ANALOG DEVICES AD 8629 ARZ Datasheet

Page 1
Zero-Drift, Single-Supply, Rail-to-Rail
Input/Output Operational Amplifier
AD8628/AD8629/AD8630
OUT
1
V–
2
+IN
3
V+
5
–IN
4
AD8628
TOP VIEW
(Not to Scale)
02735-001
NC
1
–IN
2
+IN
3
V–
4
NC
8
V+
7
OUT
6
NC
5
NC = NO CONNECT
AD8628
TOP
VIEW
(Not to S cal e)
02735-002
OUT A
1
–IN A
2
+IN A
3
V–
4
V+
8
OUT B
7
–IN B
6
+IN B
5
AD8629
TOP VIEW
(Not to Scale)
02735-063
1
–IN
A
2
+IN A
3
V+
4
OUT D
14
–IN D
13
+IN D
12
V–
11
+IN B
5
+IN C
10
–IN B
6
–IN C
9
OUT B
OUT A
7
OUT C
8
AD8630
TOP VIEW
(Not to S cal e)
02735-066
Data Sheet

FEATURES

APPLICATIONS

Automotive sensors Pressure and position sensors Strain gage amplifiers Medical instrumentation Thermocouple amplifiers Precision current sensing Photodiode amplifiers

GENERAL DESCRIPTION

This amplifier has ultralow offset, drift, and bias current. The AD8628/AD8629/AD8630 are wide bandwidth auto-zero amplifiers featuring rail-to-rail input and output swing and low noise. Operation is fully specified from 2.7 V to 5 V single supply (±1.35 V to ±2.5 V dual supply).
The AD8628/AD8629/AD8630 provide benefits previously found only in expensive auto-zeroing or chopper-stabilized amplifiers. Using Analog Devices, Inc., topology, these zero­drift amplifiers combine low cost with high accuracy and low noise. No external capacitor is required. In addition, the AD8628/
AD8629/AD8630 greatly reduce the digital switching noise
found in most chopper-stabilized amplifiers. With an offset voltage of only 1 µV, drift of less than 0.005 μV/°C,
and noise of only 0.5 µV p-p (0 Hz to 10 Hz), the AD8628/
AD8629/AD8630 are suited for applications where error
sources cannot be tolerated. Position and pressure sensors, medical equipment, and strain gage amplifiers benefit greatly from nearly zero drift over their operating temperature range. Many systems can take advantage of the rail-to-rail input and output swings provided by the AD8628/AD8629/AD8630 to reduce input biasing complexity and maximize SNR.

PIN CONFIGURATIONS

Figure 1. 5-Lead TSOT (UJ-5) and 5-Lead SOT-23 (RJ-5)
Figure 2. 8-Lead SOIC_N (R-8)
Figure 3. 8-Lead SOIC_N (R-8) and 8-Lead MSOP (RM-8)
Figure 4. 14-Lead SOIC_N (R-14) and 14-Lead TSSOP (RU-14)
The AD8628/AD8629/AD8630 are specified for the extended industrial temperature range (−40°C to +125°C). The AD8628 is available in tiny 5-lead TSOT, 5-lead SOT-23, and 8-lead narrow SOIC plastic packages. The AD8629 is available in the standard 8-lead narrow SOIC and MSOP plastic packages. The
AD8630 quad amplifier is available in 14-lead narrow SOIC and
14-lead TSSOP plastic packages. See the Ordering Guide for automotive grades.
Document Feedback
Rev. K
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsi bility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2002–2014 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
Page 2
AD8628/AD8629/AD8630 Data Sheet

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Pin Configurations ........................................................................... 1
Revision History ............................................................................... 3
Specifications ..................................................................................... 4
Electrical Characteristics—VS = 5.0 V ....................................... 4
Electrical Characteristics—VS = 2.7 V ....................................... 5
Absolute Maximum Ratings ............................................................ 6
Thermal Characteristics .............................................................. 6
ESD Caution .................................................................................. 6
Typical Performance Characteristics ............................................. 7
Functional Description .................................................................. 15
1/f Noise ....................................................................................... 15
Peak-to-Peak Noise .................................................................... 16
Noise Behavior with First-Order, Low-Pass Filter ................. 16
Total Integrated Input-Referred Noise for First-Order Filter16
Input Overvoltage Protection ................................................... 17
Output Phase Reversal ............................................................... 17
Overload Recovery Time .......................................................... 17
Infrared Sensors .......................................................................... 18
Precision Current Shunt Sensor ............................................... 19
Output Amplifier for High Precision DACs ........................... 19
Outline Dimensions ....................................................................... 20
Ordering Guide .......................................................................... 22
Automotive Products ................................................................. 22
Rev. K | Page 2 of 24
Page 3
Data Sheet AD8628/AD8629/AD8630

REVISION HISTORY

8/14—Rev. J to Rev. K
Changes to Figure 36 and Figure 37 ............................................. 12
2/14—Rev. I to Rev. J
Moved Revision History ................................................................... 3
Changes to Figure 17 and Figure 18 ............................................... 9
Updated Outline Dimensions ........................................................ 20
4/11—Rev. H to Rev. I
Updated Outline Dimensions ........................................................ 19
Changes to Ordering Guide ........................................................... 21
4/10—Rev. G to Rev. H
Change to Features List .................................................................... 1
Change to General Description Section ......................................... 1
Changes to Table 3 ............................................................................ 5
Updated Outline Dimensions Section .......................................... 19
Changes to Ordering Guide ........................................................... 21
6/08—Rev. F to Rev. G
Changes to Features Section ............................................................ 1
Changes to Table 5 and Figure 42 Caption .................................. 12
Changes to 1/f Noise Section and Figure 49 ................................ 14
Changes to Figure 51 Caption and Figure 55 .............................. 15
Changes to Figure 57 Caption and Figure 58 Caption ............... 16
Changes to Figure 60 Caption and Figure 61 Caption ............... 17
Changes to Figure 64 ...................................................................... 18
2/08—Rev. E to Rev. F
Renamed TSOT-23 to TSOT ............................................ Universal
Deleted Figure 4 and Figure 6 .......................................................... 1
Changes to Figure 3 and Figure 4 Captions ................................... 1
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 4
Changes t o Table 4 ............................................................................ 5
Updated Outline Dimensions ........................................................ 19
Changes to Ordering Guide ........................................................... 20
5/05—Rev. D to Rev. E
Changes to Ordering Guide ........................................................... 22
1/05—Rev. C to Rev. D
Added AD8630 ................................................................... Universal
Added Figure 5 and Figure 6 ........................................................... 1
Changes to Caption in Figure 8 and Figure 9 ................................ 7
Changes to Caption in Figure 14 .................................................... 8
Changes to Figure 17 ........................................................................ 8
Changes to Figure 23 and Figure 24 ............................................... 9
Changes to Figure 25 and Figure 26 ............................................. 10
Changes to Figure 31 ...................................................................... 11
Changes to Figure 40, Figure 41, Figure 42 ................................. 12
Changes to Figure 43 and Figure 44 ............................................. 13
Changes to Figure 51 ...................................................................... 15
Updated Outline Dimensions........................................................ 20
Changes to Ordering Guide ........................................................... 20
10/04—Rev. B to Rev. C
Updated Formatting .......................................................... Universal
Added AD8629 ................................................................... Universal
Added SOIC and MSOP Pin Configurations ................................ 1
Added Figure 48 .............................................................................. 13
Changes to Figure 62 ...................................................................... 17
Added MSOP Package .................................................................... 19
Changes to Ordering Guide ........................................................... 22
10/03—Rev. A to Rev. B
Changes to General Description ..................................................... 1
Changes to Absolute Maximum Ratings........................................ 4
Changes to Ordering Guide ............................................................. 4
Added TSOT-23 Package ............................................................... 15
6/03—Rev. 0 to Rev. A
Changes to Specifications................................................................. 3
Changes to Ordering Guide ............................................................. 4
Change to Functional Description................................................ 10
Updated Outline Dimensions........................................................ 15
10/02—Revision 0: Initial Version
Rev. K | Page 3 of 24
Page 4
AD8628/AD8629/AD8630 Data Sheet
Offset Voltage Drift
∆VOS/∆T
−40°C ≤ TA ≤ +125°C
0.002
0.02
µV/°C
Slew Rate
SR
RL = 10 kΩ
1.0 V/µs
5

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—VS = 5.0 V

VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS
Input Bias Current IB
AD8628/AD8629 AD8630
Input Offset Current IOS
Input Voltage Range
Common-Mode Rejection Ratio CMRR VCM = 0 V to 5 V 120 140
Large Signal Voltage Gain AVO RL = 10 kΩ, VO = 0.3 V to 4.7 V 125 145
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C 0
−40°C ≤ TA ≤ +125°C 115 130
−40°C ≤ TA ≤ +125°C 120 135
1 5 µV
10 µV
30 100 pA 100 300 pA
1.5 nA
50 200 pA
250 pA 5 V
dB dB dB dB
OUTPUT CHARACTERISTICS
Output Voltage High VOH RL = 100 kΩ to ground 4.99 4.996
Output Voltage Low VOL RL = 100 kΩ to V+
Short-Circuit Limit ISC
Output Current IO
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.7 V to 5.5 V, −40°C ≤ TA ≤ +125°C 115 130 Supply Current per Amplifier ISY VO = VS/2 0.85 1.1 mA
INPUT CAPACITANCE CIN
Differential Common Mode
DYNAMIC PERFORMANCE
Overload Recovery Time Gain Bandwidth Product GBP
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz
0.1 Hz to 1.0 Hz Voltage Noise Density en f = 1 kHz Current Noise Density in f = 10 Hz
−40°C ≤ TA ≤ +125°C 4.99 4.995
RL = 10 kΩ to ground 4.95 4.98
−40°C ≤ TA ≤ +125°C 4.95 4.97
1 5 mV
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to V+
−40°C ≤ TA ≤ +125°C ±25 ±50
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
2 5 mV 10 20 mV 15 20 mV
±40 ±30 ±15
1.0 1.2 mA
1.5
8.0
0.05
2.5
0.5
0.16 22
V V V V
mA mA mA mA
dB
pF pF
ms MHz
µV p-p µV p-p nV/√Hz fA/√Hz
Rev. K | Page 4 of 24
Page 5
Data Sheet AD8628/AD8629/AD8630
Gain Bandwidth Product
GBP 2
MHz

ELECTRICAL CHARACTERISTICS—VS = 2.7 V

VS = 2.7 V, VCM = 1.35 V, VO = 1.4 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 1 5 µV
−40°C ≤ TA ≤ +125°C 10 µV Input Bias Current IB
AD8628/AD8629 30 100 pA AD8630 100 300 pA
−40°C ≤ TA ≤ +125°C 1.0 1.5 nA Input Offset Current IOS 50 200 pA
−40°C ≤ TA ≤ +125°C 250 pA Input Voltage Range 0 2.7 V Common-Mode Rejection Ratio CMRR VCM = 0 V to 2.7 V 115 130 dB
−40°C ≤ TA ≤ +125°C 110 120 dB Large Signal Voltage Gain AVO RL = 10 kΩ, VO = 0.3 V to 2.4 V 110 140 dB
−40°C ≤ TA ≤ +125°C 105 130 dB Offset Voltage Drift ∆VOS/∆T −40°C ≤ TA ≤ +125°C 0.002 0.02 µV/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH RL = 100 kΩ to ground 2.68 2.695 V
−40°C ≤ TA ≤ +125°C 2.68 2.695 V RL = 10 kΩ to ground 2.67 2.68 V
−40°C ≤ TA ≤ +125°C 2.67 2.675 V Output Voltage Low VOL RL = 100 kΩ to V+ 1 5 mV
−40°C ≤ TA ≤ +125°C 2 5 mV RL = 10 kΩ to V+ 10 20 mV
−40°C ≤ TA ≤ +125°C 15 20 mV Short-Circuit Limit ISC ±10 ±15 mA
−40°C ≤ TA ≤ +125°C ±10 mA Output Current IO ±10 mA
−40°C ≤ TA ≤ +125°C ±5 mA
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.7 V to 5.5 V, −40°C ≤ TA ≤ +125°C 115 130 dB Supply Current per Amplifier ISY VO = VS/2 0.75 1.0 mA
−40°C ≤ TA ≤ +125°C 0.9 1.2 mA
INPUT CAPACITANCE CIN
Differential 1.5 pF Common Mode 8.0 pF
DYNAMIC PERFORMANCE
Slew Rate SR RL = 10 kΩ 1 V/µs Overload Recovery Time 0.05 ms
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 0.5 µV p-p Voltage Noise Density en f = 1 kHz 22 nV/√Hz Current Noise Density in f = 10 Hz 5 fA/√Hz
Rev. K | Page 5 of 24
Page 6
AD8628/AD8629/AD8630 Data Sheet
Input Voltage
GND – 0.3 V to VS + 0.3 V
FICDM 14-Lead SOIC
±1500V

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Rating
Supply Voltage 6 V
Differential Input Voltage1 ±5.0 V Output Short-Circuit Duration to GND Indefinite Storage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +125°C Junction Temperature Range −65°C to +150°C Lead Temperature (Soldering, 60 sec) 300°C ESD AD8628
HBM 8-Lead SOIC ±7000V FICDM 8-Lead SOIC ±1500V FICDM 5-Lead TSOT ±1000V
MM 8-Lead SOIC ±200V
ESD AD8629
HBM 8-Lead SOIC ±4000V FICDM 8-Lead SOIC ±1000V
ESD AD8630
HBM 14-Lead SOIC ±5000V

THERMAL CHARACTERISTICS

θJA is specified for worst-case conditions, that is, θJA is specified for the device soldered in a circuit board for surface-mount packages. This was measured using a standard two-layer board.
Table 4.
Package Type θ
5-Lead TSOT (UJ-5) 207 61 °C/W 5-Lead SOT-23 (RJ-5) 230 146 °C/W 8-Lead SOIC_N (R-8) 158 43 °C/W 8-Lead MSOP (RM-8) 190 44 °C/W 14-Lead SOIC_N (R-14) 105 43 °C/W 14-Lead TSSOP (RU-14) 148 23 °C/W
JA
θJC Unit

ESD CAUTION

FICDM 14-Lead TSSOP ±1500V MM 14-Lead SOIC ±200V
1
Differential input voltage is limited to ±5 V or the supply voltage, whichever
is less.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Rev. K | Page 6 of 24
Page 7
Data Sheet AD8628/AD8629/AD8630
INPUT OFFSET VO
LTAGE (µV)
NUMBER OF
AMPLIFIERS
180
160
140
120
100
80
60
40
20
0 –2.5
–1.5
–0.5 0.5
1.5 2.5
02735-003
V
S
= 2.7V
T
A
= 25°C
+85°C
+25°C
–40°C
V
S
= 5V
INPUT COMMON-MODE VOLTAGE (V)
INPUT BIAS CURRE NT (pA)
60
40
50
30
10
20
0
0 1 2 3
4 5 6
02735-004
150°C
125°C
INPUT COMMON-MODE VOLTAGE (V)
INPUT BIAS CURRE NT (pA)
1500
500
1000
0
–1000
–500
–1500
0 1 2 3 4 5 6
02735-005
VS = 5V
INPUT OFFSET VOLTAGE (µV)
NUMBER OF AMPLIFIERS
100
80
90
60
70
40
50
10
20
30
0 –2.5 –1.5 –0.5 0.5 1.5 2.5
02735-006
VS = 5V VCM = 2.5V TA = 25°C
V
S
= 5V
T
A
= –40°C TO + 125°C
TCVOS (nV/°C)
NUMBER OF
AMPLIFIERS
7
6
5
4
3
2
1
0
0
2
4
6 8
10
02735-007
LOAD CURRENT ( mA)
OUTPUT VOLTAGE (mV)
1k
100
10
1
0.1
0.01
0.0001 0.001 0.10.01 1 10
02735-008
V
S
= 5V
T
A
= 25°C
SOURCE
SINK

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Input Offset Voltage Distribution
Figure 6. AD8628 Input Bias Current vs. Input Common-Mode Voltage
Figure 8. Input Offset Voltage Distribution
Figure 9. Input Offset Voltage Drift
Figure 7. AD8628 Input Bias Current vs. Input Common-Mode Voltage
Rev. K | Page 7 of 24
Figure 10. Output Voltage to Supply Rail vs. Load Current
Page 8
AD8628/AD8629/AD8630 Data Sheet
LOAD CURRENT ( mA)
OUTPUT VOLTAGE (mV)
1k
100
10
1
0.1
0.01
0.0001
0.001 0.10.01 1 10
02735-009
V
S
= 2.7V
SOURCE
SINK
VS = 5V VCM = 2.5V T
A
= –40°C TO + 150°C
TEMPERA
TURE (°C)
INPUT BIAS CURRE NT (pA)
1500
1
150
900
450
100
0
–50
0 25–25 50 75 100 125
150 175
02735-010
T
A
= 25
°
C
5V
2.7V
TEMPER
ATURE (°C)
SUPPLY
CURRENT (µA)
1250
1000
750
500
250
0
–50 0 50 150100 200
02735-011
T
A
= 25°C
SUPPLY VOLTAGE (V)
SUPPLY CURRENT (µA)
1000
800
600
400
200
0
0 1 2 4 53 6
02735-012
FREQUENCY (Hz)
OPEN-LOOP GAIN (dB)
60
40
20
–20
0
10k 100k 1M 10M
02735-013
45
90 135
180
225
0
PHASE SHIFT (Degrees)
V
S
= 2.7V
C
L
= 20pF
RL = ∞
Ф
M
= 45°
GAIN
PHASE
FREQUENCY (Hz)
OPEN-LOOP
GAIN (dB)
70
60
50
40
30 20
0
–10 –20
10
–30
10k 100k 1M 10M
02735-014
45 90
135
180
225
0
PHASE SHIFT (Degrees)
V
S
= 5V CL = 20pF R
L
= ∞
ΦM = 52.1°
GAIN
PHASE
Figure 11. Output Voltage to Supply Rail vs. Load Current
Figure 12. AD8628 Input Bias Current vs. Temperature
Figure 14. Supply Current vs. Supply Voltage
Figure 15. Open-Loop Gain and Phase vs. Frequency
Figure 13. Supply Current vs. Temperature
Figure 16. Open-Loop Gain and Phase vs. Frequency
Rev. K | Page 8 of 24
Page 9
Data Sheet AD8628/AD8629/AD8630
T
70
60
50
AV = 100
40
30
AV = 10
20
10
AV = 1
0
CLOSED-LOOP GAIN (dB)
–10
–20
–30
1k 10k 1 00k 1M 10 M
FREQUENCY (Hz)
Figure 17. Closed-Loop Gain vs. Frequency
VS = 2.7V C
= 20pF
L
R
= 2k
L
02735-015
300
VS = 5V
270
240
210
180
150
120
90
OUTPUT IMPEDANCE (Ω)
60
30
0
100 1k 10k 100k 1M 10M 100M
AV = 100
AV = 10
AV = 1
FREQUENCY (Hz)
Figure 20. Output Impedance vs. Frequency
02735-018
70
60
50
= 100
A
V
40
30
AV = 10
20
10
AV = 1
0
CLOSED-LOOP GAIN (dB)
–10
–20
–30
1k 10k 100k 1M 10M
FREQUENCY (Hz)
Figure 18. Closed-Loop Gain vs. Frequency
300
VS = 2.7V
270
240
210
180
150
120
90
OUTPUT IMPEDANCE (Ω)
60
30
0
100 1k 10k 100k 1M 10M 100M
AV = 100
= 10
A
V
FREQUENCY (Hz)
AV = 1
Figure 19. Output Impedance vs. Frequency
VS = 5V C
= 20pF
L
R
= 2k
L
VS = ±1.35V C
= 300pF
L
R
=
0V
AGE (500mV/DIV)
VOL
02735-016
L
A
V
= 1
TIME (4µs/DIV)
02735-019
Figure 21. Large Signal Transient Response
VS = ±2.5V
= 300pF
C
L
=
R
0V
VOLTAGE (1V/DIV)
02735-017
L
A
V
= 1
TIME (5µs/DIV)
02735-020
Figure 22. Large Signal Transient Response
Rev. K | Page 9 of 24
Page 10
AD8628/AD8629/AD8630 Data Sheet
V
S
= ±1.35V CL = 50pF R
L
= ∞
A
V
= 1
TIME (4µs/DIV)
VOLTAGE (50mV/DI V )
0V
02735-021
V
S
= ±2.5V C
L
= 50pF R
L
= ∞
A
V
= 1
TIME (4µs/DIV)
VOLTAGE (50mV/DI V )
0V
02735-022
CAPACITIVE LOAD (pF)
OVERSHOOT (%)
100
90
80
70
60 50
30
20 10
40
0
1 10 100 1k
02735-023
OS–
OS+
V
S
= ±1.35V
R
L
= 2kΩ
T
A
= 25°C
CA
PACITIVE LOAD (pF)
OVERSHOOT (%)
80
70
60
50
30
20
10
40
0
1 10 100 1k
02735-024
OS–
OS+
V
S
= ±2.5V
R
L
= 2kΩ
TA = 25°C
TIME (2µs/DIV)
VO
LTAGE (V)
V
OUT
0V
0V
V
IN
02735-025
V
S
= ±2.5V
A
V
= –50
R
L
= 10kΩ
C
L
= 0pF CH1 = 50mV/DIV CH2 = 1V/DIV
TIME (10µ s/DIV)
VOLTAGE (V)
V
OUT
0V
0V
V
IN
02735-026
V
S
= ±2.5V
A
V
= –50 RL = 10kΩ CL = 0pF CH1 = 50mV/DIV CH2 = 1V/DIV
Figure 23. Small Signal Transient Response
Figure 24. Small Signal Transient Response
Figure 26. Small Signal Overshoot vs. Load Capacitance
Figure 27. Positive Overvoltage Recovery
Figure 25. Small Signal Overshoot vs. Load Capacitance
Figure 28. Negative Overvoltage Recovery
Rev. K | Page 10 of 24
Page 11
Data Sheet AD8628/AD8629/AD8630
TIME (200µ s/DIV)
VOLTAGE (1V/DIV)
0V
02735-027
V
S
= ±2.5V VIN = 1kHz @ ±3V p-p C
L
= 0pF
R
L
= 10kΩ
AV = 1
FREQUENCY (Hz)
CMRR (dB)
140
120
100
80
60 40
0
–20 –40
20
–60
100 1k 10k
100k 1M 10M
02735-028
VS = 2.7V
FREQUENCY (Hz)
CMRR (dB)
140
120
100
80
60 40
0
–20 –40
20
–60
100 1k 10k 100k 1M 10M
02735-029
VS = 5V
FREQUENCY (Hz)
PSRR (dB)
140
120
100
80
60 40
0
–20 –40
20
–60
100
1k
10k 100k 1M 10M
02735-030
VS = ±1.35V
+PSRR
–PSRR
FREQUENCY (Hz)
PSRR (dB)
140
120
100
80
60 40
0
–20 –40
20
–60
100 1k
10k 100k 1M 10M
02735-031
V
S
= ±2.5V
+PSRR
–PSRR
FREQUENCY (Hz)
OUTPUT SWING (V p-p)
3.0
2.5
2.0
1.5
1.0
0.5
0
100 1k 10k 100k 1M
02735-032
V
S
= 2.7V
R
L
= 10kΩ
T
A
= 25°C
A
V
= 1
Figure 29. No Phase Reversal
Figure 30. CMRR vs. Frequency
Figure 32. PSRR vs. Frequency
Figure 33. PSRR vs. Frequency
Figure 31. CMRR vs. Frequency
Figure 34. Maximum Output Swing vs. Frequency
Rev. K | Page 11 of 24
Page 12
AD8628/AD8629/AD8630 Data Sheet
FREQUENCY (Hz)
OUTPUT SWING (V p-p)
5.5
2.5
3.0
3.5
4.0
4.5
5.0
2.0
1.5
1.0
0.5 0
100 1k 10k 100k 1M
02735-033
VS = 5V R
L
= 10kΩ
T
A
= 25°C
AV = 1
TIME (1s/DIV)
VOLTAGE (µV)
0.60
0.45
0.30
0.15
–0.15
–0.30
–0.45
0
–0.60
02735-034
V
S
= 2.7V
TIME (1s/DIV)
VOLTAGE (µV)
0.60
0.45
0.30
0.15
–0.15
–0.30
–0.45
0
–0.60
02735-035
VS = 5V
FREQUENCY (kHz)
VOLTAGE NOISE DENSITY (nV/√Hz)
120
105
90
75
45
30
15
60
0
0
0.5
1.0 1.5 2.0 2.5
02735-036
VS = 2.7V NOISEAT 1kHz = 21.3nV
FREQUENCY (kHz)
VO
LTAGE NOISE DENSITY
(nV/√Hz)
120
105
90
75
45
30
15
60
0
0 5 10 15 20 25
02735-037
V
S
= 2.7V
NOISEAT 10kHz = 42.4nV
FREQUENCY (kHz)
VO
LTAGE NOISE DENSITY (nV/√Hz)
120
105
90
75
45
30
15
60
0
0 0.5
1.0 1.5 2.0 2.5
02735-038
VS = 5V NOISEA
T 1kHz = 22.1nV
Figure 35. Maximum Output Swing vs. Frequency
Figure 36. 0.1 Hz to 10 Hz Noise
Figure 38. Voltage Noise Density at 2.7 V from 0 Hz to 2.5 kHz
Figure 39. Voltage Noise Density at 2.7 V from 0 Hz to 25 kHz
Figure 37. 0.1 Hz to 10 Hz Noise
Figure 40. Voltage Noise Density at 5 V from 0 Hz to 2.5 kHz
Rev. K | Page 12 of 24
Page 13
Data Sheet AD8628/AD8629/AD8630
FREQUENCY (kHz)
VOLTAGE NOISE DENSITY (nV/√Hz)
120
105
90
75
45
30
15
60
0
0 5 10 15 20 25
02735-039
VS = 5V NOISEAT 10kHz = 36.4nV
FREQUENC
Y (kHz)
VOLTAGE NOISE DENSITY (nV/√Hz)
120
105
90
75
45
30
15
60
0
0 5 10
02735-040
V
S
= 5V
V
S
= 2.7V TO 5V
TA = –40°C T
O +125°C
TEMPERATURE (°C)
POWER SUPPLY REJECTION (dB)
150
130
120
140
110
100
90
60
70
80
50
–50 0 25–25 50 75 100 125
02735-041
TEMPER
ATURE (°C)
OUTPUT SHOR
T
-CIRCUIT CURRENT (mA)
150
100
50
0
–50
–100
–50 25
50 75
0
–25 100 125 150 175
02735-042
V
S
= 2.7V
TA = –40°C
T
O +150°C
I
SC
I
SC
+
TEMPERATURE (°C)
OUTPUT SHORT-CIRCUIT CURRENT ( mA)
150
100
50
0
–50
–100
–50 25 50 75
0–25 100
125 150 175
02735-043
V
S
= 5V
T
A
= –40°C TO + 150°C
I
SC
I
SC
+
TEMPERATURE (°C)
OUTPUT-TO-RAIL VOLTAGE (mV)
1k
100
10
1
0.1
–50 25 50 750–25 100 125
150 175
02735-044
VS = 5V
VCC– VOH@ 1kΩ
V
CC
– VOH@ 10kΩ
V
CC
– VOH@ 100kΩ
V
O
L
– VEE@ 1kΩ
VOL– VEE@ 10kΩ
V
OL
– VEE@ 100kΩ
Figure 41. Voltage Noise Density at 5 V from 0 Hz to 25 kHz
Figure 42. Voltage Noise Density at 5 V from 0 Hz to 10 kHz
Figure 44. Output Short-Circuit Current vs. Temperature
Figure 45. Output Short-Circuit Current vs. Temperature
Figure 43. Power Supply Rejection vs. Temperature
Figure 46. Output-to-Rail Voltage vs. Temperature
Rev. K | Page 13 of 24
Page 14
AD8628/AD8629/AD8630 Data Sheet
TEMPERATURE (°C)
OUTPUT-TO-RAIL VOLTAGE (mV)
1k
100
10
1
0.1
–50 25 50 750
–25 100 125 150 175
02735-045
V
S
= 2.7V
V
CC
– VOH@ 1kΩ
VCC– V
OH
@ 10kΩ
VCC– VOH@ 100kΩ
V
OL
– V
EE
@ 1kΩ
V
O
L
– V
EE
@ 10kΩ
V
OL
– VEE@ 100kΩ
FREQUENCY
(Hz)
CHANNEL SEPARATION (dB)
140
120
100
80
60
40
20
0
1k 10k
100k 1M 10M
02735-062
V
OUT
V
IN
28mV p-p
–2.5V
+2.5V
R1
10kΩ
V–
V+
+
V+
V–
A
B
R2
100Ω
VS = ±2.5V
Figure 47. Output-to-Rail Voltage vs. Temperature
Figure 48. AD8629/AD8630 Channel Separation vs. Frequency
Rev. K | Page 14 of 24
Page 15
Data Sheet AD8628/AD8629/AD8630
02735-046
MK AT 1kHz FO R ALL 3 GRAPHS
FREQUENCY (kHz )
VOLTAGE NOISE DENSITY (nV/√Hz)
120
105
90
75
60
45
30
15
0
0 42 86
10 12
COMPETITOR A
(89.7nV/√Hz)
COMPETITOR B
(31.1nV/√Hz)
AD8628
(19.4nV/√Hz)

FUNCTIONAL DESCRIPTION

The AD8628/AD8629/AD8630 are single-supply, ultrahigh precision rail-to-rail input and output operational amplifiers. The typical offset voltage of less than 1 µV allows these amplifiers to be easily configured for high gains without risk of excessive output voltage errors. The extremely small temperature drift of 2 nV/°C ensures a minimum offset voltage error over their entire temperature range of −40°C to +125°C, making these amplifiers ideal for a variety of sensitive measurement applica­tions in harsh operating environments.
The AD8628/AD8629/AD8630 achieve a high degree of precision through a patented combination of auto-zeroing and chopping. This unique topology allows the AD8628/AD8629/AD8630 to maintain their low offset voltage over a wide temperature range and over their operating lifetime. The AD8628/AD8629/AD8630 also optimize the noise and bandwidth over previous generations of auto-zero amplifiers, offering the lowest voltage noise of any auto-zero amplifier by more than 50%.
Previous designs used either auto-zeroing or chopping to add precision to the specifications of an amplifier. Auto-zeroing results in low noise energy at the auto-zeroing frequency, at the expense of higher low frequency noise due to aliasing of wideband noise into the auto-zeroed frequency band. Chopping results in lower low frequency noise at the expense of larger noise energy at the chopping frequency. The AD8628/AD8629/AD8630 family uses both auto-zeroing and chopping in a patented ping­pong arrangement to obtain lower low frequency noise together with lower energy at the chopping and auto-zeroing frequencies, maximizing the signal-to-noise ratio for the majority of applications without the need for additional filtering. The relatively high clock frequency of 15 kHz simplifies filter requirements for a wide, useful noise-free bandwidth.
The AD8628 is among the few auto-zero amplifiers offered in the 5-lead TSOT package. This provides a significant improvement over the ac parameters of the previous auto-zero amplifiers. The
AD8628/AD8629/AD8630 have low noise over a relatively wide
bandwidth (0 Hz to 10 kHz) and can be used where the highest dc precision is required. In systems with signal bandwidths of from 5 kHz to 10 kHz, the AD8628/AD8629/AD8630 provide true 16-bit accuracy, making them the best choice for very high resolution systems.

1/f NOISE

1/f noise, also known as pink noise, is a major contributor to errors in dc-coupled measurements. This 1/f noise error term can be in the range of several µV or more, and, when amplified with the closed-loop gain of the circuit, can show up as a large output offset. For example, when an amplifier with a 5 µV p-p 1/f noise is configured for a gain of 1000, its output has 5 mV of error due to the 1/f noise. However, the AD8628/AD8629/AD8630 eliminate 1/f noise internally, thereby greatly reducing output errors.
The internal elimination of 1/f noise is accomplished as follows. 1/f noise appears as a slowly varying offset to the AD8628/AD8629/
AD8630 inputs. Auto-zeroing corrects any dc or low frequency
offset. Therefore, the 1/f noise component is essentially removed, leaving the AD8628/AD8629/AD8630 free of 1/f noise.
One advantage that the AD8628/AD8629/AD8630 bring to system applications over competitive auto-zero amplifiers is their very low noise. The comparison shown in an input-referred noise density of 19.4 nV/√Hz at 1 kHz for the AD8628, which is much better than the Competitor A and Competitor B. The noise is flat from dc to 1.5 kHz, slowly increasing up to 20 kHz. The lower noise at low frequency is desirable where auto-zero amplifiers are widely used.
Figure 49. Noise Spectral Density of AD8628 vs. Competition
Figure 49 indicates
Rev. K | Page 15 of 24
Page 16
AD8628/AD8629/AD8630 Data Sheet
en p-p = 0.5µV BW = 0.1Hz TO 10Hz
TIME (1s/DIV)
VOLTAGE (0.5µV/DIV)
02735-047
e
n
p-p = 2.3µV
BW = 0.1Hz
T
O 10Hz
TIME (1s/DIV)
VOLT
AGE (0.5µV /DIV)
02735-048
470pF
OUT
100kΩ
IN
1kΩ
02735-049
FREQUENC
Y
(kHz)
NOISE (dB)
50
45
40
35
30 25
15
10
5
20
0
0 30
60 100
9080
70
50402010
02735-050
FREQUENCY (kHz)
NOISE (dB)
50
45
40
35
30 25
15
10
5
20
0
0 30 60
1009080
7050402010
02735-051
3dB FIL TER BANDWIDTH ( Hz )
RMS NOISE (µV)
10
1
0.1
10 100 10k1k
02735-052
COMPETITOR A
AD8551
AD8628

PEAK-TO-PEAK NOISE

Because of the ping-pong action between auto-zeroing and chopping, the peak-to-peak noise of the AD8628/AD8629/
AD8630 is much lower than the competition. Figure 50 and
Figure 51 show this comparison.
Figure 51. Competitor A Peak-to-Peak Noise

NOISE BEHAVIOR WITH FIRST-ORDER, LOW-PASS FILTER

The AD8628 was simulated as a low-pass filter (see Figure 53) and then configured as shown in Figure 52. The behavior of the
AD8628 matches the simulated data. It was verified that noise is
rolled off by first-order filtering. Figure 53 and Figure 54 show the difference between the simulated and actual transfer functions of the circuit shown in Figure 52.
Figure 52. First-Order Low-Pass Filter Test Circuit,
Figure 50. AD8628 Peak-to-Peak Noise
×101 Gain and 3 kHz Corner Frequency
Figure 53. Simulation Transfer Function of the Test Circuit in Figure 52
Figure 54. Actual Transfer Function of the Test Circuit in Figure 52
The measured noise spectrum of the test circuit charted in Figure 54 shows that noise between 5 kHz and 45 kHz is successfully rolled off by the first-order filter.
TOTAL INTEGRATED INPUT-REFERRED NOISE FOR
Rev. K | Page 16 of 24
FIRST-ORDER FILTER
For a first-order filter, the total integrated noise from the
AD8628 is lower than the noise of Competitor A.
Figure 55. RMS Noise vs. 3 dB Filter Bandwidth in Hz
Page 17
Data Sheet AD8628/AD8629/AD8630
TIME (500µ s/DIV)
VOLTAGE (V)
V
OUT
0V
0V
V
IN
02735-053
CH1 = 50mV/DIV CH2 = 1V/DIV A
V
= –50
TIME (500µ s/DIV)
VOLTAGE (V)
V
OUT
0V
0V
V
IN
02735-054
CH1 = 50mV/DIV CH2 = 1V/DIV A
V
= –50
TIME (500µ s/DIV)
VOLTAGE (V)
V
OUT
0V
0V
V
IN
02735-055
CH1 = 50mV/DIV CH2 = 1V/DIV A
V
= –50

INPUT OVERVOLTAGE PROTECTION

Although the AD8628/AD8629/AD8630 are rail-to-rail input amplifiers, care should be taken to ensure that the potential difference between the inputs does not exceed the supply voltage. Under normal negative feedback operating conditions, the amplifier corrects its output to ensure that the two inputs are at the same voltage. However, if either input exceeds either supply rail by more than 0.3 V, large currents begin to flow through the ESD protection diodes in the amplifier.
These diodes are connected between the inputs and each supply rail to protect the input transistors against an electrostatic discharge event, and they are normally reverse-biased. However, if the input voltage exceeds the supply voltage, these ESD diodes can become forward-biased. Without current limiting, excessive amounts of current could flow through these diodes, causing permanent damage to the device. If inputs are subject to overvoltage, appropriate series resistors should be inserted to limit the diode current to less than 5 mA maximum.

OUTPUT PHASE REVERSAL

Output phase reversal occurs in some amplifiers when the input common-mode voltage range is exceeded. As common-mode voltage is moved outside the common-mode range, the outputs of these amplifiers can suddenly jump in the opposite direction to the supply rail. This is the result of the differential input pair shutting down, causing a radical shifting of internal voltages that results in the erratic output behavior.
The AD8628/AD8629/AD8630 amplifiers have been carefully designed to prevent any output phase reversal, provided that both inputs are maintained within the supply voltages. If one or both inputs could exceed either supply voltage, a resistor should be placed in series with the input to limit the current to less than 5 mA. This ensures that the output does not reverse its phase.
Figure 56. Positive Input Overload Recovery for the AD8628
Figure 57. Positive Input Overload Recovery for Competitor A

OVERLOAD RECOVERY TIME

Many auto-zero amplifiers are plagued by a long overload recovery time, often in ms, due to the complicated settling behavior of the internal nulling loops after saturation of the outputs. The
AD8628/AD8629/AD8630 have been designed so that internal
settling occurs within two clock cycles after output saturation occurs. This results in a much shorter recovery time, less than 10 µs, when compared to other auto-zero amplifiers. The wide bandwidth of the AD8628/AD8629/AD8630 enhances performance when the parts are used to drive loads that inject transients into the outputs. This is a common situation when an amplifier is used to drive the input of switched capacitor ADCs.
Figure 58. Positive Input Overload Recovery for Competitor B
Rev. K | Page 17 of 24
Page 18
AD8628/AD8629/AD8630 Data Sheet
TIME (500µ s/DIV)
VOLTAGE (V)
V
OUT
0V
0V
V
IN
02735-056
CH1 = 50mV/DIV CH2 = 1V/DIV A
V
= –50
TIME (500µ s/DIV)
VOLTAGE (V)
V
OUT
0V
0V
V
IN
02735-057
CH1 = 50mV/DIV CH2 = 1V/DIV AV = –50
TIME (500µ s/DIV)
VOLTAGE (V)
V
OUT
0V
0V
V
IN
02735-058
CH1 = 50mV/DIV CH2 = 1V/DIV AV = –50
5V
100kΩ10kΩ
5V
100µV TO 300µV
100Ω
TO BIAS
VOLTAGE
10kΩ
f
C
1.6Hz
IR
DETECTOR
100kΩ
10µF
1/2 AD8629
1/2 AD8629
02735-059
The results shown in Figure 56 to Figure 61 are summarized in Table 5.
Table 5. Overload Recovery Time
Figure 59. Negative Input Overload Recovery for the AD8628
Positive Overload
Model
Recovery (µs)
AD8628 6 9
Competitor A 650 25,000 Competitor B 40,000 35,000

INFRARED SENSORS

Infrared (IR) sensors, particularly thermopiles, are increasingly being used in temperature measurement for applications as wide ranging as automotive climate control, human ear thermometers, home insulation analysis, and automotive repair diagnostics. The relatively small output signal of the sensor demands high gain with very low offset voltage and drift to avoid dc errors.
If interstage ac coupling is used, as in Figure 62, low offset and drift prevent the output of the input amplifier from drifting close to saturation. The low input bias currents generate minimal errors from the output impedance of the sensor. As with pressure sensors, the very low amplifier drift with time and temperature eliminate additional errors once the temperature measurement is calibrated. The low 1/f noise improves SNR for dc measurements taken over periods often exceeding one-fifth of a second.
Figure 62 shows a circuit that can amplify ac signals from 100 µV to 300 µV up to the 1 V to 3 V levels, with a gain of 10,000 for accurate analog-to-digital conversion.
Negative Overload Recovery (µs)
Figure 60. Negative Input Overload Recovery for Competitor A
Figure 61. Negative Input Overload Recovery for Competitor B
Figure 62. AD8629 Used as Preamplifier for Thermopile
Rev. K | Page 18 of 24
Page 19
Data Sheet AD8628/AD8629/AD8630
V
V

PRECISION CURRENT SHUNT SENSOR

A precision current shunt sensor benefits from the unique attributes of auto-zero amplifiers when used in a differencing configuration, as shown in Figure 63. Current shunt sensors are used in precision current sources for feedback control systems. They are also used in a variety of other applications, including battery fuel gauging, laser diode power measurement and control, torque feedback controls in electric power steering, and precision power metering.
R
SUPPLY
e = 1000 RSI
100mV/m A
100100k
C 5V
S
0.1
I
AD8628
100100k
C
Figure 63. Low-Side Current Sensing
In such applications, it is desirable to use a shunt with very low resistance to minimize the series voltage drop; this minimizes wasted power and allows the measurement of high currents while saving power. A typical shunt might be 0.1 Ω. At measured current values of 1 A, the output signal of the shunt is hundreds of millivolts, or even volts, and amplifier error sources are not critical. However, at low measured current values in the 1 mA range, the 100 μV output voltage of the shunt demands a very low offset voltage and drift to maintain absolute accuracy. Low input bias currents are also needed, so that injected bias current does not become a significant percentage of the measured current. High open-loop gain, CMRR, and PSRR help to maintain the overall circuit accuracy. As long as the rate of change of the current is not too fast, an auto-zero amplifier can be used with excellent results.
R
L
02735-060

OUTPUT AMPLIFIER FOR HIGH PRECISION DACS

The AD8628/AD8629/AD8630 are used as output amplifiers for a 16-bit high precision DAC in a unipolar configuration. In this case, the selected op amp needs to have a very low offset voltage (the DAC LSB is 38 μV when operated with a 2.5 V reference) to eliminate the need for output offset trims. The input bias current (typically a few tens of picoamperes) must also be very low because it generates an additional zero code error when multiplied by the DAC output impedance (approximately 6 kΩ).
Rail-to-rail input and output provide full-scale output with very little error. The output impedance of the DAC is constant and code independent, but the high input impedance of the AD8628/
AD8629/AD8630 minimizes gain errors. The wide bandwidth
of the amplifiers also serves well in this case. The amplifiers, with settling time of 1 μs, add another time constant to the system, increasing the settling time of the output. The settling time of the AD5541 is 1 μs. The combined settling time is approximately 1.4 μs, as can be derived from the following equation:
SERIAL
INTERFACE
*AD5542 ONLY

5
0.1µF
V
DD
CS
DIN
SCLK
LDAC*
DGND
2

tDACtTOTALt
SSS
2.5 10µF
0.1µF
REF(REFF*) REFS*
AD5541/AD5542
AGND
Figure 64. AD8628 Used as an Output Amplifier
AD8628
V
OUT
2
AD8628
UNIPOLAR
OUTPUT
02735-061
Rev. K | Page 19 of 24
Page 20
AD8628/AD8629/AD8630 Data Sheet
0
0

OUTLINE DIMENSIONS

5.00(0.1968)
4.80(0.1890)
85
1
4
6.20 (0.2441)
5.80 (0.2284)
1.60 BSC
2.90 BSC
54
2.80 BSC
123
4.00 (0.1574)
3.80 (0.1497)
0.95 BSC
*
0.90 MAX
0.70 MIN
0.10 MAX
1.90
BSC
*
1.00 MAX
0.50
0.30
*
COMPLIANT TO JEDEC STANDARDS MO-193-AB WIT H THE EXCEPT ION OF P A CKAGE HEIGHT AND THICKNESS .
SEATING PLANE
0.20
0.08 8°
4° 0°
Figure 65. 5-Lead Thin Small Outline Transistor Package [TSOT]
(UJ-5)
Dimensions shown in millimeters
3.00
2.90
2.80
.15 MAX .05 MIN
1.30
1.15
0.90
1.70
1.60
1.50
5
123
4
3.00
2.80
2.60
0.95 BSC
1.90 BSC
SEATING PLANE
0.20 MAX
0.08 MIN
1.45 MAX
0.95 MIN
0.50 MAX
0.35 MIN
COMPLIANT TO JEDEC STANDARDS MO-178-AA
10°
5° 0°
Figure 66. 5-Lead Small Outline Transistor Package [SOT-23]
(RJ-5)
Dimensions shown in millimeters
0.60
BSC
0.60
0.45
0.30
0.55
0.45
0.35
1.27 (0.0500) BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10 SEATING
PLANE
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES)ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
100708-A
REFERENCE ONLYAND ARE NOT APPROPRIATEFOR USE IN DESIGN.
COMPLIANT TO JEDEC STANDARDS MS-012-AA
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
8° 0°
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0196)
0.25 (0.0099)
1.27 (0.0500)
0.40 (0.0157)
45°
012407-A
Figure 67. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
3.20
3.00
2.80
8
5
3.20
3.00
2.80
PIN 1
IDENTIFIER
1
5.15
4.90
4.65
4
0.65 BSC
0.95
0.85
0.75
0.15
0.05
COPLANARITY
11-01-2010-A
0.10
COMPLI ANT TO JEDE C STANDARDS MO-187- AA
0.40
0.25
1.10 MAX
15° MAX
6° 0°
0.23
0.09
0.80
0.55
0.40
10-07-2009-B
Figure 68. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
Rev. K | Page 20 of 24
Page 21
Data Sheet AD8628/AD8629/AD8630
8.75 (0.3445)
8.55 (0.3366)
BSC
8
7
6.20 (0.2441)
5.80 (0.2283)
1.75 (0.0689)
1.35 (0.0531)
SEATING PLANE
8° 0°
0.25 (0.0098)
0.17 (0.0067)
4.00 (0.1575)
3.80 (0.1496)
0.25 (0.0098)
0.10 (0.0039)
COPLANARITY
0.10
14 1
1.27 (0.0500)
0.51 (0.0201)
0.31 (0.0122)
CONTROLL ING DIMENSI ONS ARE IN M I L LIMETERS ; I NCH DIMENSIONS (IN PARENTHESES) ARE RO UNDED-OFF MI LLIMET ER EQUIVALENTS FOR REFERENCE ON LY AND ARE NOT APPROPRIATE FOR USE IN DES I GN.
COMPLIANT TO JEDEC STANDARDS MS-012-AB
Figure 69. 14-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-14)
Dimensions shown in millimeters and (inches)
0.50 (0.0197)
0.25 (0.0098)
1.27 (0.0500)
0.40 (0.0157)
5.10
5.00
4.90
14
4.50
4.40
4.30
45°
1.05
1.00
0.80
060606-A
COPLANARITY
PIN 1
0.15
0.05
0.10
1
0.65 BSC
0.30
0.19
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
8
6.40 BSC
7
1.20
0.20
MAX
SEATING PLANE
0.09 8°
0.75
0.60
0.45
061908-A
Figure 70. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
Rev. K | Page 21 of 24
Page 22
AD8628/AD8629/AD8630 Data Sheet
Model
Temperature Range
Package Description
Package Option
Branding
AD8628WARTZ-RL
−40°C to +125°C
5-Lead SOT-23
RJ-5
A0L
AD8630ARUZ
−40°C to +125°C
14-Lead TSSOP
RU-14

ORDERING GUIDE

1, 2
AD8628AUJ-REEL −40°C to +125°C 5-Lead TSOT UJ-5 AYB AD8628AUJ-REEL7 −40°C to +125°C 5-Lead TSOT UJ-5 AYB AD8628AUJZ-R2 −40°C to +125°C 5-Lead TSOT UJ-5 A0L AD8628AUJZ-REEL −40°C to +125°C 5-Lead TSOT UJ-5 A0L AD8628AUJZ-REEL7 −40°C to +125°C 5-Lead TSOT UJ-5 A0L AD8628ARZ −40°C to +125°C 8-Lead SOIC_N R-8 AD8628ARZ-REEL −40°C to +125°C 8-Lead SOIC_N R-8 AD8628ARZ-REEL7 −40°C to +125°C 8-Lead SOIC_N R-8 AD8628ARTZ-R2 −40°C to +125°C 5-Lead SOT-23 RJ-5 A0L AD8628ARTZ-REEL7 −40°C to +125°C 5-Lead SOT-23 RJ-5 A0L AD8628WARZ-RL −40°C to +125°C 8-Lead SOIC_N R-8 A0L AD8628WARZ-R7 −40°C to +125°C 8-Lead SOIC_N R-8 A0L
AD8628WARTZ-R7 −40°C to +125°C 5-Lead SOT-23 RJ-5 A0L AD8628WAUJZ-RL −40°C to +125°C 5-Lead TSOT UJ-5 A0L AD8628WAUJZ-R7 −40°C to +125°C 5-Lead TSOT UJ-5 A0L AD8629ARZ −40°C to +125°C 8-Lead SOIC_N R-8 AD8629ARZ-REEL −40°C to +125°C 8-Lead SOIC_N R-8 AD8629ARZ-REEL7 −40°C to +125°C 8-Lead SOIC_N R-8 AD8629ARMZ −40°C to +125°C 8-Lead MSOP RM-8 A06 AD8629ARMZ-REEL −40°C to +125°C 8-Lead MSOP RM-8 A06 AD8629WARZ-RL −40°C to +125°C 8-Lead SOIC_N R-8 AD8629WARZ-R7 −40°C to +125°C 8-Lead SOIC_N R-8
AD8630ARUZ-REEL −40°C to +125°C 14-Lead TSSOP RU-14 AD8630ARZ −40°C to +125°C 14-Lead SOIC_N R-14 AD8630ARZ-REEL −40°C to +125°C 14-Lead SOIC_N R-14 AD8630ARZ-REEL7 −40°C to +125°C 14-Lead SOIC_N R-14 AD8630WARZ-RL −40°C to +125°C 14-Lead SOIC_N R-14 AD8630WARZ-R7 −40°C to +125°C 14-Lead SOIC_N R-14
1
Z = RoHS Compliant Part.
2
W = Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The AD8628W/AD8629W/AD8630W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.
Rev. K | Page 22 of 24
Page 23
Data Sheet AD8628/AD8629/AD8630
NOTES
Rev. K | Page 23 of 24
Page 24
AD8628/AD8629/AD8630 Data Sheet
©2002–2014 Analog Devices, Inc. All rights reserved. Trademarks and
NOTES
registered trademarks are the property of their respective owners. D02735-0-8/14(K)
Rev. K | Page 24 of 24
Loading...