ANALOG DEVICES AD8597, AD8599 Service Manual

Single and Dual, Ultralow

FEATURES

Low noise: 1.1 nV/√Hz at 1 kHz Low distortion: −120 dB THD @ 1 kHz Input noise, 0.1 Hz to 10 Hz: <76 nV p-p Slew rate: 14 V/μs Wide bandwidth: 10 MHz Supply current: 4.8 mA/amp typical Low offset voltage: 10 μV typical CMRR: 120 dB Unity-gain stable ±15 V operation

APPLICATIONS

Professional audio preamplifiers ATE/precision testers Imaging systems Medical/physiological measurements Precision detectors/instruments Precision data conversion
Distortion, Ultralow Noise Op Amps
AD8597/AD8599

PIN CONFIGURATIONS

1
NC
AD8597
–IN
2
+IN
3
TOP VIEW
(Not to S cale)
V–
4
NC = NO CONNECT
Figure 1. AD8597 8-Lead SOIC (R-8)
1
NC
2
–IN +IN
V–
NOTES
1. NC = NO CONNECT.
2. IT I S RECOMMENDED T HAT THE EXPOSED PAD BE CONNECTED TO V–.
3 4
AD8597
TOP VIEW
Figure 2. AD8597 8-Lead LFCSP (CP-8-2)
PIN 1 INDICATOR
8 7 6 5
NC V+ OUT NC
8NC 7V+ 6OUT 5NC
06274-060
06274-061

GENERAL DESCRIPTION

The AD8597/AD8599 are very low noise, low distortion opera­tional amplifiers ideal for use as preamplifiers. The low noise of
1.1 nV/√Hz and low harmonic distortion of −120 dB (or better) at audio bandwidths give the AD8597/AD8599 the wide dynamic range necessary for preamplifiers in audio, medical, and instru­mentation applications. The excellent slew rate of 14 V/μs and 10 MHz gain bandwidth make them highly suitable for medical applications. The low distortion and fast settling time make them ideal for buffering of high resolution data converters.
OUT A
–IN A +IN A
–V
1
AD8599
2 3
TOP VIEW
(Not to S cale)
4
8 7 6 5
+V OUT B –IN B +IN B
06274-054
Figure 3. AD8599 8-Lead SOIC (R-8)
The AD8597 is available in 8-lead SOIC and LFCSP packages, while the AD8599 is available in an 8-lead SOIC package. They are both specified over a −40°C to +125°C temperature range. The AD8597 and AD8599 are members of a growing series of low noise op amps offered by Analog Devices, Inc., (see Tabl e 1).
Table 1. Low Noise Op Amps
Package 0.9 nV 1.1 nV 1.8 nV 2.8 nV 3.8 nV
Single AD797 AD8597 ADA4004-1 AD8675 AD8671 Dual AD8599 ADA4004-2 AD8676 AD8672 Quad ADA4004-4 AD8674
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007–2009 Analog Devices, Inc. All rights reserved.
AD8597/AD8599

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
Pin Configurations ........................................................................... 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Absolute Maximum Ratings ............................................................ 5
Thermal Resistance ...................................................................... 5
Power Sequencing ........................................................................ 5

REVISION HISTORY

12/09—Rev. B to Rev. C
Changes to Table 1 ............................................................................ 1
10/08—Rev. A to Rev. B
Added AD8597 ................................................................... Universal
Added LFCSP_VD ............................................................. Universal
Added Table 1 .................................................................................... 1
Changes to Specifications Section .................................................. 3
Changes to Absolute Maximum Ratings Section ......................... 5
Changes to Typical Performance Characteristics Section ........... 6
Added Figure 12 and Figure 15....................................................... 7
Added Figure 18 and Figure 19....................................................... 8
Added Figure 30 and Figure 33..................................................... 10
Added Figure 34 to Figure 38 ........................................................ 11
Added Figure 42 and Figure 45..................................................... 12
Added Figure 52, Figure 55, Figure 57 ......................................... 14
Added Functional Operation Section .......................................... 15
Added Figure 58 .............................................................................. 15
Updated Outline Dimensions ....................................................... 17
Changes to Ordering Guide .......................................................... 17
ESD Caution...................................................................................5
Typical Performance Characteristics ..............................................6
Functional Operation..................................................................... 15
Input Voltage Range ................................................................... 15
Output Phase Reversal ............................................................... 15
Noise and Source Impedance Considerations ........................... 15
Outline Dimensions ....................................................................... 17
Ordering Guide .......................................................................... 17
4/07—Rev. 0 to Rev. A
Updated Layout ................................................................................. 5
Changes to Figure 45 Caption ...................................................... 12
Added Figure 48 ............................................................................. 12
Changes to Figure 51 Caption ...................................................... 13
2/07—Revision 0: Initial Version
Rev. C | Page 2 of 20
AD8597/AD8599

SPECIFICATIONS

VSY = ±5 V, VCM = 0 V, VO = 0 V, TA = 25°C, unless otherwise specified.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage V
OS
−40°C TA ≤ +125°C 180 μV
Offset Voltage Drift ΔVOS/ΔT −40°C TA ≤ +125°C 0.8 2.2 μV/°C Input Bias Current I
B
−40°C TA ≤ +125°C 340 nA Input Offset Current I
OS
−40°C TA ≤ +125°C 340 nA Input Voltage Range IVR Common-Mode Rejection Ratio CMRR −2.0 V ≤ VCM ≤ +2.0 V 120 135 dB
−40°C TA ≤ +125°C 105 dB Large Signal Voltage Gain AVO R
−40°C TA ≤ +125°C 100 dB Input Capacitance
Differential Capacitance C Common-Mode Capacitance C
15.4 pF
DIFF
CM
OUTPUT CHARACTERISTICS
Output Voltage High V
OH
−40°C TA ≤ +125°C 3.3 V R
−40°C TA ≤ +125°C 3.5 V Output Voltage Low V
OL
−40°C TA ≤ +125°C −3.3 V R
−40°C TA ≤ +125°C −3.4 V Output Short-Circuit Current I Closed-Loop Output Impedance Z
SC
At 1 MHz, AV = 1 5 Ω
OUT
POWER SUPPLY
Power Supply Rejection Ratio PSRR VSY = ±18 V to ±4.5 V 120 140 dB
−40°C TA ≤ +125°C 118 dB Supply Current per Amplifier ISY 4.8 5.5 mA
−40°C TA ≤ +125°C 6.5 mA
DYNAMIC PERFORMANCE
Slew Rate SR AV = −1, RL = 2 kΩ 14 V/μs A Settling Time tS To 0.01%, step = 10 V 2 μs Gain Bandwidth Product GBP 10 MHz Phase Margin ΦM 60 Degrees
NOISE PERFORMANCE
Peak-to-Peak Noise en p-p 0.1 Hz to 10 Hz 76 nV p-p Voltage Noise Density e
n
f = 10 Hz 1.5 nV/√Hz Correlated Current Noise f = 1 kHz 2.0 pA/√Hz f = 10 Hz 4.2 pA/√Hz Uncorrelated Current Noise f = 1 kHz 2.4 pA/√Hz f = 10 Hz 5.2 pA/√Hz Total Harmonic Distortion + Noise THD + N G = 1, RL ≥ 1 kΩ, f = 1 kHz, V Channel Separation CS f = 10 kHz −120 dB
15 120 μV
40 210 nA
65 250 nA
−2.0 +2.0 V
≥ 600 Ω, V
L
= −11 V to +11 V 105 110 dB
O
5.5 pF
RL = 600 Ω 3.5 3.7 V
= 2 kΩ 3.7 3.8 V
L
RL = 600 Ω −3.6 −3.4 V
= 2 kΩ −3.7 −3.5 V
L
±52 mA
= 1, RL = 2 kΩ 14 V/μs
V
f = 1 kHz 1.07 1.15 nV/√Hz
Rev. C | Page 3 of 20
RMS
= 1 V
−120 dB
AD8597/AD8599
VS = ±15 V, VCM = 0 V, VO = 0 V, TA = +25°C, unless otherwise specified.
Table 3.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage V
OS
−40°C TA ≤ +125°C 180 μV
Offset Voltage Drift ΔVOS/ΔT −40°C TA ≤ +125°C 0.8 2.2 μV/°C
Input Bias Current I
B
−40°C TA ≤ +125°C 300 nA Input Offset Current I
OS
−40°C TA ≤ +125°C 300 nA Input Voltage Range IVR Common-Mode Rejection Ratio CMRR −12.5 V ≤ VCM ≤ +12.5 V 120 135 dB
−40°C TA ≤ +125°C 115 dB Large Signal Voltage Gain AVO R
−40°C TA ≤ +125°C 106 dB Input Capacitance
Differential Capacitance C Common-Mode Capacitance C
12.1 pF
DIFF
CM
OUTPUT CHARACTERISTICS
Output Voltage High V
OH
−40°C TA ≤ +125°C 12.8 V R
−40°C TA ≤ +125°C 13.2 V Output Voltage Low V
OL
−40°C TA ≤ +125°C −12.8 V R
−40°C TA ≤ +125°C −13.3 V Output Short-Circuit Current I Closed-Loop Output Impedance Z
SC
At 1 MHz, AV = 1 5 Ω
OUT
POWER SUPPLY
Power Supply Rejection Ratio PSRR VSY = ±18 V to ±4.5 V 120 140 dB
−40°C TA ≤ +125°C 118 dB Supply Current per Amplifier ISY 5.0 5.7 mA
−40°C TA ≤ +125°C 6.75 mA
DYNAMIC PERFORMANCE
Slew Rate SR AV = −1, RL = 2 kΩ 16 V/μs A Settling Time ts To 0.01%, step = 10 V 2 μs Gain Bandwidth Product GBP 10 MHz Phase Margin ΦM 65 Degrees
NOISE PERFORMANCE
Peak-to-Peak Noise en p-p 0.1 Hz to 10 Hz 76 Voltage Noise Density e
n
f = 10 Hz 1.5 nV/√Hz Correlated Current Noise f = 1 kHz 1.9 pA/√Hz f = 10 Hz 4.3 pA/√Hz Uncorrelated Current Noise f = 1 kHz 2.3 pA/√Hz f = 10 Hz 5.3 pA/√Hz Total Harmonic Distortion + Noise THD + N G = 1, R Channel Separation CS f = 10 kHz −120 dB
10 120 μV
25 200 nA
50 200 nA
−12.5 +12.5 V
≥ 600 Ω, V
L
= −11 V to +11 V 110 116 dB
O
5.1 pF
RL = 600 Ω 13.1 13.4 V
= 2 kΩ 13.5 13.7 V
L
RL = 600 Ω −13.2 −12.9 V
= 2 kΩ −13.5 −13.4 V
L
±52 mA
= 1, RL = 2 kΩ 15 V/μs
V
nV p-p
f = 1 kHz 1.07 1.15 nV/√Hz
≥ 1 kΩ, f = 1 kHz, V
L
Rev. C | Page 4 of 20
RMS
= 3 V
−120 dB
AD8597/AD8599

ABSOLUTE MAXIMUM RATINGS

Table 4.
Parameter Rating
Supply Voltage ±18 V Input Voltage −V ≤ VIN ≤ +V Differential Input Voltage1 ±1 V Output Short-Circuit to GND Indefinite Storage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +125°C Lead Temperature Range (Soldering 60 sec) 300°C Junction Temperature 150°C
1
If the differential input voltage exceeds 1 V, the current should be limited
to 5 mA.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified with the device soldered on a circuit board with its exposed paddle soldered to a pad (if applicable) on a 4-layer JEDEC standard PCB with zero air flow.
Table 5.
Package Type θJA θ
8-Lead LFCSP_VD (CP-8-2) 78 20 °C/W 8-Lead SOIC (R-8) (AD8597) 140 39 °C/W 8-Lead SOIC (R-8) (AD8599) 120 36 °C/W
Unit
JC

POWER SEQUENCING

The op amp supplies should be applied simultaneously. The op amp supplies should be stable before any input signals are applied. In any case, the input current must be limited to 5 mA.

ESD CAUTION

Rev. C | Page 5 of 20
AD8597/AD8599

TYPICAL PERFORMANCE CHARACTERISTICS

TA = 25°C, unless otherwise noted.
70
60
50
40
30
20
NUMBER OF AMPLIFIERS
10
0
–75 –65 –55 –45 –35 –25 –15 –5 15 25 35 45 55 65 755
VOS (µV)
Figure 4. Input Offset Voltage Distribution
60
50
40
30
20
NUMBER OF AMPLIFIERS
10
0
0 0.2 1.6 1.8 2.0 2.41.41.21.00.4 0.6 0.8 2.2
TCVOS (µV)
Figure 5. TCVOS Distribution, −40°C ≤ TA ≤ +125°C
AD8599 MEAN = 8.23 STDEV = 24.47
MIN = –72.62 MAX = 62.09 V
= ±5V
SY
AD8599 MEAN = 0.346 STDEV = 0. 218
MIN = 0.010 MAX = 1.155 V
= ±5V
SY
70
60
50
40
30
20
NUMBER OF AMPL IFIE R S
10
0
–75 –65–55 –45 –35 –25 –15 –5 15 25 35 45 55 65 755
6274-001
VOS (µV)
AD8599 MEAN = 7.91 STDEV = 21. 89 MIN = –63.02 MAX = 57.5
= ±15V
V
SY
06274-002
Figure 7. Input Offset Voltage Distribution
45
40
35
30
25
20
15
NUMBER OF AMPLIFIERS
10
5
0
0 0.2 1.6 1.8 2.0 2.41.41.21.00.4 0.6 0.8 2.2
06274-004
TCVOS (µV)
AD8599 MEAN = 0.765 STDEV = 0.234
MIN = 0.338 MAX = 1.709
= ±15V
V
SY
6274-007
Figure 8. TCVOS Distribution, −40°C ≤ TA ≤ +125°C
60
50
40
30
20
NUMBER OF AMPLIFIERS
10
0
0 0.2 1.6 1.8 2.0 2.41.41.21.00.4 0.6 0.8 2.2
TCVOS (µV)
Figure 6. TCVOS Distribution, −40°C ≤ TA ≤ +85°C
AD8599 MEAN = 0.461 STDEV = 0. 245 MIN = 0.026 MAX = 1.26 V
= ±5V
SY
6274-006
Rev. C | Page 6 of 20
60
50
40
30
20
NUMBER OF AMPLIFIERS
10
0
0 0.2 1.6 1.8 2.0 2.41.41.21.00.4 0.6 0.8 2.2
TCVOS (µV)
Figure 9. TCVOS Distribution, −40°C ≤ TA ≤ +85°C
AD8599 MEAN = 0.342 STDEV = 0. 221
MIN = 0.013 MAX = 1.239
= ±15V
V
SY
06274-005
AD8597/AD8599
100
75
50
25
(µV)
0
OS
V
–25
–50
–75
–100
–5.0 –2.5 0 2.5 5.0
AD8599
V
SY
VCM (V)
= ±5V
Figure 10. Offset Voltage vs. VCM
350
AD8599
300
V
= ±5V
SY
= 0V
V
CM
250 200 150
100
(nA)
B
50
I
0
–50 –100 –150 –200
–50 –25 0 25 50
TEMPERATURE ( °C)
75 100
Figure 11. Input Bias Current vs. Temperature
6274-009
125
06274-011
100
75
50
25
(µV)
0
OS
V
–25
–50
–75
–100
–15 –10 –5 0 5
AD8599
V
SY
VCM (V)
= ±15V
Figure 13. Offset Voltage vs. VCM
350
AD8599
300
V
= ±15V
SY
V
= 0V
CM
250 200 150
100
(nA)
B
50
I
0
–50 –100 –150 –200
–50 –25 0 25 50
TEMPERATURE (°C)
Figure 14. Input Bias Current vs. Temperature
10 15
75 100
6274-010
125
06274-012
50
AD8597
40
30
20
10
(µV)
0
OS
V
±15V
–10
–20
–30
–40
–50
–50 –25 0 25 50 75 100 125 150
±5V
TEMPERATURE (°C)
Figure 12. Input Offset Voltage vs. Temperature
06274-062
Rev. C | Page 7 of 20
350
AD8597
300
V
= ±15V
SY
250 200 150 100
50
0
(nA)
B
I
–50 –100 –150 –200 –250 –300 –350
12–10–8–6–4–2024681012
TA = –40°C
TA = +25°C
TA = +85°C
TA = +125°C
VCM (V)
Figure 15. Input Bias Current vs. Temperature
06274-063
AD8597/AD8599
80
AD8599
70
60
50
40
(nA)
OS
I
30
20
10
–50 –25 0 25 50
IOS @ VSY = ±5V
IOS @ VSY = ±15V
TEMPERATURE (°C)
Figure 16. Input Offset Current vs. Temperature
75 1000125
6274-013
150
AD8597
100
50
0
(nA)
B
I
–50
–100
–150
–50 –25 0 25 50 75 100 125
±15V
±5V
TEMPERATURE (°C)
Figure 19. Input Offset Current vs. Temperature
06274-065
114
AD8599 V
= ±5V
SY
112
110
108
(dB)
VO
106
A
104
102
100
RL = 600, VO = ±2V
RL = 2k, VO = ±2V
75 100
TEMPERATURE ( °C)
Figure 17. Large Signal Voltage Gain vs. Temperature
8
AD8597
7
6
5
4
(mA)
SY
I
3
2
1
0
0 2 4 6 8 1012141618202224262830323436
= +125°C
T
A
T
VSY (V)
= +85°C
A
TA = +25°C
Figure 18. Supply Current vs. Supply Voltage
= –40°C
T
A
120
AD8599 V
= ±15V
SY
118
116
(dB)
VO
A
114
112
150125–50 –25 0 25 50
6274-015
110
–50 –25 0 25 50
RL = 600, VO = ±11V
RL = 2k, VO = ±11V
75 100
TEMPERATURE (°C)
150125
6274-016
Figure 20. Large Signal Voltage Gain vs. Temperature
350
AD8599
300
= ±15V
V
SY
250 200 150 100
50
0
(nA)
B
I
–50 –100 –150 –200 –250
06274-064
–300 –350
–12 –10 –8 –6 –4
TA = –40°C
TA = +25°C
TA = +85°C
TA = +125°C
–2 0
VCM (V)
6
42
12
108
06274-014
Figure 21. Input Bias Current vs. VCM
Rev. C | Page 8 of 20
AD8597/AD8599
V
V
80
60
I
40
SINK
AD8599 V
= ±5V
SY
80
60
I
40
SINK
AD8599 V
= ±15V
SY
20
0
–20
OUTPUT CURRENT ( mA)
–40
I
SOURCE
–60
–80
–50 –25 0 25 50
75 100
TEMPERATURE ( °C)
Figure 22. ISC vs. Temperature
10k
AD8599 V
= ±5V
SY
I
SINK
1k
I
SOURCE
OUTPUT SATURATION VO LTAGE (mV)
100
0.001 0.01 0.1 1 10 IL (mA)
Figure 23. Output Saturation Voltage vs. Current Load
20
0
–20
OUTPUT CURRENT ( mA)
–40
I
SOURCE
–60
150125
06274-017
–80
–50 –25 0 25 50
TEMPERATURE ( °C)
75 100
150125
06274-018
Figure 25. ISC vs. Temperature
10k
AD8599 V
= ±15V
SY
I
SINK
1k
I
SOURCE
OUTPUT SATURATION VO LTAGE (mV)
100
100
06274-021
0.001 0.01 0.1 1 10 IL (mA)
100
06274-022
Figure 26. Output Saturation Voltage vs. Current Load
2.5 AD8599 V
= ±5V
SY
2.0
1.5
(V)
OH
CC
1.0
V
VCC – VOH@ RL = 600
VCC – VOH@ RL = 2k
0.5
0 –50 –25 0 25 50
75 100 125 150
TEMPERATURE (°C)
Figure 24. Output Saturation Voltage vs. Temperature
6274-027
Rev. C | Page 9 of 20
2.5 AD8599
V
= ±15V
SY
2.0
VCC – VOH@ RL = 600
1.5
(V)
OH
CC
1.0
V
VCC – VOH@ RL = 2k
0.5
0 –50 –25 0 25 50
75 100 125 150
TEMPERATURE (°C)
Figure 27. Output Saturation Voltage vs. Temperature
6274-029
AD8597/AD8599
V
V
–0.5
0
AD8599 V
= ±5V
SY
–0.5
0
AD8599 V
= ±15V
SY
–1.0
(V)
OL
EE
–1.5
V
VEE – VOL@ RL = 2k
VEE – VOL@ RL = 600
–2.0
–2.5
–50 –25 0 25 50
75 100 125 150
TEMPERATURE (°C)
Figure 28. Output Saturation Voltage vs. Temperature
13.0
–13.5
(V)
–14.0
OL
V
–14.5
AD8599
= ±15V
V
SY
–15.0
–50 0 50
VOL@ RL = 600
VOL@ RL = 2k
TEMPERATURE (°C)
Figure 29. Output Voltage Low vs. Temperature
100 150
–1.0
(V)
OL
EE
–1.5
V
–2.0
–2.5
–50 –25 0 25 50
06274-028
VEE – VOL@ RL = 2k
VEE – VOL@ RL = 600
75 100 125 150
TEMPERATURE (°C)
6274-030
Figure 31. Output Saturation Voltage vs. Temperature
15.0 AD8599
14.8
V
= ±15V
SY
14.6
14.4
14.2
(V)
14.0
OH
V
13.8
VOH@ RL = 2k
13.6
13.4
VOH@ RL = 600
13.2
13.0
–50 0 50
06274-032
TEMPERATURE (°C)
100 150
06274-031
Figure 32. Output Voltage High vs. Temperature
100
80
60
40
C
L
= 20pF
20
0
–20
–40
–60
GAIN (dB) AND P HASE (Degrees)
AD8597 V
= ±5V
SY
–80
R
= 2k
L
–100
10 100 1k 10k 50k
CL = 200pF
FREQUENCY (kHz)
Figure 30. Gain and Phase vs. Frequency
06274-066
Rev. C | Page 10 of 20
120
100
80
60
40
20
0
–20
–40
GAIN (dB) AND P HASE (Degrees)
AD8597 V
= ±15V
SY
–60
R
= 2k
L
–80
1 10 100 1k 50k10k
FREQUENCY (kHz)
Figure 33. Gain and Phase vs. Frequency
C
L
= 20pF
CL = 200pF
06274-067
AD8597/AD8599
50
40
AV = 100
30
20
AV = 10
10
0
GAIN (dB)
–10
–20
–30
–40
= 1
A
V
AD8597 V
= ±5V
SY
R
= 2k
L
1 10 100 1k 50k10k
FREQUENCY (kHz)
Figure 34. Closed-Loop Gain vs. Frequency
06274-068
50
40
AV = 100
30
20
AV = 10
10
0
GAIN (dB)
–10
–20
–30
–40
= 1
A
V
AD8597 V
= ±15V
SY
R
= 2k
L
1 10 100 1k 50k10k
FREQUENCY (kHz)
Figure 37. Closed-Loop Gain vs. Frequency
06274-071
100
AV = –100
10
AV = –10
()
1
OUT
Z
0.1
0.01 10 100 1k 10k 100k
AV = +1
FREQUENCY (kHz)
AD8597 V
Figure 35. Closed-Loop Output Impedance vs. Frequency
110
100
90
80
70
60
CMRR (dB)
AD8597 V
= ±5V, ±15V
50
40
30
20
SY
1 10 100 1k 10k
FREQUENCY (kHz)
Figure 36. Common-Mode Rejection Ratio vs. Frequency
SY
= ±5V
100
AV = –100
10
AV = –10
()
1
OUT
Z
0.1
06274-069
0.01 10 100 1k 10k 100k
AV = +1
FREQUENCY (kHz)
AD8597 V
= ±15V
SY
06274-072
Figure 38. Closed-Loop Output Impedance vs. Frequency
120
100
80
60
40
PSRR (dB)
20
0
06274-070
–20
100 1k 10k 100k 1M
FREQUENCY (Hz)
AD8599 ±5V V
±15V
SY
PSRR+ (dB) PSRR– (dB)
10M
06274-038
Figure 39. Power Supply Rejection Ratio vs. Frequency
Rev. C | Page 11 of 20
AD8597/AD8599
90
80
70
60
50
40
30
NUMBER OF AMPLIFIERS
20
10
0
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.9 2.01.8 VOLTAGE NOISE DENSITY (nV/ Hz)
Figure 40. Voltage Noise Density @ 10 Hz
100
AD8599 ±5V V
±15V
SY
10
AD8599 MEAN = 1.30 STDEV = 0. 09
MIN = 1.1 MAX = 1.5
±15V
±5V V
SY
6274-039
600
500
400
300
200
NUMBER OF AMPL IFIERS
100
0
0.95 0.98 1.01 1.04 1.07 1.10 1.13 1.16 1.19 VOLTAGE NOISE DENSITY (nV/ Hz)
AD8599 MEAN = 1.07 STDEV = 0.02
MIN = 1.05 MAX = 1.15 ±5V V
Figure 43. Voltage Noise Density @ 1 kHz
100
AD8599
±15V
±5V V
SY
10
SY
±15V
6274-040
1
VOLTAGE NOISE DENSITY (nV/ Hz)
0.1 1 10 100 1k
FREQUENCY (Hz)
Figure 41. Voltage Noise Density vs. Frequency
1
0.1
RL = 600
0.01 AD8597
THD + N (%)
V
= ±5V
SY
A
= +1
V
0.001
0.0001
0.001 0.01 0.1 1 10 V rms (V)
RL = 100k
Figure 42. THD + N vs. Amplitude
1
CURRTENT NOIS E DE NS ITY (pA/ Hz )
0.1 110100
06274-041
FREQUENCY (Hz)
1k
06274-042
Figure 44. Current Noise Density vs. Frequency
1
0.1
0.01 AD8597
THD + N (%)
V
= ±15V
SY
= +1
A
V
0.001
06274-073
0.0001
0.001 0.01 0.1 1 10 V rms (V)
RL = 600
RL = 100k
06274-074
Figure 45. THD + N vs. Amplitude
Rev. C | Page 12 of 20
AD8597/AD8599
0.1 AD8599
= ±15V
V
SY
VIN = 3V rms V
= 5V rms
IN
V
= 7V rms
IN
0.1 AD8599 V
= ±15V
SY
= 3V rms
V
IN
0.01
THD + N (%)
0.001
0.0001 10 100 1k 10k 100k
FREQUENCY (Hz)
Figure 46. THD + N vs. Frequency
20
AD8599
15
10
5
0
–5
AMPLITUDE (V)
–10
–15
–20
–8.6 –4.6 –0.6 3.4 7.4 11.4 15.4 19.4 23.4
VSY = ±15V V
= 20V p-p
IN
A
= 1
V
R
= 1k
F
R
= 2k
L
VERTICAL AXIS = 5V/DIV HORIZONTAL AXIS = 4µ s/DIV
TIME (µs)
Figure 47. Large Signal Response
27.4 31.4
0.01
THD + N (%)
0.001
RL = 600
RL = 2k
0.0001 10 100 1k 10k 100k
06274-044
FREQUENCY (Hz)
06274-043
Figure 49. THD + N vs. Frequency
20
AD8599
15
10
5
0
–5
AMPLITUDE (V)
–10
–15
–20
–8.6 –4.6 –0.6 3.4 7.4 11.4 15.4 19.4 23.4
06274-047
VSY = ±15V V
= 20V p-p
IN
A
= –1
V
R
= 2k
F
R
= 2k
S
C
= 0pF
L
VERTICAL AXIS = 5V/DIV HORIZONTAL AXIS = 4µs/DIV
TIME (µs)
27.4 31.4
06274-048
Figure 50. Large Signal Response
80
AD8599
60
40
20
0
–20
AMPLITUDE (mV)
–40
–60
VSY = ±15V, ±5V V
= 100mV p-p
IN
A
= 1
V
EXTERNAL C EXTERNAL R VERTICAL AXIS = 20mV/DI V
= 100pF
L
= 10k
L
HORIZONTAL AXIS = 400ns/DIV
–80
–800 –400 0 400 800 1200 1600 2000 2400
TIME (ns)
Figure 48. Small Signal Response
2800 3200
06274-046
Rev. C | Page 13 of 20
45
AD8599
±15V
±5V V A
V
R
L
= 1 = 10k
SY
40
35
30
25
20
OVERSHOOT (%)
15
10
5
0
10 100 1k
CAPACITANCE (pF )
Figure 51. Overshoot vs. Capacitance
06274-049
AD8597/AD8599
45
AD8597 V
= ±5V
SY
40
35
30
25
20
OVERSHOOT (%)
15
10
5
0
10 100 1k
OS–
OS+
CAPACITANCE (pF)
Figure 52. Overshoot vs. Capacitive Load
06247-077
45
AD8597 V
= ±15V
SY
40
35
30
25
20
OVERSHOOT (%)
15
10
OS+
5
0
10 100 1k
CAPACITANCE (pF)
OS–
Figure 55. Overshoot vs. Capacitive Load
06247-078
0
–20
–40
–60
–80
–100
–120
CHANNEL SEPARATION (dB)
–140
–160
100 1k 10k 100k 1M
FREQUENCY (Hz)
AD8599 V
SY
A
V
R
L
VIN = 10V p-p V
IN
Figure 53. Channel Separation vs. Frequency
800
AD8599
±15V
±5V V
SY
AMPLITUDE (nV)
600
400
200
0
–200
–400
= ±15V = 100 = 1k
= 20V p-p
15.0 AD8599
12.5
10.0
(mA)
SY
I
7.5
5.0
06274-050
–50 –25 0 25 50
VSY = ±15V
V
= ±5V
SY
TEMPERATURE ( °C)
75 100
125
06274-020
Figure 56. Supply Current vs. Temperature
6.0 AD8597
5.5
VSY = ±15V
5.0
(mA)
SY
I
4.5
VSY = ±5V
–600
–800
012345678
TIME (S eco n ds)
Figure 54. Peak-to-Peak Noise
910
4.0
–40 –25 –10 5 20 35 50 65 80 95 110 125
06274-053
TEMPERATURE (°C)
Figure 57. Supply Current vs. Temperature
06274-075
Rev. C | Page 14 of 20
AD8597/AD8599

FUNCTIONAL OPERATION

INPUT VOLTAGE RANGE

The AD8597/AD8599 are not rail-to-rail input amplifiers; therefore, care is required to ensure that both inputs do not exceed the input voltage range. Under normal negative feedback operating conditions, the amplifier corrects its output to ensure that the two inputs are at the same voltage. However, if either input exceeds the input voltage range, the loop opens and large currents begin to flow through the ESD protection diodes in the amplifier.
These diodes are connected between the inputs and each supply rail to protect the input transistors against an electrostatic discharge event and they are normally reverse-biased. However, if the input voltage exceeds the supply voltage, these ESD diodes can become forward-biased. Without current limiting, excessive amounts of current may flow through these diodes, causing permanent damage to the device. If inputs are subject to over­voltage, insert appropriate series resistors to limit the diode current to less than 5 mA maximum.
The input stage has two diodes between the input pins to protect the differential pair. Under high slew rate conditions, when the op amp is connected as a voltage follower, the diodes may become forward-biased and the source may try to drive the output. A small resistor should be placed in the feedback loop and in the noninverting input. The noise of a 100 Ω resistor at room temperature is ~1.25 nV/√Hz, which is higher than the AD8597/AD8599. Thus, there is a tradeoff between noise performance and protection. If possible, limiting should be placed earlier in the signal path. For further details, see the Amplifier Input Protection…Friend or Foe article at
http://www.analog.com/amplifier_input.
Because of the large transistors used to achieve low noise, the input capacitance may seem rather high. To take advantage of the low noise performance, impedance around the op amp should be low, less than 500 Ω. Under these conditions, the pole from the input capacitance should be greater than 50 MHz, which does not affect the signal bandwidth.
The AD8597/AD8599 amplifiers have been carefully designed to prevent any output phase reversal if both inputs are main­tained within the specified input voltage range. If one or both inputs exceed the input voltage range but remain within the supply rails, the op amp specifications, such as CMRR, are not guaranteed, but the output remains close to the correct value.

NOISE AND SOURCE IMPEDANCE CONSIDERATIONS

The AD8597/AD8599 ultralow voltage noise of 1.1 nV/√Hz is achieved with special input transistors running at high collector current. Therefore, it is important to consider the total input­referred noise (e voltage noise (e (√4 kTR
where R
).
S
total = [e
e
N
is the total input source resistance.
S
This equation is plotted for the AD8597/AD8599 in Figure 58. Because optimum dc performance is obtained with matched source resistances, this case is considered even though it is clear from Equation 1 that eliminating the balancing source resistance lowers the total noise by reducing the total R
At a very low source resistance (R amplifier dominates. As source resistance increases, the Johnson noise of R achieved; the current noise component is larger than the resistor noise.
100
10
1
TOTAL NOISE (nV/ Hz)
total), which includes contributions from
N
), current noise (iN), and resistor noise
N
2
+ 4 kTRS + (iN × RS)2]
N
dominates until a higher resistance of RS > 2 kΩ is
S
TOTAL NOISE
1/2
(1)
by a factor of 2.
S
< 50 Ω), the voltage noise of the
S
RESISTOR NOIS E
ONLY

OUTPUT PHASE REVERSAL

Output phase reversal occurs in some amplifiers when the input common-mode voltage range is exceeded. As the common­mode voltage is moved outside the input voltage range, the outputs of these amplifiers can suddenly jump in the opposite direction to the supply rail. This is the result of the differential input pair shutting down that causes a radical shifting of internal voltages that results in the erratic output behavior.
Rev. C | Page 15 of 20
0.1 10 100 1k 10k
SOURCE RESISTANCE ()
Figure 58. Noise vs. Source Resistance
06274-076
AD8597/AD8599
V
The AD8597/AD8599 are the optimum choice for low noise performance if the source resistance is kept < 1 kΩ. At higher values of source resistance, optimum performance with respect to only noise is obtained with other amplifiers from Analog Devices. Both voltage noise and current noise need to be consi­dered. For more information on avoiding noise from grounding problems and inadequate bypassing, see the AN-345 Application Note, Grounding for Low- and High-Frequency Circuits. For
+
7
R18 R19
Q18 Q19
D41 D42
Figure 59. Simplified Schematic
INVERTING
INPUT
NONINVERTING
INPUT
D1
2
D39 D40
3
+
D2
4
V–
V
B
Q19
Q27
general noise theory with extensive calculations, see the AN-358 Application Note, Noise and Operational Amplifier Circuits. A good selection table for low noise op amps can be found in AN-940 Application Note, Low Noise Amplifier Selection Guide for Optimal Noise Performance. An interesting note on using one section of a monolithic dual to phase compen­sate the other section is in the AN-107 Application Note, Active Feedback Improves Amplifier Phase Accuracy.
Q36
Q20
Q28
D31 D34
C1
R1
Q32
R31
R32
D2
6
OUTPUT
D3
06247-079
Rev. C | Page 16 of 20
AD8597/AD8599

OUTLINE DIMENSIONS

5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
CONTROLL ING DIMENSIONS ARE IN MILLIME TERS; INCH DIM E NSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ON LY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
85
1
1.27 (0.0500)
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MS-012-AA
BSC
6.20 (0.2441)
5.80 (0.2284)
4
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
8° 0°
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0196)
0.25 (0.0099)
1.27 (0.0500)
0.40 (0.0157)
45°
012407-A
Figure 60. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)
INDICATOR
0.90 MAX
0.85 NOM
SEATING
PLANE
3.25
3.00 SQ
PIN 1
12° MAX
2.75
TOP
VIEW
0.70 MAX
0.65TYP
0.30
0.23
0.18
2.95
2.75 SQ
2.55
0.05 MAX
0.01 NOM
0.20 REF
0.60 MAX
Figure 61. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
3 mm × 3 mm Body, Very Thin, Dual Lead
(CP-8-2)
Dimensions shown in millimeters
0.60 MAX
5
EXPOSED
PAD
(BOTTOM VIEW)
4
0.50
0.40
0.30
FOR PROPER CONNECTION O F THE EXPOSED PAD, REFER TO THE PIN CONF IGURATIO NS SECTION OF THIS DATA SHEET.
1
0.50 BSC
8
1.60
1.45
1.30
PIN 1 INDICATOR
1.89
1.74
1.59
101708-B

ORDERING GUIDE

Model Temperature Range Package Description Package Option Branding
AD8597ACPZ-R21 −40°C to +125°C 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] CP-8-2 A22 AD8597ACPZ-REEL1 −40°C to +125°C 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] CP-8-2 A22 AD8597ACPZ-REEL71 −40°C to +125°C 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] CP-8-2 A22 AD8597ARZ1 −40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 AD8597ARZ-REEL1 −40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 AD8597ARZ-REEL71 −40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 AD8599ARZ1 −40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 AD8599ARZ-REEL1 −40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 AD8599ARZ-REEL71 −40°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8
1
Z = RoHS Complaint Part.
Rev. C | Page 17 of 20
AD8597/AD8599
NOTES
Rev. C | Page 18 of 20
AD8597/AD8599
NOTES
Rev. C | Page 19 of 20
AD8597/AD8599
NOTES
©2007–2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06274-0-12/09(C)
Rev. C | Page 20 of 20
Loading...