 3 5 7 9 11 13 15
VCM (V)
Figure 9. Input Bias Current vs. V
CM
0.5
VSY = ±13V
0.4
T
= 25°C
A
0.3
0.2
0.1
0
–
0.1
INPUT BIAS (pA)
–
0.2
–
0.3
–
0.4
–
0.5
–15.0 –12.5 –10.0 –7.5 –5.0 –2.5
Figure 10. Input Bias Current vs. V
02.5 5.0 7.5 10.0 12.5 15.0
VCM (V)
CM
VSY = 5V
V
CM
8.0
8.5
= 1.5V
9.0
9.5
10.0
05072-005
05072-006
05072-007
Rev. A | Page 6 of 16
AD8641/AD8642
1000
VSY =
±13V
100
10
1
INPUT BIAS CURRENT (pA)
0.1
5075025100125150
TEMPERATURE (°C)
Figure 11. Input Bias Current vs. Temperature
1.0
VSY =
+5V OR ±5V
–5–4–3–2–1012345
(V)
V
CM
Figure 12. Input Bias Current vs. V
CM
INPUT BIAS (pA)
0.8
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
–0.8
–1.0
1000
VSY =
±13V
0
–15 –13 –11 –9 –7 –5 –3 –1 1 3 5 7 9 11 13 15
0
VCM (V)
(µV)
V
OS
–100
900
800
700
600
500
400
300
200
100
Figure 13. Input Offset Voltage vs. V
05072-008
05072-009
05072-010
CM
500
VSY =
5V
1.01.500.52.02.5
V
(V)
CM
Figure 14. Input Offset Voltage vs. V
CM
(µV)
V
OS
400
300
200
100
0
–100
–200
–300
–400
–500
10M
1M
VSY = ±13V
100k
OPEN-LOOP GAIN (V/V)
10k
0.1101100
LOAD RESISTANCE (kΩ)
VSY = ±2.5V
Figure 15. Open-Loop Gain vs. Load Resistance
1000
A
B
C
(V/mV)
VO
A
100
10
D
E
A. VSY = ±13V, VO = ±11V, RL = 10kΩ
B. V
= ±13V, VO = ±11V, RL = 2kΩ
SY
C. V
= +5V, VO = +0.5V/+4.5V, RL = 10kΩ
SY
D. VSY = +5V, VO = +0.5V/+4.5V, RL = 2kΩ
E. V
= +5V, VO = +0.5V/+4.5V, RL = 600Ω
SY
1
–50 –30 –101030507090 110 130 150
TEMPERATURE (°C)
Figure 16. Open-Loop Gain vs. Temperature
05072-011
05072-012
05072-013
Rev. A | Page 7 of 16
AD8641/AD8642
600
VSY =
500
400
300
200
100
0
–100
–200
OFFSET VOLTAGE (µV)
–300
–400
–500
–600
Figure 17. Input Error Voltage vs. Output Voltage for Resistive Loads
250
200
150
100
50
–50
–100
–150
INPUT VOLTAGE (µV)
–200
–250
–300
–350
800
700
600
500
A)
µ
400
(
SY
I
300
200
100
0
Figure 19. Quiescent Current vs. Supply Voltage at Different Temperatures
±13V
100kΩ
10kΩ
1kΩ
–50–15–1051015
OUTPUT VOLTAGE (V)
VSY =±5V
RL = 1kΩ
= 2kΩ
R
L
0
050100150200250300350
OUTPUT VOLTAGE FROM SUPPLY RAIL (mV)
R
R
= 2kΩ
L
= 10kΩ
L
= 10kΩ
R
L
R
= 100kΩ
L
RL = 100kΩ
R
= 1kΩ
L
POS RAIL
NEG RAIL
Figure 18. Input Error Voltage vs. Output Voltage
Within 300 mV of Supply Rails
+25°C
481216202428
+125°C
–55°C
V
(V)
SY
05072-014
05072-015
05072-016
10000
VSY =
±13V
V
– V
SY
1000
100
10
SATURATION VOLTAGE (mV)
1
0.0010.010.1110100
LOAD CURRENT (mA)
OH
–
V
– V
SY
OL
Figure 20. Output Saturation Voltage vs. Load Current
10000
VSY =
5V
1000
100
10
SATURATION VOLTAGE (mV)
1
0.0010.010.1110100
LOAD CURRENT (mA)
V
SY–VOH
V
OL
Figure 21. Output Saturation Voltage vs. Load Current
70
60
50
40
30
20
GAIN (dB)
10
0
–10
–20
–30–135
10k100k1M10M
GAIN
FREQUENCY (Hz)
=±13V
V
SY
R
= 2k
L
CL = 40pF
PHASE
Ω
Figure 22. Open-Loop Gain and Phase Margin vs. Frequency
315
270
225
180
135
90
45
0
–45
–90
05072-017
05072-018
PHASE (Degrees)
05072-019
Rev. A | Page 8 of 16
AD8641/AD8642
70
60
50
40
30
20
GAIN (dB)
10
0
–10
–20
–30–135
10k100k1M10M
GAIN
FREQUENCY (Hz)
VSY = 5V
= 2k
R
L
CL = 40pF
PHASE
Ω
Figure 23. Open-Loop Gain and Phase Margin vs. Frequency
70
VSY =±13V
60
= 2k
Ω
R
L
CL = 40pF
50
40
G = +100
30
20
GAIN (dB)
G = +10
10
0
G = +1
–10
–20
–30
1k10k100k1M10M
FREQUENCY (Hz)
Figure 24. Closed-Loop Gain vs. Frequency
70
VSY = 5V
60
R
= 2k
Ω
L
CL = 40pF
50
40
G = +100
30
20
GAIN (dB)
G = +10
10
0
G = +1
–10
–20
–30
1k10k100k1M10M
FREQUENCY (Hz)
Figure 25. Closed-Loop Gain vs. Frequency
315
270
225
180
135
90
45
0
–45
–90
PHASE (Degrees)
05072-020
05072-021
05072-022
140
VSY =±13V
120
100
80
60
40
CMRR (dB)
20
0
–20
–40
–60
1k10k100k1M10M
FREQUENCY (Hz)
Figure 26. CMRR vs. Fre quency
140
VSY=5V
120
100
80
60
40
CMRR (dB)
20
0
–20
–40
–60
1k10k100k1M10M
FREQUENCY (Hz)
Figure 27. CMRR vs. Fre quency
140
V
=±13V
SY
120
100
80
60
40
PSRR (dB)
20
0
–20
–40
–60
1k10k100k1M10M
+PSRR
–PSRR
FREQUENCY (Hz)
Figure 28. PSRR v s. Frequency
05072-023
05072-024
05072-025
Rev. A | Page 9 of 16
AD8641/AD8642
140
VSY=5V
120
100
80
60
40
PSRR (dB)
20
0
–20
–40
–60
1k10k100k1M10M
1000
VSY =
±
13V
100
10
)
Ω
(
G = +10
OUT
Z
1
0.1
+PSRR
–PSRR
FREQUENCY (Hz)
Figure 29. PSRR v s. Frequency
G = +100
G = +1
05072-026
1.0
0.8
0.6
1
0.4
0.2
0
–0.2
INPUT BIAS (pA)
–0.4
2
–0.6
–0.8
–1.0
CH1 10.0V CH2 10.0VM400µsA CH1 1.00V
–5–4–3–2–1012345
T
T 0.00000s
(V)
V
CM
Figure 32. No Phase Reversal
15
VS = ±13V
GAIN = +5
10
–5
OUTPUT SWING (V)
–10
5
0
TS + (1%)
TS + (0.1%)
TS – (0.1%)
TS – (1%)
V
V
VSY =
IN
OUT
±
13V
05072-029
05072-009
0.01
1k10k100k1M10M100M
FREQUENCY (Hz)
Figure 30. Output Impedance vs. Frequency
1000
VSY =
5V
100
10
)
Ω
(
OUT
Z
1
0.1
0.01
1k10k100k1M10M100M
G = +100
G = +10
G = +1
FREQUENCY (Hz)
Figure 31. Output Impedance vs. Frequency
05072-027
05072-028
–15
00.2 0.40.6 0.8 1.01.2 1.4 1.61.8 2.0
SETTLING TIME (µs)
Figure 33. Output Swing and Error vs. Settling Time
70
VS =±13V
= 10k
Ω
R
L
60
VIN = 100mV p-p
A
= +1
V
50
40
30
OVERSHOOT (%)
20
10
0
1100101000
CAPACITANCE (pF)
OS–
Figure 34. Small Signal Overshoot vs. Load Capacitance
OS+
05072-030
05072-031
Rev. A | Page 10 of 16
AD8641/AD8642
OVERSHOOT (%)
70
VS =±2.5V
R
L
60
VIN = 100mV p-p
A
V
50
40
30
20
= 10k
= +1
Ω
OS–
OS+
100
1k
VSY =
±
13V
10
10
0
1100101000
CAPACITANCE (pF)
Figure 35. Small Signal Overshoot vs. Load Capacitance
1.0
0.8
0.6
0.4
0.2
1
0
–0.2
INPUT BIAS (pA)
–0.4
–0.6
–0.8
–1.0
CH1 1.00VM1.00sA CH1–20.0V
–5–4–3–2–1012345
(V)
V
CM
CH1 p-p = 4.26V
Figure 36. 0.1 Hz to 10 Hz Noise
1.0
0.8
0.6
0.4
0.2
1
0
–0.2
INPUT BIAS (pA)
–0.4
–0.6
–0.8
–1.0
CH1 1.00VM1.00sA CH1–20.0V
–5–4–3–2–1012345
CH1 p-p = 4.06V
Figure 37. 0.1 Hz to 10 Hz Noise
VS = ±13V
G = +1M
VS = ±2.5V
G = +1M
05072-033
05072-034
05072-032
05072-009
5072-009
VOLTAGE NOISE DENSITY (nV/ Hz)
1
101k10010k
FREQUENCY (Hz)
Figure 38. Voltage Noise Density
1k
VSY =
5V
100
10
VOLTAGE NOISE DENSITY (nV/ Hz)
1
101k10010k
FREQUENCY (Hz)
Figure 39. Voltage Noise Density
0.004
V
= ±13V
0.001
0.0001
THD + NOISE (%)
0.00001
0.000001
SY
LOAD = 100kΩ
GAIN = +1
4V p-p INPUT
8V p-p INPUT
1V p-p INPUT
2V p-p INPUT
1k100120k
FREQUENCY (Hz)
Figure 40. Total Harmonic Distortion + Noise vs. Frequency
10k
05072-035
05072-036
05072-037
Rev. A | Page 11 of 16
AD8641/AD8642
–40
–50
–60
–70
–80
–90
–100
(dB)
–110
–120
–130
–140
–150
–160
201001k10k100k
–
+
V
IN
VIN = 4.5V p-p
= 9V p-p
V
IN
2kΩ
Figure 41. Channel Separation
20kΩ
–
+
2kΩ
FREQUENCY (Hz)
2kΩ
VIN = 18V p-p
05072-041
Rev. A | Page 12 of 16
AD8641/AD8642
OUTLINE DIMENSIONS
2.20
2.00
1.80
1.35
1.25
1.15
1.00
0.90
0.70
.
0
1
0
M
123
PIN 1
X
A
0.30
0.15
0.10 COPLANARITY
COMPLIANT TO JEDEC STANDARDS MO-203AA
Figure 42. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]
Dimensions shown in millimeters
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
85
45
0.65 BSC
6.20 (0.2440)
5.80 (0.2284)
41
2.40
2.10
1.80
1.10
0.80
SEATING
PLANE
(KS-5)
0.40
0.10
0.22
0.08
0.30
0.10
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MS-012-AA
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0196)
0.25 (0.0099)
8°
1.27 (0.0500)
0°
0.40 (0.0157)
Figure 43. 8-Lead Standard Small Outline Package [SOIC_N]
(R-8)
Dimensions shown in millimeters and (inches)
3.00
BSC
8
5
4
SEATING
PLANE
4.90
BSC
1.10 MAX
0.23
0.08
8°
0°
0.80
0.60
0.40
3.00
BSC
1
PIN 1
0.65 BSC
0.15
0.00
0.38
0.22
COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 44. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
× 45°
Rev. A | Page 13 of 16
AD8641/AD8642
ORDERING GUIDE
Model Temperature Range Package Description Package Option Branding
AD8641AKSZ-R2
AD8641AKSZ-REEL71 –40°C to +125°C 5-Lead SC70 KS-5 A07
AD8641AKSZ-REEL1 –40°C to +125°C 5-Lead SC70 KS-5 A07
AD8641ARZ1 –40°C to +125°C 8-lead SOIC_N R-8
AD8641ARZ-REEL71 –40°C to +125°C 8-lead SOIC_N R-8
AD8641ARZ-REEL1 –40°C to +125°C 8-lead SOIC_N R-8
AD8642ARMZ-R21 –40°C to +125°C 8-lead MSOP RM-8 A0A
AD8642ARMZ-REEL1 –40°C to +125°C 8-lead MSOP RM-8 A0A
AD8642ARZ1 –40°C to +125°C 8-lead SOIC R-8
AD8642ARZ-REEL71 –40°C to +125°C 8-lead SOIC R-8
AD8642ARZ-REEL1 –40°C to +125°C 8-lead SOIC R-8