Datasheet AD8488 Datasheet (ANALOG DEVICES)

Digital X-Ray Analog Front End
AD8488
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Fax: 781.461.3113 ©2012 Analog Devices, Inc. All rights reserved.
CHARGE CONVERS ION AMPLIFIER
128 CHANNELS
LPF
INT
IN0:127
VREF
TIMING SIGNALS
ANALOG
INPUTS
GAINAMPLIFIER
CONTROL REGISTER
PWR
IRST
GRST
HOLD
CSB_a, CSB_b
CF1SEL0, CF1SEL1
GNSEL0 TO GNSEL3
FSEL0, FSEL1
TST0 TO TST6
WRB
TST
CK_ENa
CLK
CK_ENb
RSTB
MUX SELECTOR
TIMINGAND CONTROL
CONTROL SIGNALS
2 4 2 7
DIFFERENTIAL
OUTPUT
MULTIPLEXER
128:1
OUTPUT BUFFER
OUTHI
OUTLO
128
7
09801-001
INT
Data Sheet

FEATURES

128 integrator channels Correlated double sample error correction (CDS)
Corrects for V
Power consumption per channel
Normal: 11 mW
Low power: 4 mW Low input leakage current: −1.5 pA typical Low input referred noise (QNI): 993 e Linearity error: 0.03% typical Compact 17 mm × 17 mm BGA Selectable filter time constants 4 selectable input charge ranges 10 selectable gain ranges

APPLICATION

High performance digital X-ray systems Medical X-ray Security (baggage scanner) systems
and LF noise
OS
rms typical

GENERAL DESCRIPTION

The AD8488 is a 128-channel, analog front end (AFE) designed for use in high performance digital X-ray systems. The analog channels consist of an integrator followed by a gain selectable single-ended to low impedance differential output. The analog channel converts the charge acquired by X-ray or photodiode detectors to a voltage. The channels are composed of CMOS transistors, using typical high input impedance CMOS gates. The integrators generate charge dependent voltages using a range of selectable capacitance values that accommodate a broad range of input charge values. The integrators are followed by single-ended input to differential output voltage amplifiers where offset and low frequency noise voltages are subtracted from the input voltages. A 128:1 channel differential MUX follows the buffers and drives the analog output buffer. Switch drivers and certain digital timing functions are included, and all are mounted on a 255-lead BGA substrate. Charge conversion for all 128 channels is simultaneous followed by a sequential voltage output read of the channels using a 7-bit address code. The sequence occurs twice, sampling all 128 channels. Logic control inputs,
CS_B
and
, select the lower and upper 64 blocks of the channel
addresses.
The AD8488 is packaged in a 17 mm × 17 mm, 255-lead, RoHS­compliant ball grid array (BGA). The operating temperature range is 0°C to 85°C ambient.

FUNCTIONAL BLOCK DIAGRAM

128-Channel
CS_A
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No
Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700
www.analog.com
AD8488 Data Sheet

TABLE OF CONTENTS

Features ...................................................................................................1
Application .............................................................................................1
General Description ..............................................................................1
Functional Block Diagram ...................................................................1
Table of Contents ...................................................................................2
Revision History ....................................................................................2
Specifications ..........................................................................................3
Absolute Maximum Ratings .................................................................5
Thermal Data .....................................................................................5
Thermal Characterization ................................................................5
ESD Caution .......................................................................................5
Pin Configuration and Function Descriptions ..................................6
Signal Mnemonics .................................................................................9

REVISION HISTORY

6/12—Revision A: Initial Version
Typical Performance Characteristics ................................................ 11
Theory of Operation ........................................................................... 13
Overview .......................................................................................... 13
Analog Amplifier ........................................................................ 13
Troubleshooting Channels ......................................................... 13
Timing Signals ................................................................................. 14
Timing Notes ............................................................................... 14
Applications Information ................................................................... 15
Control Register Bit Maps .............................................................. 15
Timing Diagrams ............................................................................ 17
Outline Dimensions ............................................................................ 18
Ordering Guide ............................................................................... 18
Rev. A| Page 2 of 20
Data Sheet AD8488
INPUT LEAKAGE CURRENT
−10
−1.5
+10
pA/channel
G = 4
3.92 4 4.08
V/V
Power Consumption
Normal
Pin PWR logic low
11 mW/channel

SPECIFICATIONS

Default test conditions, unless otherwise specified: VDD = 5 V, VCC = 5 V, LPF resistor (R1) = 130 kΩ, base panel temperature = 30°C, Pin PWR = logic low, G = 1 V/ V, C
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
CHARGE CONVERSION RATE1 See Figure 16 CF1 = 0.45 pF 1.7 2.3 2.9 V/pC CF1 = 0.9 pF 0.85 1.1 1.4 V/pC CF1 = 3.5 pF 0.21 0.28 0.36 V/pC CF1 = 7 pF 0.10 0.14 0.18 V/pC GAIN CHARACTERISTICS
Accuracy2
CF1 = 7 pF G = 1 0.98 1 1.02 V/V G = 2 1.96 2 2.04 V/V
G = 3 2.94 3 3.06 V/V
G = 5 4.9 5 5.1 V/V G = 6 5.88 6 6.12 V/V G = 7 6.86 7 7.14 V/V G = 8 7.84 8 8.16 V/V G = 9 8.82 9 9.18 V/V G = 10 9.8 10 10.2 V/V
Gain Step Linear to 7 pC input charge 1 V/V
Error vs. Temperature3 0.003 %/°C MAXIMUM INPUT CHARGE CF1 = 0.45 pF 0.45 pC CF1 = 0.9 pF 0.9 pC CF1 = 3.5 pF 3.5 pC CF1 = 7 pF 7 pC CLOCK
Frequency 1 15 MHz Rise and Fall Time 6 ns
LOGIC INTERFACE
Input High 3.25 V Input Low 1.15 V Leakage Current 14.5e−6 1 µA
POWER SUPPLY
Analog Supply
Voltage (AVDD) 4.75 5 5.25 V Quiescent Current (AIDD) Pin PWR logic low 230 285 350 mA Current in Low Power Mode Pin PWR logic high 65 90 100 mA
= 0.5 pF, and C
H
PAN EL
= 38 pF.
, CF1SELx, FSELx, GNSELx, HOLD, GRST, IRST,
WR TSTx, CK_ENx, PWR,
CS_A, CS_B
Low Power Pin PWR logic high 4 mW/channel Digital Supply Voltage (DVDD) 4.75 5 5.25 V Quiescent Current (DIDD) 2 10 mA
REFERENCE VOLTAGE
VREF 2.048 V
Rev. A | Page 3 of 20
AD8488 Data Sheet
Parameter Test Conditions/Comments Min Typ Max Unit
OUTPUT VOLTAGE
OUTHIGH 2.0 V OUTLO W 2.0 V
INPUT REFERRED NOISE4
Normal C Low Power C
PANEL CAPACITANCE 0 80 pF LINEARITY ERROR5 CF1 = 0.9 pF, G = 5
Normal 0.03 + 1 % + LSB Low Power 0.2 + 8.2 % + LSB
OPERATING TEMPERATURE Ambient, normal and low power 0 85 °C
1
Defined as the output voltage divided by the input charge (number of electrons in this case) with the gain amp setting (G = 1). This includes the gain error of the gain amp.
2
Each gain at G = 2, G = 4, G = 8, and G = 10 is calculated as the ratio of each output voltage to that at G = 1. Each measurement corresponds to the selection of each gain
setting capacitor.
3
Gain deviation over temperature.
4
The output noise voltage is measured and converted into the input referred noise electrons.
5
It is defined as the deviation from a best fit line, including the origin. The output voltage is measured with five different input conditions.
CF1 = 0.9 pF, G = 10
= 38 pF 993 e−rms
PAN EL
= 61 pF 2000 e−rms
PAN EL
Rev. A | Page 4 of 20
Data Sheet AD8488
Supply (AVDD, DVDD)
5.5 V
50°C
14.0
0.53
7.7
4.4
°C/W
25°C
21.2
0.15
8.3
4.4
°C/W
50°C
16.2
0.29
8.1
4.4
°C/W

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Rating
Voltage
Charge Input IN0 to IN127 −0.3 V to VREF + 0.3 V Reference (VREF, VREF_ESD) 5.5 V Logic Inputs −0.3 V to +5.5 V
Maximum Junction Temperature 125°C Storage Temperature Range −30°C to +150°C Input Charge to Integrator Channels 20 pC
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL DATA

ΨJB is the junction-to-board thermal characterization parameter with a unit of °C/W. The Ψ and calculation using a 4-layer board. The JESD51-12, Guidelines for Reporting and Using Package Thermal Information, states that thermal characterization parameters are not the same as thermal resistances. Ψ
measures the component power flowing through
JB
multiple thermal paths rather than a single path, as in thermal resistance, θ
. Therefore, ΨJB thermal paths include convection
JB
from the top of the package as well as radiation from the package, factors that make Ψ
JB
Maximum junction temperature (T temperature (T
T
= TB + (PD × ΨJB)
J
) and power dissipation (PD) using the formula
B
Refer to JESD51-8 and JESD51-12 for more detailed information about Ψ
.
JB
of the package is based on modeling
JB
more useful in real-world applications.
) is calculated from the board
J

THERMAL CHARACTERIZATION

Table 3. Thermal Resistance—Normal Operation (1.4 W)
Airflow Velocity (m/sec) Ambient θ
0 85°C 18.6 0.20 8.3 4.4 °C/W 50°C 19.7 0.17 8.3 4.4 °C/W 25°C 20.6 0.16 8.3 4.4 °C/W 1 85°C 15.8 0.32 8.2 4.4 °C/W 50°C 16.1 0.30 8.2 4.4 °C/W 25°C 16.4 0.29 8.2 4.4 °C/W 3 85°C 13.8 0.54 7.7 4.4 °C/W
25°C 14.2 0.52 7.7 4.4 °C/W
ΨJT ΨJB θJC Unit
JA
Table 4. Thermal Resistance—Low Power Operation (0.5 W)
Airflow Velocity (m/sec) Ambient θ
0 85°C 19.0 0.19 8.3 4.4 °C/W 50°C 20.2 0.16 8.3 4.4 °C/W
1 85°C 15.7 0.31 8.1 4.4 °C/W
25°C 16.4 0.28 8.1 4.4 °C/W 3 85°C 13.8 0.54 7.8 4.4 °C/W 50°C 14.1 0.52 7.8 4.4 °C/W 25°C 14.2 0.51 7.8 4.4 °C/W
ΨJT ΨJB θJC Unit
JA
Note that the thermal numbers are simulated per JEDEC JESD51-9 on a 4-layer printed circuit board size = 101.5 mm × 114.5 mm.

ESD CAUTION

Rev. A | Page 5 of 20
AD8488 Data Sheet
A
B
KEY
AVDD
C
D
E
F
G
H
J
K
L
M
N
P
R
T
AGND
DGND
DVDD
I/O
DIG I/O
NC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
TOP VIEW
A1 BALL PAD CO RNE R
NOTE: E 12 AND M 12 ARE NC ON THE BGA BUT
MUST BE CO NNE CTED TO GROUND ON T HE P CB
09801-002

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. 255-Ball CSP_BGA Ball Configuration (Top View)
Rev. A | Page 6 of 20
Data Sheet AD8488
KEY
AVDD
AGND
DGND
DVDD
I/O
DIG I/O
NC
A1 BALL PAD CO RNE R
NOTE: E 12 AND M 12 ARE NC ON THE BGA BUT
MUST BE CO NNE CTED TO GROUND ON T HE P CB
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
BOTTOM VIEW
12345678910111213141516
09801-003
CF1SEL1
Capacitor CF1 (see Table 9).
DGND
F16, G15, G16, H15, H16, J15, J16, K15, K16, L16
O
Digital Ground (0 V).
Table 5. Pin Function Descriptions
Mnemonic Pin No. I/O Description
AGND See Table 6 and Table 7 O Analog Power Ground (0 V). AVDD F6, F7, F8, F9, F10, G6, G11, H6, H11, H12, J6,
J11, K6, K11, L6, L8, L9, L10, L11 CLK D15 I Clock for Mux Operation. CK_ENa E14 I Clock Gate for Channel 0 to Channel 63. CK_ENb F14 I Clock Gate for Channel 64 to Channel 127.
N14 I Logic Level to Enable Channel 0 to Channel 63.
CS_A
M15 I Logic Level to Enable Channel 64 to Channel 127.
CS_B CF1SEL0,
B15, C15 I Binary Coded Logic Pins to Select One of Four Values of Integrator
DVDD B16, C16, D16, E16, F15, L15, M16, N16, P16, R16 I Power Supply for Digital Circuit (5 V). FSEL0, FSEL1 R14, T14 I Filter Time Constant Select (see Table 10). GNSEL0 to
A14, B14, C14, D14 I Gain Select for the Gain Amp. Select one of four hold capacitors. The GNSEL3
GRST H14 I Gain Amp Reset. Closes the switch across Integrator Capacitor CF2
HOLD T16 I Gain Amp Hold. Connect the hold capacitor to the signal chain.
Figure 3. 255-Ball CSP_BGA Ball Configuration (Bottom View)
I Analog Supply Voltage (5 V).
four values are arranged in one of ten parallel options to establish ten gain values (see Table 11).
setting the output of the gain amplifier to zero.
Rev. A | Page 7 of 20
AD8488 Data Sheet
A16 I Reset Gray Mode Counter for Mux.
Mnemonic Pin No. I/O Description
IN0 to IN127 See Table 6 and Table 7 I Analog Inputs. IRST E15 I Integrator Reset. Closes a switch across the integration capacitor, CF1,
to set the output to zero.
NC A13, A15, B13, C13, D13, E10, E12, E13, F11,
F13, G13, H13, J12, J13, K13, L13, M12, M13,
N13, P13, R13, T13 OUTLO W F12 O Inverting Analog Output (Negative) of the Differential Output. OUTHIGH G12 O Noninverting Analog Output (Positive) of the Differential Output. PWR P14 I Normal state is logic low; reduces analog bias current by approximately
RST TST_MODE J14 I Test Mode Enable. This control line is used together with the TST0 to
TST0 to TST6 T15, R15, P15, N15, M14, L14, K14 I Channel Address Select Bits When in Test Mode (see Table 8). VREF L12 I Reference Input for Analog Circuit (2.048 V). VREF_ESD K12 I ESD Reference. Connect to VREF (2.048 V).
G14 I Write Digital Instruction Word to the AFE.
WR
No connect. Connect these pins to GND on the PCB.
80% when high.
TST6 address bits to test or debug a system by continuously selecting a channel.
Rev. A | Page 8 of 20
Data Sheet AD8488
A7
IN110
A11
IN119
B3
IN101
B11
IN120
C7
IN81
C11
IN121
D3
IN89
D7
IN85
D15
CLK
E11
IN122
E15
IRST
F7
AVDD
F15
DVDD
G3
IN71
G11
AVDD
H3
IN65
H15
DGND
J3
IN61
J11
AVDD
J15
DGND
K7
AGND
L3
IN53
L7
AGND
L15
DVDD
M7
AGND
M11
AGND
N3
IN45
N11
IN0
R3
IN27
R7
IN23
R15
TST1
T11
IN2
T15
TST0

SIGNAL MNEMONICS

Table 6. 255-Ball CSP_BGA Ball Assignment (Numerically by Ball Number)
Ball Signal
A2 IN108 A3 IN107 A4 IN106 A5 IN80 A6 IN84
Ball Signal
C14 GNSEL1 C15 CF1SEL0 C16 DVDD D1 IN91 D2 IN90
Ball Signal
F10 AV DD F11 NC F12 OUTLO W F13 NC F14 CK_ENb
Ball Signal
J6 AVDD J7 AGND J8 AGND J9 AGND J10 AGND
Ball Signal
M2 IN50 M3 IN49 M4 IN48 M5 AGND M6 AGND
Ball Signal
P14 PWR P15 TST2 P16 DVDD R1 IN25 R2 IN26
A8 IN111 A9 IN112 A10 IN115
A12 IN124 A13 NC A14 GNSEL3 A15 NC A16 B1 IN103 B2 IN102
B4 IN100 B5 IN99 B6 IN98 B7 IN105 B8 IN104 B9 IN113 B10 IN116
B12 IN125 B13 NC B14 GNSEL2 B15 CF1SEL1 B16 DVDD C1 IN97 C2 IN96 C3 IN95 C4 IN94 C5 IN93 C6 IN92
C8 IN74 C9 IN114 C10 IN117
C12 IN127 C13 NC
RST
D4 IN88 D5 IN87 D6 IN86
D8 IN83 D9 IN118 D10 IN109 D11 IN123 D12 IN126 D13 NC D14 GNSEL0
D16 DVDD E1 IN75 E2 IN69 E3 IN68 E4 IN82 E5 AGND E6 AGND E7 AGND E8 AGND E9 AGND E10 NC
E12 NC E13 NC E14 CK_ENa
E16 DVDD F1 IN79 F2 IN78 F3 IN77 F4 IN76 F5 AGND F6 AVDD
F8 AVDD F9 AVDD
F16 DGND G1 IN73 G2 IN72
G4 IN70 G5 AGND G6 AVDD G7 AGND G8 AGND G9 AGND G10 AGND
G12 OUTHIGH G13 NC G14 G15 DGND G16 DGND H1 IN67 H2 IN66
H4 IN64 H5 AGND H6 AVDD H7 AGND H8 AGND H9 AGND H10 AGND H11 AVDD H12 AVDD H13 NC H14 GRST
H16 DGND J1 IN63 J2 IN62
J4 IN60 J5 AGND
WR
J12 NC J13 NC J14 TST_MODE
J16 DGND K1 IN59 K2 IN58 K3 IN57 K4 IN56 K5 AGND K6 AVDD
K8 AGND K9 AGND K10 AGND K11 AVD D K12 VREF_ESD K13 NC K14 TST6 K15 DGND K16 DGND L1 IN55 L2 IN54
L4 IN52 L5 AGND L6 AVDD
L8 AVDD L9 AVDD L10 AVDD L11 AVDD L12 VREF L13 NC L14 TST5
L16 DGND M1 IN47
M8 AGND M9 AGND M10 AGND
M12 NC M13 NC M14 TST4 M15
CS_B M16 DVDD N1 IN41 N2 IN46
N4 IN44 N5 IN43 N6 IN42 N7 IN51 N8 IN32 N9 IN40 N10 IN33
N12 IN9 N13 NC N14
CS_A N15 TST3 N16 DVDD P1 IN31 P2 IN39 P3 IN37 P4 IN38 P5 IN36 P6 IN35 P7 IN34 P8 IN24 P9 IN14 P10 IN12 P11 IN1 P12 IN7 P13 NC
R4 IN28 R5 IN29 R6 IN30
R8 IN22 R9 IN15 R10 IN11 R11 IN5 R12 IN6 R13 NC R14 FSEL0
R16 DVDD T1 IN19 T2 IN18 T3 IN17 T4 IN8 T5 IN16 T6 IN20 T7 IN21 T8 IN13 T9 IN10 T10 IN4
T12 IN3 T13 NC T14 FSEL1
T16 HOLD
Rev. A | Page 9 of 20
AD8488 Data Sheet
CF1SEL0
C15
DGND
G16
DVDD
B16
DVDD
F15
GRST
H14
TST6
K14
Table 7. 255-Ball CSP_BGA Ball Assignment (Alphabetically by Signal)
Signal Ball
AGND E5 AGND E6 AGND E7 AGND E8 AGND E9 AGND F5 AGND G5 AGND G7 AGND G8 AGND G9 AGND G10 AGND H5 AGND H7 AGND H8 AGND H9 AGND H10 AGND J5 AGND J7 AGND J8 AGND J9 AGND J10 AGND K5 AGND K7 AGND K8 AGND K9 AGND K10 AGND L5 AGND L7 AGND M5 AGND M6 AGND M7 AGND M8 AGND M9 AGND M10 AGND M11 AVDD F6 AVDD F7 AVDD F8 AVDD F9 AVDD F10 AVDD G6 AVDD G11 AVDD H6 AVDD H11
Signal Ball
AVDD H12 AVDD J6 AVDD J11 AVDD K6 AVDD K11 AVDD L6 AVDD L8 AVDD L9 AVDD L10 AVDD L11 CLK D15 CK_ENa E14 CK_ENb F14
N14
CS_A
M15
CS_B
CF1SEL1 B15 DGND F16 DGND G15
DGND H15 DGND H16 DGND J15 DGND J16 DGND K15 DGND K16 DGND L16
DVDD C16 DVDD D16 DVDD E16
DVDD L15 DVDD M16 DVDD N16 DVDD P16 DVDD R16 FSEL0 R14 FSEL1 T14
GNSEL0 D14 GNSEL1 C14 GNSEL2 B14 GNSEL3 A14
Signal Ball
HOLD T16 IN0 N11 IN1 P11 IN2 T11 IN3 T12 IN4 T10 IN5 R11 IN6 R12 IN7 P12 IN8 T4 IN9 N12 IN10 T9 IN11 R10 IN12 P10 IN13 T8 IN14 P9 IN15 R9 IN16 T5 IN17 T3 IN18 T2 IN19 T1 IN20 T6 IN21 T7 IN22 R8 IN23 R7 IN24 P8 IN25 R1 IN26 R2 IN27 R3 IN28 R4 IN29 R5 IN30 R6 IN31 P1 IN32 N8 IN33 N10 IN34 P7 IN35 P6 IN36 P5 IN37 P3 IN38 P4 IN39 P2 IN40 N9 IN41 N1 IN42 N6
Signal Ball
IN43 N5 IN44 N4 IN45 N3 IN46 N2 IN47 M1 IN48 M4 IN49 M3 IN50 M2 IN51 N7 IN52 L4 IN53 L3 IN54 L2 IN55 L1 IN56 K4 IN57 K3 IN58 K2 IN59 K1 IN60 J4 IN61 J3 IN62 J2 IN63 J1 IN64 H4 IN65 H3 IN66 H2 IN67 H1 IN68 E3 IN69 E2 IN70 G4 IN71 G3 IN72 G2 IN73 G1 IN74 C8 IN75 E1 IN76 F4 IN77 F3 IN78 F2 IN79 F1 IN80 A5 IN81 C7 IN82 E4 IN83 D8 IN84 A6 IN85 D7 IN86 D6
Signal Ball
IN87 D5 IN88 D4 IN89 D3 IN90 D2 IN91 D1 IN92 C6 IN93 C5 IN94 C4 IN95 C3 IN96 C2 IN97 C1 IN98 B6 IN99 B5 IN100 B4 IN101 B3 IN102 B2 IN103 B1 IN104 B8 IN105 B7 IN106 A4 IN107 A3 IN108 A2 IN109 D10 IN110 A7 IN111 A8 IN112 A9 IN113 B9 IN114 C9 IN115 A10 IN116 B10 IN117 C10 IN118 D9 IN119 A11 IN120 B11 IN121 C11 IN122 E11 IN123 D11 IN124 A12 IN125 B12 IN126 D12 IN127 C12 IRST E15 NC A13 NC A15
Signal Ball
NC B13 NC C13 NC D13 NC E10 NC E12 NC E13 NC F11 NC F13 NC G13 NC H13 NC J12 NC J13 NC K13 NC L13 NC M12 NC M13 NC N13 NC P13 NC R13 NC T13 OUTLO W F12 OUTHIGH G12 PWR P14
A16
RST TST_MODE J14 TST0 T15 TST1 R15 TST2 P15 TST3 N15 TST4 M14 TST5 L14
VREF L12 VREF_ESD K12
G14
WR
Rev. A | Page 10 of 20
Data Sheet AD8488
0
0.05
CHANNEL NUMBER
100908070605010 403020 130120110
G = 5V/V CF1 = 0.9pF T
CASE
= 30°C
C
PANEL
= 38pF
0.04
0.03
0.02
0.01
0
–0.01
–0.02
–0.03
–0.04
–0.05
LINEARITY ERROR (%)
09801-004
0
CHANNEL NUMBER
100908070605010 403020 130120110
G = 10 CF1 = 0.9pF T
CASE
= 40°C
C
PANEL
= 38pF
1100
900
1000
1200
1300
1400
1500
800
INPUT REF E RRE D NOISE – Q NI (e
rms)
09801-005
0
CHANNEL NUMBER
100908070605010 403020 130120110
7
2
3
4
5
6
8
9
10
11
12
1
GAIN = 10
GAIN = 2
GAIN = 4
GAIN = 8
GAIN (V/V)
CF1 = 0.9pF T
CASE
= 30°C
C
PANEL
= 38pF
V
OUT
= –104mV
09801-006
300
0
50
100
150
200
250
350
400
450
500
0
CHANNEL NUMBER
100908070605010 403020 130120110
CCR (nV/e–)
G = 1V/V T
CASE
= 30°C
C
PANEL
= 38pF
V
OUT
= –104mV
CF1 = 0.45pF
CF1 = 0.9pF
CF1 = 3.5pF
CF1 = 7pF
09801-007
1100
0
850
900
950
1000
1050
1150
1200
1250
1300
800
TEMPERATURE (°C)
605010 403020
TYPICAL NOISE:
AVERAGE OF 128
CHANNELS
INPUT REF E RRE D NOISE [Q NI] (e–rms)
G = 10 CF1 = 0.9pF C
PANEL
= 38pF
09801-008
0
0.004
CHANNEL NUMBER
100908070605010 403020 130120110
TEMPERATURE SPAN
GAIN DRIF T (%/°C)
0.003
0.002
0.001
0
–0.001
–0.002
–0.003
–0.004
G = 10V/V CF1 = 0.9 pF T
CASE
= 0°C TO 60°C
C
PANEL
= 38pF
V
OUT
= –104mV
0°C TO 20°C 0°C TO 40°C 0°C TO 60°C
09801-009

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Linearity Error vs. Channel
Figure 7. CCR vs. Channel for Four Values of CF1
Figure 5. Input Referred Noise (QNI) vs. Channel, C
Figure 6. Gain vs. Channel for Four Values of Gain
PANEL
= 38 pF, T
CASE
= 40°C
Rev. A | Page 11 of 20
Figure 8. Input Referred Noise (QNI) vs. Temperature
Figure 9. Gain Drift vs. Channel for Various Temperature Spans
AD8488 Data Sheet
0
0.12
CHANNEL NUMBER
100908070605010 403020 130120110
PERCENTAGE OF OUTPUT STEP (%)
0.10
0.08
0.06
0.04
0.02 0
–0.02 –0.04 –0.06 –0.08 –0.10 –0.12
G = 5V/V CF1 = 0.9pF T
CASE
= 30°C
F
SEL
= 160k
V
IN
= 0 TO –4.16mV
09801-010
0 100908070605010 403020 130120110
1
0
2
3
4
5
–5
CHANNEL NUMBER
–1
–2 –3
–4
ANALOG INPUT LE AKAGE (pA)
G = 10V/V CF1 = 0.9pF T
CASE
= 30°C
C
PANEL
= 38pF
09801-011
2
0
–2
0
4
6
8
10
CHANNEL NUMBER
100908070605010 403020 130120110
–10
–8
–6
–4
CF1 = 0.45p F CF1 = 7.0p F CF1 = 3.5p F CF1 = 0.9p F
G = 1V/V T
CASE
= 30°C
C
PANEL
= 38pF
V
IN
= 0V
V
OS
(mV)
09801-012
0
0.10
CHANNEL NUMBER
100908070605010 403020 130120110
PERCENT OF OUTPUT STEP (%)
0.08
0.06
0.04
0.02
0
–0.02
–0.04
–0.06
–0.08
–0.10
G = 5V/V CF1 = 0.9pF T
CASE
= 30°C
F
SEL
= 160k
V
IN
= 0 TO –4.16mV
09801-013
180
0
140
160
200
220
240
260
T
CASE
(°C)
320 300 280
605010 403020
340
60
80
100
120
IAVDD
NORMAL PO WER LOW POWER
65
SUPPLY CURRENT (mA)
09801-014
0
TEMPERATURE (°C)
605010 403020
–5.5
G = 10V/V CF1 = 7 pF T
CASE
= 30°C
C
PANEL
= 38pF
V
IN
= 0V
DIFFERENTIAL OFFSET VOLTAGE (mV)
–5.6
–5.7
–5.8
–5.9
–6.0
–6.1
–6.2
–6.3
–6.4
–6.5
09801-015
Figure 10. Adjacent Channel Crosstalk as Measured by the Percent of Output
Step for Each Channel
Figure 13. Crosstalk from All Nonadjacent Channels as Measured by the
Percent of Output Step for Each Channel
Figure 11. Input Leakage vs. Channel
Figure 12. Differential Offset Voltage vs. Channel for Four Values of CF1
Figure 14. Supply Current vs. Temperature (T
CASE
)
Figure 15. Differential Offset Voltage vs. Temperature
Rev. A | Page 12 of 20
Data Sheet AD8488
IN0 TO IN127
+
+
SWIRST
SWHOLD
TO MUX
VREF
INTEGRATOR
GAIN
AMPLIFIER
CM
SWHOLD
SWGRST
SWGRST
CFx: FEE DBACK CAP ACITOR C
H
: HOLD CAPACITOR
GNSEL0
TO
GNSEL3
GNSEL0
TO
GNSEL3
R1 (×4)
R1 (×4)
CF1 (×4)
CF2 = 0.5p F
CF2 = 0.5p F
09801-017
CH (×4)
C
H
(×4)

THEORY OF OPERATION

OVERVIEW

The AD8488 is a 128-channel AFE intended for interfacing thin film
transistor (TFT) detector panel arrays in various digital X-ray
applications (see Figure 1). The device includes a 128 dual stage, charge conversion amplifiers, internal timing, and control circuitry, a 128:1 differential output multiplexer, and an analog output buffer. Only the detector panel and a minimal amount of analog circuitry are required to complete a 128-channel analog X-ray interface. The
AD8488 AFE is packaged in a compact, 17 mm × 17 mm,
255-lead BGA.

Analog Amplifier

The AD8488 analog inputs are suitable for ac or dc connection to
128 X-ray detector panel outputs. The analog amplifier consists of two stages: an integrator followed by a correlated double sampling gain amplifier. Figure 16 is a simplified block diagram showing the basic elements of an analog channel.
The characteristic CMOS high gate impedance of the integrator minimizes source loading. Prior to sampling a gate line, all 128 mux analog channels are initialized with During the 6.1 µs GRST period, the gain amplifier acquires the reference level (2.048 V) and any low frequency ambient noise. Just prior to gate sampling, both op amps are unlocked and the feedback capacitors, CF1 and CF2, are connected. When a TFT gate
line is activated (reference the bottom signal, TFT_GATE, in
Figure 17), the charge of each detector cell is applied simultaneously
RST
, as shown in Figure 17.
to all 128 MOSFET integrator circuits, which begin to ramp over a 12 µs interval. As seen in Figure 16, the op amps are biased at the reference voltage, plus offset and low frequency noise error voltages. Together, the resultant differential output voltage comprises the CDS or correlated double sampled composite. Following the sampling period, the pixel charges are stored, and the charge is held for the next 133 clock cycles while the 128 channels are muxed and sampled sequentially. As the channels are selected in sequence, their outputs are applied to a dual channel, high precision, current feedback, high frequency op amp. The AD8488 was designed to drive an ADC such as the AD9244 differential input high speed converter.
The mux channels are enabled and selected by the timing inputs, CK_ENa and CK_ENb. These two signals gate the clock and internal counter that actually selects the mux channel. The multiplexers must be read sequentially as one interprets from the CK_ENa and CK_ENb lines in Figure 17. The read time for each channel is 1 clock cycle. The timing signals, GATED CLKa and GATED CLKb, are developed internally and are shown in Figure 17 for reference only.

Troubleshooting Channels

Using the TST_MODE enable pin, individual channels are accessible for troubleshooting. Referring to Ta ble 8 , the channel address follows two initialization words, 0x01 and 0x02, while the enable pin, TST_MODE, is asserted high.
Figure 16. Block Diagram of an Integrator Channel
Rev. A | Page 13 of 20
AD8488 Data Sheet
RST
t
DELAY3 (SEE NOTE 3)
t
DELAY3 (SEE NOTE 3)
67 CLKS
t
DELAY2
(SEE NOTE2)
67 CLKS
t
CLK (SEE NOTE 1)
t
DELAY2 (SEE NOTE 2)
NOTES
1. IN THIS EXAMPLE
t
CLK
= 67ns (15MHz) .
2. ¼ CLK <
t
DELAY2
< ½ CLK.
3. 0 CLK <
t
DELAY3
< ¼ CLK.
4.
t
GATE
=
t
GRST
+
t
INT
+
t
READ
= 27µs.
5. ALL LOGIC LEVELS EXCEPT RST ARE ACTIVE HIGH.
6. SHOW N AS ACTIVE HI GH – CHARGE IS TRANSFERRED TO ALL CHANNELS DURI NG THIS INTERVAL .
IRST
GRST
HOLD
CLK
CK_ENa
GATED CL Ka
CK_ENb
GATED CL Kb
TFT_GATE
(SEE NOTE 5)
t
INT
(12µs)
≥6µs
t
CLK (SEE NOTE 1)
≥ 67ns
1 GATE LINE:
t
GATE
(27ms) (WI TH 15MHz CLO CK; S E E NOTE 4)
18.1µs
t
READ
(133 CLKS)
t
IRST
(130 CLKS)
09801-018
t
GRST
6.1µs

TIMING SIGNALS

Figure 17 is the gate line timing diagram. The gate line sequence
requires 405 clock cycles for channel integration and the sequential
transfer to an ADC. The timing signals, IRST, GRST, and HOLD,
control the integration, gain, and hold switches, respectively, and
define the timing intervals required by each of the integrator
channels. These signals may be generated by an FPGA, ROM,
or similar device.
The balance of the signals shown in Figure 16 are user discretionary
and encoded according to Table 8 through Ta b l e 11 for select gain,
hold capacitor values, low-pass filter values, and mux output channels
for troubleshooting.

Timing Notes

Refer to Figure 17 and the following timing notes:
1. The CLK frequency can range from 1 MHz to 15 MHz.
RST
2.
must be low (active) for the first half clock of the gate
line cycle.
3. t
4. t
must be ≥ 6.1 µs.
GRST
must be ≥ 12 µs.
INT
5. The CK_ENa and CK_ENb intervals must be exactly 67
clocks. The time can be longer if t
6. The t
interval must be exactly 130 CLKs.
IRST
exceeds 67 ns.
CLK
Figure 17. Gate Line Timing Diagram
Rev. A | Page 14 of 20
Data Sheet AD8488
0 0 0 1 1 0 0
5
0 0 1 1 1 1 0
17
0 1 1 0 1 1 1
34

APPLICATIONS INFORMATION

CONTROL REGISTER BIT MAPS

Table 8. Mux Switch Test Register Address Bits, Addresses Valid When TST = High
TST6 TST5 TST4 TST3 TST2 TST1 TST0 Selects Channel
0 0 0 0 0 0 0 None
0 0 0 0 0 0 1 −2
0 0 0 0 0 1 1 −1
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 2
0 0 0 0 1 0 1 3
0 0 0 0 1 0 0 4
0 0 0 1 1 0 1 6
0 0 0 1 1 1 1 7
0 0 0 1 1 1 0 8
0 0 0 1 0 1 0 9
0 0 0 1 0 1 1 10
0 0 0 1 0 0 1 11
0 0 0 1 0 0 0 12
0 0 1 1 0 0 0 13
0 0 1 1 0 0 1 14
0 0 1 1 0 1 1 15
0 0 1 1 0 1 0 16
0 0 1 1 1 1 1 18
0 0 1 1 1 0 71 19
0 0 1 1 1 0 0 20
0 0 1 0 1 0 0 21
0 0 1 0 1 0 1 22
0 0 1 0 1 1 1 23
0 0 1 0 1 1 0 24
0 0 1 0 0 1 0 25
0 0 1 0 0 1 1 26
0 0 1 0 0 0 1 27
0 0 1 0 0 0 0 28
0 1 1 0 0 0 0 29
0 1 1 0 0 0 1 30
0 1 1 0 0 1 1 31
0 1 1 0 0 1 0 32
0 1 1 0 1 1 0 33
0 1 1 0 1 0 1 35
0 1 1 0 1 0 0 36
0 1 1 1 1 0 0 37
0 1 1 1 1 0 1 38
0 1 1 1 1 1 1 39
0 1 1 1 1 1 0 40
0 1 1 1 0 1 0 41
0 1 1 1 0 1 1 42
0 1 1 1 0 0 1 43
0 1 1 1 0 0 0 44
0 1 0 1 0 0 0 45
Rev. A | Page 15 of 20
AD8488 Data Sheet
0 1 0 1 1 1 1
50
0 0 0 0 0
0
0 1 0 1 2.5
5
TST6 TST5 TST4 TST3 TST2 TST1 TST0 Selects Channel
0 1 0 1 0 0 1 46
0 1 0 1 0 1 1 47
0 1 0 1 0 1 0 48
0 1 0 1 1 1 0 49
0 1 0 1 1 0 1 51
0 1 0 1 1 0 0 52
0 1 0 0 1 0 0 53
0 1 0 0 1 0 1 54
0 1 0 0 1 1 1 55
0 1 0 0 1 1 0 56
0 1 0 0 0 1 0 57
0 1 0 0 0 1 1 58
0 1 0 0 0 0 1 59
0 1 0 0 0 0 0 60
1 1 0 0 0 0 0 61
1 1 0 0 0 0 1 62
1 1 0 0 0 1 1 63
Table 9. Integrator Capacitor Content (CSEL0 and CSEL1)
CF1SEL1 CF1SEL0 CF1 (pF)
0 0 0.45
0 1 0.9
1 0 3.5
1 1 7.0
Table 10. Low-Pass Filter Time Constant—Resistor Selection Address Bits (FSEL0 and FSEL1)
FSEL1 FSEL0 R1 (kΩ) Time Constant (µs)
0 0 195 1.5
0 1 130 1.0
1 0 65 0.5
1 1 0 0
Table 11. Gain Selection (Gain Amp/GNSEL0 to GNSEL3; CF2 = 0.5 pF)
GNSEL3 (CH3 = 1.5 pF) GNSEL2 (CH2 = 2 pF) GNSEL1 (CH = 1 pF) GNSEL0 (CH = 0.5 pF) Total CH (pF) Gain
0 0 0 1 0.5 1
0 0 1 0 1 2
0 0 1 1 1.5 3
0 1 0 0 2 4
0 1 1 0 3 6
0 1 1 1 3.5 7
1 1 0 1 4 8
1 1 1 0 4.5 9
1 1 1 1 5 10
Rev. A | Page 16 of 20
Data Sheet AD8488
t
1
DATA
WR
t
3
t
2
t
4
t
5
t
6
NOTES
1. TIMING DIAGRAM TO WRITE A STATIC SIGNAL TO CHANNEL 0 TO CHANNEL 63 OR CHANNEL 64 T O CHANNEL127.
2. CS_A LO W OR CS_B LOW SEL E CTS CHANNEL 0 T O
CHANNEL
63 OR
CHANNEL
64
TO
CHANNEL
127.
WRITE DATA BY SEQUENCING WR LOW, THEN HIGH.
09801-019
CS_A, CS_B
CLK
t
CLK
ADC INPUT
001
t
DELAY7
t
DELAY8
SAMPLE SETTLES
NOTES
1. ADC SAMPL E S OCCUR WHEN MUX- CH001 TO MUX-CH003 IS HIGH, JUST PRIOR TO THE FALLING EDGE. SAMPLE MUST BE COMPLETE BEFORE HIGH TO LOW TRANSITION.
2. TIME DELAY SAMPLES (REFERENCE, INTERNAL ONLY): MIN. TYP. MAX.
t
DELAY
7: 5.3ns 6.6ns 7.8ns
t
DELAY
8: 1.2ns 1.4ns 1.7ns
3.
t
A
IS SYNCHRO NOUS WITH ADC TIMING.
ADC SAMPLE
MUX-CH001
ADC SAMPLE
MUX-CH002
ADC SAMPLE
MUX-CH003
002
003
MUX-CH001
TO
MUX-CH003
09801-020

TIMING DIAGRAMS

Figure 18. Input Register Timing Diagram
Figure 19. Timing Diagram—AD8488 to ADC
Rev. A | Page 17 of 20
AD8488 Data Sheet
*
COMPLIANT TO JEDEC
STANDARDS MS-034-AAF-1
WITH EXCEPTION TOPACKAGE
HEIGHT AND THICKNESS.
092409-A
1.00
BSC
1.0
0
REF
A B C D E F G
9
10 8
111213
1
4
7 5
6 4 2
3 1
BOTTOM VIEW
15
.00
BSC SQ
H J K L M N P
0.40 MIN
DETAIL A
TOP VIEW
DETAIL A
COPLANARITY
0.20
0.70
0.6
0
0.50
BALL DIAMETER
SEATING
PLANE
17.20
17.00 SQ 1
6.80
A1 BALL
CORNER
A1 BALL CORNER
*
2.20
2.00
1.80
*
1.60
1.50
1.40
15
16
R T

OUTLINE DIMENSIONS

Figure 20. 255-Ball Chip-Scale Package Ball Grid Array [CSP_BGA]
(BC-255-1)
Dimensions shown in millimeters

ORDERING GUIDE

Model1 Temperature Range Package Description Package Option
AD8488KBCZ 0°C to +85°C 255-Ball CSP_BGA BC-255-1
1
Z = RoHS Compliant Part.
Rev. A | Page 18 of 20
Data Sheet AD8488
NOTES
Rev. A | Page 19 of 20
AD8488 Data Sheet
©2012 Analog Devices, Inc. All rights reserved. Trademarks and
NOTES
registered trademarks are the property of their respective owners. D09801-0-6/12(A)
Rev. A | Page 20 of 20
Loading...