ANALOG DEVICES AD 8544 ARUZ Datasheet

Page 1
CMOS Rail-to-Rail General-Purpose
O
O

FEATURES

Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 μA/amplifier Wide bandwidth: 1 MHz No phase reversal Low input currents: 4 pA Unity gain stable Rail-to-rail input and output Qualified for automotive applications

APPLICATIONS

ASIC input or output amplifiers Sensor interfaces Piezoelectric transducer amplifiers Medical instrumentation Mobile communications Audio outputs Portable systems

GENERAL DESCRIPTION

The AD8541/AD8542/AD8544 are single, dual, and quad rail­to-rail input and output, single-supply amplifiers featuring very low supply current and 1 MHz bandwidth. All are guaranteed to operate from a 2.7 V single supply as well as a 5 V supply. These parts provide 1 MHz bandwidth at a low current consumption of 45 µA per amplifier.
Very low input bias currents enable the AD8541/AD8542/AD8544 to be used for integrators, photodiode amplifiers, piezoelectric sensors, and other applications with high source impedance. The supply current is only 45 A per amplifier, ideal for battery operation.
Rail-to-rail inputs and outputs are useful to designers buffering ASICs in single-supply systems. The AD8541/AD8542/AD8544 are optimized to maintain high gains at lower supply voltages, making them useful for active filters and gain stages.
The AD8541/AD8542/AD8544 are specified over the extended industrial temperature range (–40°C to +125°C). The AD8541 is available in 5-lead SOT-23, 5-lead SC70, and 8-lead SOIC packages. The AD8542 is available in 8-lead SOIC, 8-lead MSOP, and 8-lead TSSOP surface-mount packages. The AD8544 is available in 14-lead narrow SOIC and 14-lead TSSOP surface­mount packages. All MSOP, SC70, and SOT versions are available in tape and reel only. See the Ordering Guide for automotive models.
Amplifiers
AD8541/AD8542/AD8544

PIN CONFIGURATIONS

+IN A
V–
AD8541
1
2
3
OUT A
Figure 1. 5-Lead SC70 and 5-Lead SOT-23
(KS and RJ Suffixes)
1
NC
AD8541
2
–IN A
3
+IN A
4
V–
NC = NO CONNECT
Figure 2. 8-Lead SOIC
(R Suffix)
OUT A
–IN A
+IN A
V–
Figure 3. 8-Lead SOIC, 8-Lead MSOP, and 8-Lead TSSOP
AD8542
1
2
3
4
(R, RM, and RU Suffixes)
1
UT A
2
–IN A
3
+IN A
AD8544
4
V+
5
+IN B
6
–IN B
7
UT B
Figure 4. 14-Lead SOIC and 14-Lead TSSOP
(R and RU Suffixes)
V+
5
–IN A
4
0935-001
8
NC
V+
7
OUT A
6
NC
5
00935-002
8
V+
OUT B
7
6
–IN B
5
+IN B
00935-003
14
OUT D
–IN D
13
12
+IN D
11
V–
10
+IN C
9
–IN C
8
OUT C
0935-004
Rev. G
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008–2011 Analog Devices, Inc. All rights reserved.
Page 2
AD8541/AD8542/AD8544

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
General Description ......................................................................... 1
Pin Configurations ........................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings............................................................ 6
Thermal Resistance ...................................................................... 6
ESD Caution.................................................................................. 6
Typical Performance Characteristics ............................................. 7

REVISION HISTORY

6/11—Rev. F to Rev. G
Changes to Features Section and General Description
Section................................................................................................ 1
Changes to Table 5............................................................................ 6
Updated Outline Dimensions....................................................... 16
Changes to Ordering Guide.......................................................... 19
Added Automotive Products Section .......................................... 19
1/08—Rev. E to Rev. F
Inserted Figure 21; Renumbered Sequentially.............................. 9
Changes to Figure 22 Caption......................................................... 9
Changes to Notch Filter Section, Figure 35, Figure 36, and
Figure 37 ..........................................................................................13
Updated Outline Dimensions....................................................... 16
Theory of Operation ...................................................................... 13
Notes on the AD854x Amplifiers............................................. 13
Applications..................................................................................... 14
Notch Filter ................................................................................. 14
Comparator Function................................................................ 14
Photodiode Application ............................................................ 15
Outline Dimensions....................................................................... 16
Ordering Guide .......................................................................... 19
Automotive Products................................................................. 19
1/07—Rev. D to Rev. E
Updated Format.................................................................. Universal
Changes to Photodiode Application Section .............................. 14
Changes to Ordering Guide.......................................................... 17
8/04—Rev. C to Rev. D
Changes to Ordering Guide.............................................................5
Changes to Figure 3........................................................................ 10
Updated Outline Dimensions....................................................... 12
1/03—Rev. B to Rev. C
Updated Format.................................................................. Universal
Changes to General Description .....................................................1
Changes to Ordering Guide.............................................................5
Changes to Outline Dimensions .................................................. 12
Rev. G | Page 2 of 20
Page 3
AD8541/AD8542/AD8544

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

VS = 2.7 V, VCM = 1.35 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 1 6 mV
−40°C TA ≤ +125°C 7 mV Input Bias Current IB 4 60 pA
−40°C TA ≤ +85°C 100 pA
−40°C TA ≤ +125°C 1000 pA Input Offset Current IOS 0.1 30 pA
−40°C TA ≤ +85°C 50 pA
−40°C TA ≤ +125°C 500 pA Input Voltage Range 0 2.7 V Common-Mode Rejection Ratio CMRR VCM = 0 V to 2.7 V 40 45 dB
−40°C TA ≤ +125°C 38 dB Large Signal Voltage Gain AVO RL = 100 kΩ, VO = 0.5 V to 2.2 V 100 500 V/mV
−40°C TA ≤ +85°C 50 V/mV
−40°C TA ≤ +125°C 2 V/mV Offset Voltage Drift ∆VOS/∆T −40°C ≤ TA ≤ +125°C 4 µV/°C Bias Current Drift ∆IB/∆T −40°C ≤ TA ≤ +85°C 100 fA/°C
−40°C TA ≤ +125°C 2000 fA/°C Offset Current Drift ∆IOS/∆T −40°C ≤ TA ≤ +125°C 25 fA/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1 mA 2.575 2.65 V
−40°C TA ≤ +125°C 2.550 V Output Voltage Low VOL IL = 1 mA 35 100 mV
−40°C TA ≤ +125°C 125 mV Output Current I I Closed-Loop Output Impedance Z
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.5 V to 6 V 65 76 dB
−40°C TA ≤ +125°C 60 dB Supply Current/Amplifier ISY VO = 0 V 38 55 µA
−40°C TA ≤ +125°C 75 µA DYNAMIC PERFORMANCE
Slew Rate SR RL = 100 kΩ 0.4 0.75 V/µs Settling Time tS To 0.1% (1 V step) 5 µs Gain Bandwidth Product GBP 980 kHz Phase Margin
NOISE PERFORMANCE
Voltage Noise Density en f = 1 kHz 40 nV/√Hz e Current Noise Density in <0.1 pA/√Hz
V
OUT
±20 mA
SC
f = 200 kHz, AV = 1 50
OUT
= VS − 1 V 15 mA
OUT
63 Degrees
Φ
M
f = 10 kHz 38 nV/√Hz
n
Rev. G | Page 3 of 20
Page 4
AD8541/AD8542/AD8544
VS = 3.0 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 1 6 mV
−40°C TA ≤ +125°C 7 mV Input Bias Current IB 4 60 pA
−40°C TA ≤ +85°C 100 pA
−40°C TA ≤ +125°C 1000 pA Input Offset Current IOS 0.1 30 pA
−40°C TA ≤ +85°C 50 pA
−40°C TA ≤ +125°C 500 pA Input Voltage Range 0 3 V Common-Mode Rejection Ratio CMRR VCM = 0 V to 3 V 40 45 dB
−40°C TA ≤ +125°C 38 dB Large Signal Voltage Gain AVO RL = 100 kΩ, VO = 0.5 V to 2.2 V 100 500 V/mV
−40°C TA ≤ +85°C 50 V/mV
−40°C TA ≤ +125°C 2 V/mV Offset Voltage Drift ∆VOS/∆T −40°C ≤ TA ≤ +125°C 4 V/°C Bias Current Drift ∆IB/∆T −40°C ≤ TA ≤ +85°C 100 fA/°C
−40°C TA ≤ +125°C 2000 fA/°C Offset Current Drift ∆IOS/∆T −40°C ≤ TA ≤ +125°C 25 fA/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1 mA 2.875 2.955 V
−40°C TA ≤ +125°C 2.850 V Output Voltage Low VOL IL = 1 mA 32 100 mV
−40°C TA ≤ +125°C 125 mV Output Current I I Closed-Loop Output Impedance Z
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.5 V to 6 V 65 76 dB
−40°C TA ≤ +125°C 60 dB Supply Current/Amplifier ISY VO = 0 V 40 60 µA
−40°C TA ≤ +125°C 75 µA DYNAMIC PERFORMANCE
Slew Rate SR RL = 100 kΩ 0.4 0.8 V/µs Settling Time tS To 0.01% (1 V step) 5 µs Gain Bandwidth Product GBP 980 kHz Phase Margin ΦM 64 Degrees
NOISE PERFORMANCE
Voltage Noise Density en f = 1 kHz 42 nV/√Hz e Current Noise Density in <0.1 pA/√Hz
V
OUT
±25 mA
SC
f = 200 kHz, AV = 1 50
OUT
f = 10 kHz 38 nV/√Hz
n
= VS − 1 V 18 mA
OUT
Rev. G | Page 4 of 20
Page 5
AD8541/AD8542/AD8544
VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted.
Table 3.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS 1 6 mV
−40°C TA ≤ +125°C 7 mV Input Bias Current IB 4 60 pA
−40°C TA ≤ +85°C 100 pA
−40°C TA ≤ +125°C 1000 pA Input Offset Current IOS 0.1 30 pA
−40°C TA ≤ +85°C 50 pA
−40°C TA ≤ +125°C 500 pA Input Voltage Range 0 5 V Common-Mode Rejection Ratio CMRR VCM = 0 V to 5 V 40 48 dB
−40°C TA ≤ +125°C 38 dB Large Signal Voltage Gain AVO RL = 100 kΩ, VO = 0.5 V to 2.2 V 20 40 V/mV
−40°C TA ≤ +85°C 10 V/mV
−40°C TA ≤ +125°C 2 V/mV Offset Voltage Drift ∆VOS/∆T −40°C ≤ TA ≤ +125°C 4 V/°C Bias Current Drift ∆IB/∆T −40°C ≤ TA ≤ +85°C 100 fA/°C
−40°C TA ≤ +125°C 2000 fA/°C Offset Current Drift ∆IOS/∆T −40°C ≤ TA ≤ +125°C 25 fA/°C
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1 mA 4.9 4.965 V
−40°C TA ≤ +125°C 4.875 V Output Voltage Low VOL IL = 1 mA 25 100 mV
−40°C TA ≤ +125°C 125 mV Output Current I I Closed-Loop Output Impedance Z
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = 2.5 V to 6 V 65 76 dB
−40°C TA ≤ +125°C 60 dB Supply Current/Amplifier ISY VO = 0 V 45 65 µA
−40°C TA ≤ +125°C 85 µA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 100 kΩ, CL = 200 pF 0.45 0.92 V/µs Full Power Bandwidth BWP 1% distortion 70 kHz Settling Time tS To 0.1% (1 V step) 6 µs Gain Bandwidth Product GBP 1000 kHz Phase Margin ΦM 67 Degrees
NOISE PERFORMANCE
Voltage Noise Density en f = 1 kHz 42 nV/√Hz e Current Noise Density in <0.1 pA/√Hz
V
OUT
±60 mA
SC
f = 200 kHz, AV = 1 45
OUT
f = 10 kHz 38 nV/√Hz
n
= VS − 1 V 30 mA
OUT
Rev. G | Page 5 of 20
Page 6
AD8541/AD8542/AD8544

ABSOLUTE MAXIMUM RATINGS

Table 4.
Parameter Rating
Supply Voltage (VS) 6 V Input Voltage GND to VS Differential Input Voltage1 ±6 V Storage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +125°C Junction Temperature Range −65°C to +150°C Lead Temperature (Soldering, 60 sec) 300°C
1
For supplies less than 6 V, the differential input voltage is equal to ±VS.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages and measured using a standard 4-layer board, unless otherwise specified.
Table 5.
Package Type θJA θ
5-Lead SC70 (KS) 376 126 °C/W 5-Lead SOT-23 (RJ) 190 92 °C/W 8-Lead SOIC (R) 120 45 °C/W 8-Lead MSOP (RM) 142 45 °C/W 8-Lead TSSOP (RU) 240 43 °C/W 14-Lead SOIC (R) 115 36 °C/W 14-Lead TSSOP (RU) 112 35 °C/W
Unit
JC

ESD CAUTION

Rev. G | Page 6 of 20
Page 7
AD8541/AD8542/AD8544

TYPICAL PERFORMANCE CHARACTERISTICS

180
160
140
120
100
80
60
NUMBER OF AMPL IFIE RS
40
20
0
–4.5 –3.5 4. 5–2.5 –1.5 –0.5 0.5
INPUT OFFSET VOLTAGE (mV)
Figure 5. Input Offset Voltage Distribution
1.0
VS = 2.7V AND 5V
0.5
V
= VS/2
CM
0
–0.5
–1.0
–1.5
–2.0
–2.5
INPUT OFFSET VOLTAGE (mV)
–3.0
–3.5
–4.0
–55 –35 –15
5 25456585105125
TEMPERATURE (°C)
Figure 6. Input Offset Voltage vs. Temperature
VS=5V V
=2.5V
CM
T
= 25°C
A
1.5 2.5 3.5
00935-005
145
00935-006
400
VS = 2.7V AND 5V V
= VS/2
CM
350
300
250
200
150
100
INPUT BIAS CURRENT (pA)
50
0
–40 –20 0 20 40 60 80 100 120 140
TEMPERATURE (° C)
Figure 8. Input Bias Current vs. Temperature
7
VS = 2.7V AND 5V
= VS/2
V
6
CM
5
4
3
2
1
INPUT OFFSET CURRENT ( pA)
0
–1
–55 –35 –15 5 25 45 65 85 105 125 145
TEMPERATURE (° C)
Figure 9. Input Offset Current vs. Temperature
00935-008
00935-009
9
VS = 2.7V AND 5V
8
V
= VS/2
CM
7
6
5
4
3
INPUT BIAS CURRE NT (pA)
2
1
0
–0.5 0.5 1.5 2.5 3.5 4. 5 5.5
COMMON-MODE VOLTAGE (V)
Figure 7. Input Bias Current vs. Common-Mode Voltage
00935-007
Rev. G | Page 7 of 20
160
VS = 2.7V
140
= 25°C
T
A
120
100
80
60
40
20
0
POWER SUPPL Y REJECTION (dB)
–20
–40
100 1k 10k 100k 1M 10M
–PSRR
+PSRR
FREQUENCY (Hz )
Figure 10. Power Supply Rejection vs. Frequency
00935-010
Page 8
AD8541/AD8542/AD8544
V
10k
1k
VS = 2.7V T
= 25°C
A
60
50
VS = 2.7V
= 10k
R
L
= 25°C
T
A
100
10
1
OUTPUT VOLTAGE (mV)
0.1
0.01
0.001 0.01 0.1 1 10 100
SOURCE
SINK
LOAD CURRENT (mA)
Figure 11. Output Voltage to Supply Rail vs. Load Current
3.0
2.5
2.0
1.5
1.0
OUTPUT SWING (V p-p)
0.5
VS = 2.7V
= 2.5V p-p
V
IN
= 2k
R
L
= 25°C
T
A
40
30
20
SMALL SIGNAL OVERSHOOT (%)
10
0
00935-011
10 100 1k 10k
CAPACITANCE (pF)
+OS
–OS
00935-014
Figu re 14. Sm all Signal O vershoot vs. Load Capacitance
60
VS = 2.7V R
= 2k
L
50
T
= 25°C
A
40
30
20
SMALL SIGNAL OVERSHO OT (%)
10
+OS
–OS
0
1k 10k 100 k 1M 10M
FREQUENCY (Hz)
Figure 12. Closed-Loop Output Voltage Swing vs. Frequency
60
VS = 2.7V R
=
L
TA = 25°C
50
40
30
20
SMALL SIGNAL OVERSHOOT (%)
10
0
10 100 1k 10k
CAPACITANCE (pF)
+OS
–OS
Figure 13. Small Signal Overshoot vs. Load Capacitance
0
00935-012
10 100 1k 10k
CAPACITANCE (pF)
00935-015
Figure 15. Small Signal Overshoot vs. Load Capacitance
VS = 2.7V R
= 100k
L
= 300pF
C
L
AV = 1 T
= 25°C
A
1.35
00935-013
50mV 10µs
0935-016
Figure 16. Small Signal Transient Response
Rev. G | Page 8 of 20
Page 9
AD8541/AD8542/AD8544
VS = 2.7V
= 2k
R
L
= 1
A
V
= 25°C
T
A
1.35V
500mV 10µs
Figure 17. Large Signal Transient Response
VS = 2.7V
= NO LOAD
R
L
= 25°C
T
A
80
60
40
GAIN (dB)
20
0
1k 10k 100k 1M 10M
FREQUENCY (Hz)
Figure 18. Open-Loop Gain and Phase vs. Frequency
160
VS = 5V
140
T
= 25°C
A
120
100
80
60
40
20
0
POWER SUPPLY REJECTI ON RATIO ( dB)
–20
–40
100 1k 10k 100k 1M 10M
–PSRR
+PSRR
FREQUENCY (Hz)
Figure 19. Power Supply Rejection Ratio vs. Frequency
45
90
135
180
00935-017
PHASE SHIFT (Degrees)
00935-018
00935-019
90
VS = 5V T
= 25°C
80
A
70
60
50
40
30
20
10
COMMON-MODE REJECTION (dB)
0
–10
1k 10k 100k 1M 10M
FREQUENCY (Hz)
Figure 20. Common-Mode Rejection vs. Frequency
5
VS=5V
4
= NO LOAD
R
L
=25°C
T
A
3
2
1
0
–1
–2
INPUT OFFSET VOLTAGE (mV)
–3
–4
–5
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
COMMON-MODE VOL TAGE (V)
Figure 21. Input Offset Voltage vs. Common-Mode Voltage
10k
VS = 5V T
= 25°C
A
1k
100
10
1
OUTPUT VOL TAGE (mV)
0.1
0.01
0.001 0. 01 0.1 1 10 100
SOURCE
SINK
LOAD CURRENT (mA)
Figure 22. Output Voltage to Supply Rail vs. Load Current
00935-020
00935-040
00935-021
Rev. G | Page 9 of 20
Page 10
AD8541/AD8542/AD8544
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
OUTPUT SWING (V p-p)
1.0
0.5
0
1k 10k 100k 1M 10M
FREQUENCY (Hz)
VS = 5V V
= 4.9V p-p
IN
R
= NO LOAD
L
T
= 25°C
A
Figure 23. Closed-Loop Output Voltage Swing vs. Frequency,
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
OUTPUT SWING (V p-p)
1.0
0.5
0
1k 10k 100k 1M 10M
FREQUENCY (Hz)
VS = 5V
= 4.9V p-p
V
IN
= 2k
R
L
= 25°C
T
A
Figure 24. Closed-Loop Output Voltage Swing vs. Frequency
00935-022
00935-023
60
VS = 5V R
= 2k
L
T
= 25°C
50
A
40
30
20
SMALL SIGNAL OVERSHOOT (%)
10
0
10 100 1k 10k
CAPACITANCE (pF)
+OS
–OS
Figure 26. Small Signal Overshoot vs. Load Capacitance
60
VS = 5V
=
R
L
50
40
30
20
SMALL SIGNAL OVERSHOOT (%)
10
TA = 25°C
+OS
–OS
0
10 100 1k 10k
CAPACITANCE (pF)
Figure 27. Small Signal Overshoot vs. Load Capacitance
00935-025
00935-026
60
VS = 5V
= 10k
R
L
= 25°C
T
50
A
40
+OS
30
20
SMALL SIGNAL OVERSHOOT (%)
10
0
10 100 1k 10k
CAPACITANCE (pF)
–OS
Figure 25. Small Signal Overshoot vs. Load Capacitance
00935-024
Rev. G | Page 10 of 20
2.5V
VS = 5V
= 100k
R
L
CL = 300pF AV = 1 TA = 25°C
50mV 10µs
Figure 28. Small Signal Transient Response
00935-027
Page 11
AD8541/AD8542/AD8544
VS = 5V RL = 2k AV = 1 TA = 25°C
V
IN
V
OUT
VS = 5V R
= 10k
L
A
= 1
V
T
= 25°C
A
2.5V
1V 10µs
Figure 29. Large Signal Transient Response
VS = 5V R
= NO LOAD
L
T
= 25°C
A
80
60
40
GAIN (dB)
20
0
1k 10k 100k 1M 10M
FREQUENCY (Hz)
Figure 30. Open-Loop Gain and Phase vs. Frequency
45
90
135
180
2.5V
00935-028
1V 20µs
00935-030
Figure 31. No Phase Reversal
60
TA = 25°C
50
40
30
20
PHASE SHIFT (Degrees)
10
SUPPLY CURRENT/ AMPLIF IER (µA)
0
00935-029
0123456
SUPPLY VOLTAGE (V)
00935-031
Figure 32. Supply Current per Amplifier vs. Supply Voltage
Rev. G | Page 11 of 20
Page 12
AD8541/AD8542/AD8544
V
55
50
VS = 5V
45
VS=5V MARKER SET @ 10kHz MARKER READING : 37.6nV/ Hz T
=25°C
A
40
35
30
SUPPLY CURRENT/AM PLIFI ER (µA)
25
20
–55 –35 –15 5 25 45 65 85 105 125 145
TEMPERATURE (°C)
VS = 2.7V
Figure 33. Supply Current per Amplifier vs. Temperature
1000
VS= 2.7V AND 5V
900
A
=1
V
T
= 25°C
A
800
700
600
500
400
IMPEDANCE (Ω)
300
200
100
0
1k 10k 100k 1M 10M 100M
FREQUENCY (Hz)
Figure 34. Closed-Loop Output Impedance vs. Frequency
15nV/DI
0 5 10 15 20 25
00935-032
FREQUENCY (kHz)
00935-034
Figure 35. Voltage Noise
00935-033
Rev. G | Page 12 of 20
Page 13
AD8541/AD8542/AD8544

THEORY OF OPERATION

NOTES ON THE AD854X AMPLIFIERS

The AD8541/AD8542/AD8544 amplifiers are improved performance, general-purpose operational amplifiers. Performance has been improved over previous amplifiers in several ways, including lower supply current for 1 MHz gain bandwidth, higher output current, and better performance at lower voltages.

Lower Supply Current for 1 MHz Gain Bandwidth

The AD854x series typically uses 45 µA of current per amplifier, which is much less than the 200 µA to 700 µA used in earlier generation parts with similar performance. This makes the AD854x series a good choice for upgrading portable designs for longer battery life. Alternatively, additional functions and performance can be added at the same current drain.

Higher Output Current

At 5 V single supply, the short-circuit current is typically 60 µA. Even 1 V from the supply rail, the AD854x amplifiers can provide a 30 mA output current, sourcing, or sinking.
Sourcing and sinking are strong at lower voltages, with 15 mA available at 2.7 V and 18 mA at 3.0 V. For even higher output currents, see the AD8531/AD8532/AD8534 parts for output currents to 250 mA. Information on these parts is available from your Analog Devices, Inc. representative, and data sheets are available at www.analog.com.

Better Performance at Lower Voltages

The AD854x family of parts was designed to provide better ac performance at 3.0 V and 2.7 V than previously available parts. Typical gain bandwidth product is close to 1 MHz at 2.7 V. Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase margin is typically over 60°C, making the part easy to use.
Rev. G | Page 13 of 20
Page 14
AD8541/AD8542/AD8544
V
V
V

APPLICATIONS

NOTCH FILTER

The AD854x have very high open-loop gain (especially with a supply voltage below 4 V), which makes it useful for active filters of all types. For example, Figure 36 illustrates the AD8542 in the classic twin-T notch filter design. The twin-T notch is desired for simplicity, low output impedance, and minimal use of op amps. In fact, this notch filter can be designed with only one op amp if Q adjustment is not required. Simply remove U2 as illustrated in Figure 37. However, a major drawback to this circuit topology is ensuring that all the Rs and Cs closely match. The components must closely match or notch frequency offset and drift causes the circuit to no longer attenuate at the ideal notch frequency. To achieve desired performance, 1% or better component tolerances or special component screens are usually required. One method to desensitize the circuit-to-component mismatch is to increase R2 with respect to R1, which lowers Q. A lower Q increases attenuation over a wider frequency range but reduces attenuation at the peak notch frequency.
R
100kR100k
V
IN
2.5V
REF
1
f
=
0
2πRC
f
=
0
4 1 –
53.6µF
26.7nF
1
R1
R1 + R2
2C
R/2 50k
C
C
26.7nF
1/2 AD8542
Figure 36. 60 Hz Twin-T Notch Filter, Q = 10
RR
V
IN
2.5V
REF
2C
R/2
C
C
Figure 37. 60 Hz Twin-T Notch Filter, Q = ∞ (Ideal)
3
2
V
IN
7
5.0
7
3
U1
2
5.0
8
1/2 AD8542
U1
1
4
5
U2
6
AD8541
6
4
2.5V
R2
2.5k
R1
97.5k
REF
V
V
OUT
OUT
00935-035
00935-036
Figure 38 is an example of the AD8544 in a notch filter circuit. The frequency dependent negative resistance (FDNR) notch filter has fewer critical matching requirements than the twin-T notch, where as the Q of the FDNR is directly proportional to a single resistor R1. Although matching component values is still important, it is also much easier and/or less expensive to accomplish in the FDNR circuit. For example, the twin-T notch uses three capacitors with two unique values, whereas the FDNR circuit uses only two capacitors, which may be of the same value. U3 is simply a buffer that is added to lower the output impedance of the circuit.
R
2.61k
R
2.61k
R
2.61k
R
2.61k
REF
1/4 AD8544
9
U3
10
3
2
2.5V
13
12
REF
8
4
U1
U4
1/4 AD8544
1
11
1/4 AD8544
14
V
OUT
NC
00935-037
V
IN
2.5V
REF
1/4 AD8544
R1
Q ADJUST
200
C1
1µF
C2
1µF
6
7
U2
5
1
f =
2π LC1
L = R2C2
2.5V
Figure 38. FDNR 60 Hz Notch Filter with Output Buffer

COMPARATOR FUNCTION

A comparator function is a common application for a spare op amp in a quad package. Figure 39 illustrates ¼ of the AD8544 as a comparator in a standard overload detection application. Unlike many op amps, the AD854x family can double as comparators because this op amp family has a rail-to-rail differential input range, rail-to-rail output, and a great speed vs. power ratio. R2 is used to introduce hysteresis. The AD854x, when used as comparators, have 5 µs propagation delay at 5 V and 5 µs overload recovery time.
R2
DC
1M
1/4 AD8541
V
OUT
00935-038
R1
1k
IN
2.5V
REF
2.5V
Figure 39. AD854x Comparator Application—Overload Detector
Rev. G | Page 14 of 20
Page 15
AD8541/AD8542/AD8544

PHOTODIODE APPLICATION

The AD854x family has very high impedance with an input bias current typically around 4 pA. This characteristic allows the AD854x op amps to be used in photodiode applications and other applications that require high input impedance. Note that the AD854x has significant voltage offset that can be removed by capacitive coupling or software calibration.
Figure 40 illustrates a photodiode or current measurement application. The feedback resistor is limited to 10 M to avoid excessive output offset. In addition, a resistor is not needed on the noninverting input to cancel bias current offset because the bias current-related output offset is not significant when compared to the voltage offset contribution. For best performance, follow the standard high impedance layout techniques, which include the following:
Shielding the circuit.
Cleaning the circuit board.
Putting a trace connected to the noninverting input around
the inverting input.
Using separate analog and digital power supplies.
C
100pF
R
10M
OR
D
REF
2.5V
REF
2.5V
Figure 40. High Input Impedance Application—Photodiode Amplifier
V+
7
2
6
3
AD8541
4
V
OUT
00935-039
Rev. G | Page 15 of 20
Page 16
AD8541/AD8542/AD8544
0
0

OUTLINE DIMENSIONS

3.00
2.90
2.80
.15 MAX .05 MIN
1.70
1.60
1.50
1.30
1.15
0.90
5
123
4
1.90
BSC
0.50 MAX
0.35 MIN
COMPLIANT TO JEDEC STANDARDS MO-178-AA
0.95 BSC
1.45 MAX
0.95 MIN
3.00
2.80
2.60
SEATING PLANE
0.20 MAX
0.08 MIN
10°
5° 0°
0.60
BSC
0.55
0.45
0.35
11-01-2010-A
Figure 41. 5-Lead Small Outline Transistor Package [SOT-23]
(RJ-5)
Dimensions shown in millimeters
5.10
5.00
4.90
4.50
4.40
4.30
PIN 1
1.05
1.00
0.80
0.15
0.05
COPLANARIT Y
0.10
14
1
0.65 BSC
0.30
0.19
COMPLI ANT TO JEDEC STANDARDS MO -153-AB-1
8
6.40 BSC
7
1.20
0.20
MAX
SEATING PLANE
0.09
8° 0°
0.75
0.60
0.45
061908-A
Figure 42. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
Rev. G | Page 16 of 20
Page 17
AD8541/AD8542/AD8544
1.35
1.25
1.15
1.00
0.90
0.70
0.10 MAX
COPLANARITY
0.10
2.20
2.00
1.80
2.40
45
2.10
1.80
312
0.65 BSC
0.22
0.08
0.40
0.10
1.10
0.80
0.30
0.15
COMPLIANT TO JEDEC STANDARDS MO-203-AA
SEATING PLANE
0.46
0.36
0.26
072809-A
Figure 43. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]
(KS-5)
Dimensions shown in millimeters
8.75 (0.3445)
8.55 (0.3366)
4.00 (0.1575)
3.80 (0.1496)
14
1
8
6.20 (0.2441)
5.80 (0.2283)
7
0.25 (0.0098)
0.10 (0.0039)
COPLANARITY
0.10
CONTROL LING DIMENSIO NS ARE IN MILLI METERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MIL LIME TER EQUIVALENTS F OR REFERENCE O NLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
1.27 (0.0500) BSC
0.51 (0.0201)
0.31 (0.0122)
COMPLI ANT TO JEDEC STANDARDS MS- 012-AB
1.75 (0.0689)
1.35 (0.0531)
SEATING PLANE
8° 0°
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0197)
0.25 (0.0098)
1.27 (0.0500)
0.40 (0.0157)
45°
060606-A
Figure 44. 14-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-14)
Dimensions shown in millimeters and (inches)
Rev. G | Page 17 of 20
Page 18
AD8541/AD8542/AD8544
Y
3.20
3.00
2.80
PIN 1
IDENTIFIER
0.95
0.85
0.75
0.15
0.05
COPLANARITY
3.20
3.00
2.80
8
5
5.15
4.90
4
0.40
0.25
4.65
1.10 MAX
15° MAX
6° 0°
0.23
0.09
1
0.65 BSC
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 45. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
0.80
0.55
0.40
5.00 (0.1968)
4.80 (0.1890)
10-07-2009-B
0.15
0.05
COPLANARIT
0.10
Figure 46. 8-Lead Thin Shrink Small Outline Package [TSSOP]
3.10
3.00
2.90
8
5
4.50
6.40 BSC
4.40
4.30
41
PIN 1
0.65 BSC
1.20 MAX
0.30 SEATING
0.19
PLANE
COMPLIANT TO JEDEC STANDARDS MO-153-AA
0.20
0.09
8° 0°
(RU-8)
Dimensions shown in millimeters
0.75
0.60
0.45
4.00 (0.1574)
3.80 (0.1497)
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
85
1
1.27 (0.0500)
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MS-012-AA
BSC
6.20 (0.2441)
5.80 (0.2284)
4
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
8° 0°
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0196)
0.25 (0.0099)
1.27 (0.0500)
0.40 (0.0157)
45°
012407-A
Figure 47. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
Rev. G | Page 18 of 20
Page 19
AD8541/AD8542/AD8544

ORDERING GUIDE

1, 2
Model
AD8541AKSZ-R2 –40°C to +125°C 5-Lead SC70 KS-5 A12 AD8541AKSZ-REEL7 –40°C to +125°C 5-Lead SC70 KS-5 A12 AD8541ARTZ-R2 –40°C to +125°C 5-Lead SOT-23 RJ-5 A4A AD8541ARTZ-REEL –40°C to +125°C 5-Lead SOT-23 RJ-5 A4A AD8541ARTZ-REEL7 –40°C to +125°C 5-Lead SOT-23 RJ-5 A4A AD8541ARZ –40°C to +125°C 8-Lead SOIC_N R-8 AD8541ARZ-REEL –40°C to +125°C 8-Lead SOIC_N R-8 AD8541ARZ-REEL7 –40°C to +125°C 8-Lead SOIC_N R-8 AD8542ARZ –40°C to +125°C 8-Lead SOIC_N R-8 AD8542ARZ-REEL –40°C to +125°C 8-Lead SOIC_N R-8 AD8542ARZ-REEL7 –40°C to +125°C 8-Lead SOIC_N R-8 AD8542ARM-REEL –40°C to +125°C 8-Lead MSOP RM-8 AVA AD8542ARMZ –40°C to +125°C 8-Lead MSOP RM-8 AVA AD8542ARMZ-REEL –40°C to +125°C 8-Lead MSOP RM-8 AVA AD8542ARU-REEL –40°C to +125°C 8-Lead TSSOP RU-8 AD8542ARUZ –40°C to +125°C 8-Lead TSSOP RU-8 AD8542ARUZ-REEL –40°C to +125°C 8-Lead TSSOP RU-8 AD8544ARZ –40°C to +125°C 14-Lead SOIC_N R-14 AD8544ARZ-REEL –40°C to +125°C 14-Lead SOIC_N R-14 AD8544ARZ-REEL7 –40°C to +125°C 14-Lead SOIC_N R-14 AD8544ARUZ –40°C to +125°C 14-Lead TSSOP RU-14 AD8544ARUZ-REEL –40°C to +125°C 14-Lead TSSOP RU-14 AD8544WARZ-RL –40°C to +125°C 14-Lead SOIC_N R-14 AD8544WARZ-R7 –40°C to +125°C 14-Lead SOIC_N R-14
1
Z = RoHS Compliant Part.
2
W = Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The AD8544W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.
Temperature Range Package Description Package Option Branding
Rev. G | Page 19 of 20
Page 20
AD8541/AD8542/AD8544
NOTES
©2008–2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00935-0-6/11(G)
Rev. G | Page 20 of 20
Page 21
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Analog Devices Inc.: AD8541AKSZ-R2 AD8541AKSZ-REEL7 AD8541ARTZ-R2 AD8541ARTZ-REEL7 AD8541ARZ AD8542ARMZ
AD8542ARMZ-REEL AD8542ARUZ AD8542ARZ AD8542ARZ-REEL7 AD8544ARUZ AD8544ARZ AD8541ARTZ­REEL AD8541ARZ-REEL AD8541ARZ-REEL7 AD8542ARUZ-REEL AD8542ARZ-REEL AD8544ARUZ-REEL AD8544ARZ-REEL AD8544ARZ-REEL7 AD8544WARZ-R7 AD8544WARZ-RL
Loading...