Single-supply operation: 2.7 V to 5.5 V
Low supply current: 45 μA/amplifier
Wide bandwidth: 1 MHz
No phase reversal
Low input currents: 4 pA
Unity gain stable
Rail-to-rail input and output
Qualified for automotive applications
APPLICATIONS
ASIC input or output amplifiers
Sensor interfaces
Piezoelectric transducer amplifiers
Medical instrumentation
Mobile communications
Audio outputs
Portable systems
GENERAL DESCRIPTION
The AD8541/AD8542/AD8544 are single, dual, and quad railto-rail input and output, single-supply amplifiers featuring very
low supply current and 1 MHz bandwidth. All are guaranteed to
operate from a 2.7 V single supply as well as a 5 V supply. These
parts provide 1 MHz bandwidth at a low current consumption
of 45 µA per amplifier.
Very low input bias currents enable the AD8541/AD8542/AD8544
to be used for integrators, photodiode amplifiers, piezoelectric
sensors, and other applications with high source impedance.
The supply current is only 45 A per amplifier, ideal for battery
operation.
Rail-to-rail inputs and outputs are useful to designers buffering
ASICs in single-supply systems. The AD8541/AD8542/AD8544
are optimized to maintain high gains at lower supply voltages,
making them useful for active filters and gain stages.
The AD8541/AD8542/AD8544 are specified over the extended
industrial temperature range (–40°C to +125°C). The AD8541
is available in 5-lead SOT-23, 5-lead SC70, and 8-lead SOIC
packages. The AD8542 is available in 8-lead SOIC, 8-lead MSOP,
and 8-lead TSSOP surface-mount packages. The AD8544 is
available in 14-lead narrow SOIC and 14-lead TSSOP surfacemount packages. All MSOP, SC70, and SOT versions are available
in tape and reel only. See the Ordering Guide for automotive
models.
Amplifiers
AD8541/AD8542/AD8544
PIN CONFIGURATIONS
+IN A
V–
AD8541
1
2
3
OUT A
Figure 1. 5-Lead SC70 and 5-Lead SOT-23
(KS and RJ Suffixes)
1
NC
AD8541
2
–IN A
3
+IN A
4
V–
NC = NO CONNECT
Figure 2. 8-Lead SOIC
(R Suffix)
OUT A
–IN A
+IN A
V–
Figure 3. 8-Lead SOIC, 8-Lead MSOP, and 8-Lead TSSOP
AD8542
1
2
3
4
(R, RM, and RU Suffixes)
1
UT A
2
–IN A
3
+IN A
AD8544
4
V+
5
+IN B
6
–IN B
7
UT B
Figure 4. 14-Lead SOIC and 14-Lead TSSOP
(R and RU Suffixes)
V+
5
–IN A
4
0935-001
8
NC
V+
7
OUT A
6
NC
5
00935-002
8
V+
OUT B
7
6
–IN B
5
+IN B
00935-003
14
OUT D
–IN D
13
12
+IN D
11
V–
10
+IN C
9
–IN C
8
OUT C
0935-004
Rev. G
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
Changes to General Description .....................................................1
Changes to Ordering Guide.............................................................5
Changes to Outline Dimensions .................................................. 12
Rev. G | Page 2 of 20
Page 3
AD8541/AD8542/AD8544
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VS = 2.7 V, VCM = 1.35 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 1 6 mV
−40°C ≤ TA ≤ +125°C 7 mV
Input Bias Current IB 4 60 pA
−40°C ≤ TA ≤ +85°C 100 pA
−40°C ≤ TA ≤ +125°C 1000 pA
Input Offset Current IOS 0.1 30 pA
−40°C ≤ TA ≤ +85°C 50 pA
−40°C ≤ TA ≤ +125°C 500 pA
Input Voltage Range 0 2.7 V
Common-Mode Rejection Ratio CMRR VCM = 0 V to 2.7 V 40 45 dB
−40°C ≤ TA ≤ +125°C 38 dB
Large Signal Voltage Gain AVO RL = 100 kΩ, VO = 0.5 V to 2.2 V 100 500 V/mV
−40°C ≤ TA ≤ +85°C 50 V/mV
−40°C ≤ TA ≤ +125°C 2 V/mV
Offset Voltage Drift ∆VOS/∆T −40°C ≤ TA ≤ +125°C 4 µV/°C
Bias Current Drift ∆IB/∆T −40°C ≤ TA ≤ +85°C 100 fA/°C
−40°C ≤ TA ≤ +125°C 2000 fA/°C
Offset Current Drift ∆IOS/∆T −40°C ≤ TA ≤ +125°C 25 fA/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1 mA 2.575 2.65 V
−40°C ≤ TA ≤ +125°C 2.550 V
Output Voltage Low VOL IL = 1 mA 35 100 mV
−40°C ≤ TA ≤ +125°C 125 mV
Output Current I
I
Closed-Loop Output Impedance Z
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.5 V to 6 V 65 76 dB
−40°C ≤ TA ≤ +125°C 60 dB
Supply Current/Amplifier ISY VO = 0 V 38 55 µA
−40°C ≤ TA ≤ +125°C 75 µA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 100 kΩ 0.4 0.75 V/µs
Settling Time tS To 0.1% (1 V step) 5 µs
Gain Bandwidth Product GBP 980 kHz
Phase Margin
NOISE PERFORMANCE
Voltage Noise Density en f = 1 kHz 40 nV/√Hz
e
Current Noise Density in <0.1 pA/√Hz
V
OUT
±20 mA
SC
f = 200 kHz, AV = 1 50 Ω
OUT
= VS − 1 V 15 mA
OUT
63 Degrees
Φ
M
f = 10 kHz 38 nV/√Hz
n
Rev. G | Page 3 of 20
Page 4
AD8541/AD8542/AD8544
VS = 3.0 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 1 6 mV
−40°C ≤ TA ≤ +125°C 7 mV
Input Bias Current IB 4 60 pA
−40°C ≤ TA ≤ +85°C 100 pA
−40°C ≤ TA ≤ +125°C 1000 pA
Input Offset Current IOS 0.1 30 pA
−40°C ≤ TA ≤ +85°C 50 pA
−40°C ≤ TA ≤ +125°C 500 pA
Input Voltage Range 0 3 V
Common-Mode Rejection Ratio CMRR VCM = 0 V to 3 V 40 45 dB
−40°C ≤ TA ≤ +125°C 38 dB
Large Signal Voltage Gain AVO RL = 100 kΩ, VO = 0.5 V to 2.2 V 100 500 V/mV
−40°C ≤ TA ≤ +85°C 50 V/mV
−40°C ≤ TA ≤ +125°C 2 V/mV
Offset Voltage Drift ∆VOS/∆T −40°C ≤ TA ≤ +125°C 4 V/°C
Bias Current Drift ∆IB/∆T −40°C ≤ TA ≤ +85°C 100 fA/°C
−40°C ≤ TA ≤ +125°C 2000 fA/°C
Offset Current Drift ∆IOS/∆T −40°C ≤ TA ≤ +125°C 25 fA/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1 mA 2.875 2.955 V
−40°C ≤ TA ≤ +125°C 2.850 V
Output Voltage Low VOL IL = 1 mA 32 100 mV
−40°C ≤ TA ≤ +125°C 125 mV
Output Current I
I
Closed-Loop Output Impedance Z
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.5 V to 6 V 65 76 dB
−40°C ≤ TA ≤ +125°C 60 dB
Supply Current/Amplifier ISY VO = 0 V 40 60 µA
−40°C ≤ TA ≤ +125°C 75 µA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 100 kΩ 0.4 0.8 V/µs
Settling Time tS To 0.01% (1 V step) 5 µs
Gain Bandwidth Product GBP 980 kHz
Phase Margin ΦM 64 Degrees
NOISE PERFORMANCE
Voltage Noise Density en f = 1 kHz 42 nV/√Hz
e
Current Noise Density in <0.1 pA/√Hz
V
OUT
±25 mA
SC
f = 200 kHz, AV = 1 50 Ω
OUT
f = 10 kHz 38 nV/√Hz
n
= VS − 1 V 18 mA
OUT
Rev. G | Page 4 of 20
Page 5
AD8541/AD8542/AD8544
VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted.
Table 3.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 1 6 mV
−40°C ≤ TA ≤ +125°C 7 mV
Input Bias Current IB 4 60 pA
−40°C ≤ TA ≤ +85°C 100 pA
−40°C ≤ TA ≤ +125°C 1000 pA
Input Offset Current IOS 0.1 30 pA
−40°C ≤ TA ≤ +85°C 50 pA
−40°C ≤ TA ≤ +125°C 500 pA
Input Voltage Range 0 5 V
Common-Mode Rejection Ratio CMRR VCM = 0 V to 5 V 40 48 dB
−40°C ≤ TA ≤ +125°C 38 dB
Large Signal Voltage Gain AVO RL = 100 kΩ, VO = 0.5 V to 2.2 V 20 40 V/mV
−40°C ≤ TA ≤ +85°C 10 V/mV
−40°C ≤ TA ≤ +125°C 2 V/mV
Offset Voltage Drift ∆VOS/∆T −40°C ≤ TA ≤ +125°C 4 V/°C
Bias Current Drift ∆IB/∆T −40°C ≤ TA ≤ +85°C 100 fA/°C
−40°C ≤ TA ≤ +125°C 2000 fA/°C
Offset Current Drift ∆IOS/∆T −40°C ≤ TA ≤ +125°C 25 fA/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1 mA 4.9 4.965 V
−40°C ≤ TA ≤ +125°C 4.875 V
Output Voltage Low VOL IL = 1 mA 25 100 mV
−40°C ≤ TA ≤ +125°C 125 mV
Output Current I
I
Closed-Loop Output Impedance Z
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.5 V to 6 V 65 76 dB
−40°C ≤ TA ≤ +125°C 60 dB
Supply Current/Amplifier ISY VO = 0 V 45 65 µA
−40°C ≤ TA ≤ +125°C 85 µA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 100 kΩ, CL = 200 pF 0.45 0.92 V/µs
Full Power Bandwidth BWP 1% distortion 70 kHz
Settling Time tS To 0.1% (1 V step) 6 µs
Gain Bandwidth Product GBP 1000 kHz
Phase Margin ΦM 67 Degrees
NOISE PERFORMANCE
Voltage Noise Density en f = 1 kHz 42 nV/√Hz
e
Current Noise Density in <0.1 pA/√Hz
V
OUT
±60 mA
SC
f = 200 kHz, AV = 1 45 Ω
OUT
f = 10 kHz 38 nV/√Hz
n
= VS − 1 V 30 mA
OUT
Rev. G | Page 5 of 20
Page 6
AD8541/AD8542/AD8544
ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Rating
Supply Voltage (VS) 6 V
Input Voltage GND to VS
Differential Input Voltage1 ±6 V
Storage Temperature Range −65°C to +150°C
Operating Temperature Range −40°C to +125°C
Junction Temperature Range −65°C to +150°C
Lead Temperature (Soldering, 60 sec) 300°C
1
For supplies less than 6 V, the differential input voltage is equal to ±VS.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages and
measured using a standard 4-layer board, unless otherwise
specified.
Figure 7. Input Bias Current vs. Common-Mode Voltage
00935-007
Rev. G | Page 7 of 20
160
VS = 2.7V
140
= 25°C
T
A
120
100
80
60
40
20
0
POWER SUPPL Y REJECTION (dB)
–20
–40
1001k10k100k1M10M
–PSRR
+PSRR
FREQUENCY (Hz )
Figure 10. Power Supply Rejection vs. Frequency
00935-010
Page 8
AD8541/AD8542/AD8544
V
10k
1k
VS = 2.7V
T
= 25°C
A
60
50
VS = 2.7V
= 10kΩ
R
L
= 25°C
T
A
100
10
1
∆ OUTPUT VOLTAGE (mV)
0.1
0.01
0.0010.010.1110100
SOURCE
SINK
LOAD CURRENT (mA)
Figure 11. Output Voltage to Supply Rail vs. Load Current
3.0
2.5
2.0
1.5
1.0
OUTPUT SWING (V p-p)
0.5
VS = 2.7V
= 2.5V p-p
V
IN
= 2kΩ
R
L
= 25°C
T
A
40
30
20
SMALL SIGNAL OVERSHOOT (%)
10
0
00935-011
101001k10k
CAPACITANCE (pF)
+OS
–OS
00935-014
Figu re 14. Sm all Signal O vershoot vs. Load Capacitance
60
VS = 2.7V
R
= 2kΩ
L
50
T
= 25°C
A
40
30
20
SMALL SIGNAL OVERSHO OT (%)
10
+OS
–OS
0
1k10k100 k1M10M
FREQUENCY (Hz)
Figure 12. Closed-Loop Output Voltage Swing vs. Frequency
60
VS = 2.7V
R
=
L
∞
TA = 25°C
50
40
30
20
SMALL SIGNAL OVERSHOOT (%)
10
0
101001k10k
CAPACITANCE (pF)
+OS
–OS
Figure 13. Small Signal Overshoot vs. Load Capacitance
0
00935-012
101001k10k
CAPACITANCE (pF)
00935-015
Figure 15. Small Signal Overshoot vs. Load Capacitance
VS = 2.7V
R
= 100kΩ
L
= 300pF
C
L
AV = 1
T
= 25°C
A
1.35
00935-013
50mV10µs
0935-016
Figure 16. Small Signal Transient Response
Rev. G | Page 8 of 20
Page 9
AD8541/AD8542/AD8544
VS = 2.7V
= 2kΩ
R
L
= 1
A
V
= 25°C
T
A
1.35V
500mV10µs
Figure 17. Large Signal Transient Response
VS = 2.7V
= NO LOAD
R
L
= 25°C
T
A
80
60
40
GAIN (dB)
20
0
1k10k100k1M10M
FREQUENCY (Hz)
Figure 18. Open-Loop Gain and Phase vs. Frequency
160
VS = 5V
140
T
= 25°C
A
120
100
80
60
40
20
0
POWER SUPPLY REJECTI ON RATIO ( dB)
–20
–40
1001k10k100k1M10M
–PSRR
+PSRR
FREQUENCY (Hz)
Figure 19. Power Supply Rejection Ratio vs. Frequency
45
90
135
180
00935-017
PHASE SHIFT (Degrees)
00935-018
00935-019
90
VS = 5V
T
= 25°C
80
A
70
60
50
40
30
20
10
COMMON-MODE REJECTION (dB)
0
–10
1k10k100k1M10M
FREQUENCY (Hz)
Figure 20. Common-Mode Rejection vs. Frequency
5
VS=5V
4
= NO LOAD
R
L
=25°C
T
A
3
2
1
0
–1
–2
INPUT OFFSET VOLTAGE (mV)
–3
–4
–5
00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
COMMON-MODE VOL TAGE (V)
Figure 21. Input Offset Voltage vs. Common-Mode Voltage
10k
VS = 5V
T
= 25°C
A
1k
100
10
1
∆ OUTPUT VOL TAGE (mV)
0.1
0.01
0.0010. 010.1110100
SOURCE
SINK
LOAD CURRENT (mA)
Figure 22. Output Voltage to Supply Rail vs. Load Current
00935-020
00935-040
00935-021
Rev. G | Page 9 of 20
Page 10
AD8541/AD8542/AD8544
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
OUTPUT SWING (V p-p)
1.0
0.5
0
1k10k100k1M10M
FREQUENCY (Hz)
VS = 5V
V
= 4.9V p-p
IN
R
= NO LOAD
L
T
= 25°C
A
Figure 23. Closed-Loop Output Voltage Swing vs. Frequency,
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
OUTPUT SWING (V p-p)
1.0
0.5
0
1k10k100k1M10M
FREQUENCY (Hz)
VS = 5V
= 4.9V p-p
V
IN
= 2kΩ
R
L
= 25°C
T
A
Figure 24. Closed-Loop Output Voltage Swing vs. Frequency
00935-022
00935-023
60
VS = 5V
R
= 2kΩ
L
T
= 25°C
50
A
40
30
20
SMALL SIGNAL OVERSHOOT (%)
10
0
101001k10k
CAPACITANCE (pF)
+OS
–OS
Figure 26. Small Signal Overshoot vs. Load Capacitance
60
VS = 5V
=
R
L
50
40
30
20
SMALL SIGNAL OVERSHOOT (%)
10
∞
TA = 25°C
+OS
–OS
0
101001k10k
CAPACITANCE (pF)
Figure 27. Small Signal Overshoot vs. Load Capacitance
00935-025
00935-026
60
VS = 5V
= 10kΩ
R
L
= 25°C
T
50
A
40
+OS
30
20
SMALL SIGNAL OVERSHOOT (%)
10
0
101001k10k
CAPACITANCE (pF)
–OS
Figure 25. Small Signal Overshoot vs. Load Capacitance
00935-024
Rev. G | Page 10 of 20
2.5V
VS = 5V
= 100kΩ
R
L
CL = 300pF
AV = 1
TA = 25°C
50mV10µs
Figure 28. Small Signal Transient Response
00935-027
Page 11
AD8541/AD8542/AD8544
VS = 5V
RL = 2kΩ
AV = 1
TA = 25°C
V
IN
V
OUT
VS = 5V
R
= 10kΩ
L
A
= 1
V
T
= 25°C
A
2.5V
1V10µs
Figure 29. Large Signal Transient Response
VS = 5V
R
= NO LOAD
L
T
= 25°C
A
80
60
40
GAIN (dB)
20
0
1k10k100k1M10M
FREQUENCY (Hz)
Figure 30. Open-Loop Gain and Phase vs. Frequency
45
90
135
180
2.5V
00935-028
1V20µs
00935-030
Figure 31. No Phase Reversal
60
TA = 25°C
50
40
30
20
PHASE SHIFT (Degrees)
10
SUPPLY CURRENT/ AMPLIF IER (µA)
0
00935-029
0123456
SUPPLY VOLTAGE (V)
00935-031
Figure 32. Supply Current per Amplifier vs. Supply Voltage
Rev. G | Page 11 of 20
Page 12
AD8541/AD8542/AD8544
V
55
50
VS = 5V
45
VS=5V
MARKER SET @ 10kHz
MARKER READING : 37.6nV/ Hz
T
=25°C
A
40
35
30
SUPPLY CURRENT/AM PLIFI ER (µA)
25
20
–55 –35 –15525456585 105 125 145
TEMPERATURE (°C)
VS = 2.7V
Figure 33. Supply Current per Amplifier vs. Temperature
1000
VS= 2.7V AND 5V
900
A
=1
V
T
= 25°C
A
800
700
600
500
400
IMPEDANCE (Ω)
300
200
100
0
1k10k100k1M10M100M
FREQUENCY (Hz)
Figure 34. Closed-Loop Output Impedance vs. Frequency
15nV/DI
0510152025
00935-032
FREQUENCY (kHz)
00935-034
Figure 35. Voltage Noise
00935-033
Rev. G | Page 12 of 20
Page 13
AD8541/AD8542/AD8544
THEORY OF OPERATION
NOTES ON THE AD854X AMPLIFIERS
The AD8541/AD8542/AD8544 amplifiers are improved
performance, general-purpose operational amplifiers.
Performance has been improved over previous amplifiers in
several ways, including lower supply current for 1 MHz gain
bandwidth, higher output current, and better performance at
lower voltages.
Lower Supply Current for 1 MHz Gain Bandwidth
The AD854x series typically uses 45 µA of current per amplifier,
which is much less than the 200 µA to 700 µA used in earlier
generation parts with similar performance. This makes the
AD854x series a good choice for upgrading portable designs
for longer battery life. Alternatively, additional functions and
performance can be added at the same current drain.
Higher Output Current
At 5 V single supply, the short-circuit current is typically 60 µA.
Even 1 V from the supply rail, the AD854x amplifiers can provide a
30 mA output current, sourcing, or sinking.
Sourcing and sinking are strong at lower voltages, with 15 mA
available at 2.7 V and 18 mA at 3.0 V. For even higher output
currents, see the AD8531/AD8532/AD8534 parts for output
currents to 250 mA. Information on these parts is available
from your Analog Devices, Inc. representative, and data sheets
are available at www.analog.com.
Better Performance at Lower Voltages
The AD854x family of parts was designed to provide better ac
performance at 3.0 V and 2.7 V than previously available parts.
Typical gain bandwidth product is close to 1 MHz at 2.7 V.
Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase
margin is typically over 60°C, making the part easy to use.
Rev. G | Page 13 of 20
Page 14
AD8541/AD8542/AD8544
V
V
V
APPLICATIONS
NOTCH FILTER
The AD854x have very high open-loop gain (especially with a
supply voltage below 4 V), which makes it useful for active filters of
all types. For example, Figure 36 illustrates the AD8542 in the
classic twin-T notch filter design. The twin-T notch is desired
for simplicity, low output impedance, and minimal use of op
amps. In fact, this notch filter can be designed with only one op
amp if Q adjustment is not required. Simply remove U2 as
illustrated in Figure 37. However, a major drawback to this
circuit topology is ensuring that all the Rs and Cs closely match.
The components must closely match or notch frequency offset
and drift causes the circuit to no longer attenuate at the ideal
notch frequency. To achieve desired performance, 1% or better
component tolerances or special component screens are usually
required. One method to desensitize the circuit-to-component
mismatch is to increase R2 with respect to R1, which lowers Q.
A lower Q increases attenuation over a wider frequency range
but reduces attenuation at the peak notch frequency.
Figure 38 is an example of the AD8544 in a notch filter circuit. The
frequency dependent negative resistance (FDNR) notch filter has
fewer critical matching requirements than the twin-T notch, where
as the Q of the FDNR is directly proportional to a single resistor R1.
Although matching component values is still important, it is also
much easier and/or less expensive to accomplish in the FDNR
circuit. For example, the twin-T notch uses three capacitors
with two unique values, whereas the FDNR circuit uses only
two capacitors, which may be of the same value. U3 is simply a
buffer that is added to lower the output impedance of the circuit.
R
2.61kΩ
R
2.61kΩ
R
2.61kΩ
R
2.61kΩ
REF
1/4 AD8544
9
U3
10
3
2
2.5V
13
12
REF
8
4
U1
U4
1/4 AD8544
1
11
1/4 AD8544
14
V
OUT
NC
00935-037
V
IN
2.5V
REF
1/4 AD8544
R1
Q ADJUST
200Ω
C1
1µF
C2
1µF
6
7
U2
5
1
f =
2π LC1
L = R2C2
2.5V
Figure 38. FDNR 60 Hz Notch Filter with Output Buffer
COMPARATOR FUNCTION
A comparator function is a common application for a spare op
amp in a quad package. Figure 39 illustrates ¼ of the AD8544 as a
comparator in a standard overload detection application. Unlike
many op amps, the AD854x family can double as comparators
because this op amp family has a rail-to-rail differential input
range, rail-to-rail output, and a great speed vs. power ratio.
R2 is used to introduce hysteresis. The AD854x, when used as
comparators, have 5 µs propagation delay at 5 V and 5 µs
overload recovery time.
The AD854x family has very high impedance with an input bias
current typically around 4 pA. This characteristic allows the
AD854x op amps to be used in photodiode applications and
other applications that require high input impedance. Note that
the AD854x has significant voltage offset that can be removed
by capacitive coupling or software calibration.
Figure 40 illustrates a photodiode or current measurement
application. The feedback resistor is limited to 10 M to avoid
excessive output offset. In addition, a resistor is not needed on
the noninverting input to cancel bias current offset because the
bias current-related output offset is not significant when compared
to the voltage offset contribution. For best performance, follow the
standard high impedance layout techniques, which include the
following:
• Shielding the circuit.
• Cleaning the circuit board.
• Putting a trace connected to the noninverting input around
the inverting input.
•Using separate analog and digital power supplies.
C
100pF
R
10MΩ
OR
D
REF
2.5V
REF
2.5V
Figure 40. High Input Impedance Application—Photodiode Amplifier
V+
7
2
6
3
AD8541
4
V
OUT
00935-039
Rev. G | Page 15 of 20
Page 16
AD8541/AD8542/AD8544
0
0
OUTLINE DIMENSIONS
3.00
2.90
2.80
.15 MAX
.05 MIN
1.70
1.60
1.50
1.30
1.15
0.90
5
123
4
1.90
BSC
0.50 MAX
0.35 MIN
COMPLIANT TO JEDEC STANDARDS MO-178-AA
0.95 BSC
1.45 MAX
0.95 MIN
3.00
2.80
2.60
SEATING
PLANE
0.20 MAX
0.08 MIN
10°
5°
0°
0.60
BSC
0.55
0.45
0.35
11-01-2010-A
Figure 41. 5-Lead Small Outline Transistor Package [SOT-23]
(RJ-5)
Dimensions shown in millimeters
5.10
5.00
4.90
4.50
4.40
4.30
PIN 1
1.05
1.00
0.80
0.15
0.05
COPLANARIT Y
0.10
14
1
0.65 BSC
0.30
0.19
COMPLI ANT TO JEDEC STANDARDS MO -153-AB-1
8
6.40
BSC
7
1.20
0.20
MAX
SEATING
PLANE
0.09
8°
0°
0.75
0.60
0.45
061908-A
Figure 42. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
Rev. G | Page 16 of 20
Page 17
AD8541/AD8542/AD8544
1.35
1.25
1.15
1.00
0.90
0.70
0.10 MAX
COPLANARITY
0.10
2.20
2.00
1.80
2.40
45
2.10
1.80
312
0.65 BSC
0.22
0.08
0.40
0.10
1.10
0.80
0.30
0.15
COMPLIANT TO JEDEC STANDARDS MO-203-AA
SEATING
PLANE
0.46
0.36
0.26
072809-A
Figure 43. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]
(KS-5)
Dimensions shown in millimeters
8.75 (0.3445)
8.55 (0.3366)
4.00 (0.1575)
3.80 (0.1496)
14
1
8
6.20 (0.2441)
5.80 (0.2283)
7
0.25 (0.0098)
0.10 (0.0039)
COPLANARITY
0.10
CONTROL LING DIMENSIO NS ARE IN MILLI METERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MIL LIME TER EQUIVALENTS F OR
REFERENCE O NLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
1.27 (0.0500)
BSC
0.51 (0.0201)
0.31 (0.0122)
COMPLI ANT TO JEDEC STANDARDS MS- 012-AB
1.75 (0.0689)
1.35 (0.0531)
SEATING
PLANE
8°
0°
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0197)
0.25 (0.0098)
1.27 (0.0500)
0.40 (0.0157)
45°
060606-A
Figure 44. 14-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-14)
Dimensions shown in millimeters and (inches)
Rev. G | Page 17 of 20
Page 18
AD8541/AD8542/AD8544
Y
3.20
3.00
2.80
PIN 1
IDENTIFIER
0.95
0.85
0.75
0.15
0.05
COPLANARITY
3.20
3.00
2.80
8
5
5.15
4.90
4
0.40
0.25
4.65
1.10 MAX
15° MAX
6°
0°
0.23
0.09
1
0.65 BSC
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 45. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
0.80
0.55
0.40
5.00 (0.1968)
4.80 (0.1890)
10-07-2009-B
0.15
0.05
COPLANARIT
0.10
Figure 46. 8-Lead Thin Shrink Small Outline Package [TSSOP]
3.10
3.00
2.90
8
5
4.50
6.40 BSC
4.40
4.30
41
PIN 1
0.65 BSC
1.20
MAX
0.30
SEATING
0.19
PLANE
COMPLIANT TO JEDEC STANDARDS MO-153-AA
0.20
0.09
8°
0°
(RU-8)
Dimensions shown in millimeters
0.75
0.60
0.45
4.00 (0.1574)
3.80 (0.1497)
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
85
1
1.27 (0.0500)
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MS-012-AA
BSC
6.20 (0.2441)
5.80 (0.2284)
4
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
8°
0°
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0196)
0.25 (0.0099)
1.27 (0.0500)
0.40 (0.0157)
45°
012407-A
Figure 47. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
Rev. G | Page 18 of 20
Page 19
AD8541/AD8542/AD8544
ORDERING GUIDE
1, 2
Model
AD8541AKSZ-R2 –40°C to +125°C 5-Lead SC70 KS-5 A12
AD8541AKSZ-REEL7 –40°C to +125°C 5-Lead SC70 KS-5 A12
AD8541ARTZ-R2 –40°C to +125°C 5-Lead SOT-23 RJ-5 A4A
AD8541ARTZ-REEL –40°C to +125°C 5-Lead SOT-23 RJ-5 A4A
AD8541ARTZ-REEL7 –40°C to +125°C 5-Lead SOT-23 RJ-5 A4A
AD8541ARZ –40°C to +125°C 8-Lead SOIC_N R-8
AD8541ARZ-REEL –40°C to +125°C 8-Lead SOIC_N R-8
AD8541ARZ-REEL7 –40°C to +125°C 8-Lead SOIC_N R-8
AD8542ARZ –40°C to +125°C 8-Lead SOIC_N R-8
AD8542ARZ-REEL –40°C to +125°C 8-Lead SOIC_N R-8
AD8542ARZ-REEL7 –40°C to +125°C 8-Lead SOIC_N R-8
AD8542ARM-REEL –40°C to +125°C 8-Lead MSOP RM-8 AVA
AD8542ARMZ –40°C to +125°C 8-Lead MSOP RM-8 AVA
AD8542ARMZ-REEL –40°C to +125°C 8-Lead MSOP RM-8 AVA
AD8542ARU-REEL –40°C to +125°C 8-Lead TSSOP RU-8
AD8542ARUZ –40°C to +125°C 8-Lead TSSOP RU-8
AD8542ARUZ-REEL –40°C to +125°C 8-Lead TSSOP RU-8
AD8544ARZ –40°C to +125°C 14-Lead SOIC_N R-14
AD8544ARZ-REEL –40°C to +125°C 14-Lead SOIC_N R-14
AD8544ARZ-REEL7 –40°C to +125°C 14-Lead SOIC_N R-14
AD8544ARUZ –40°C to +125°C 14-Lead TSSOP RU-14
AD8544ARUZ-REEL –40°C to +125°C 14-Lead TSSOP RU-14
AD8544WARZ-RL –40°C to +125°C 14-Lead SOIC_N R-14
AD8544WARZ-R7 –40°C to +125°C 14-Lead SOIC_N R-14
1
Z = RoHS Compliant Part.
2
W = Qualified for Automotive Applications.
AUTOMOTIVE PRODUCTS
The AD8544W models are available with controlled manufacturing to support the quality and reliability requirements of automotive
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to
obtain the specific Automotive Reliability reports for these models.
Temperature Range Package Description Package Option Branding