Analog Devices AD8385 Datasheet

10-Bit, 12-Channel Decimating

FEATURES

High voltage drive to within 1.3 V of supply rails Output short-circuit protection High update rates
Fast, 100 Ms/s 10-bit input data update rate
Static power dissipation: 1.84 W
Voltage controlled video reference (brightness), offset, and full-scale (contrast) output levels
INV bit reverses polarity of video signal
3.3 V logic, 9 V to 18 V analog supplies Level shifters for panel timing signals
High accuracy voltage outputs
Laser trimming eliminates the need for adjustments or
calibration
Flexible logic
STSQ/XFR allow parallel AD8385 operation
Fast settling into capacitive loads
30 ns settling time to 0.25% into 150 pF load Slew rate 460 V/µs
Available in 100-lead 14 mm × 14 mm TQFP E-pad

GENERAL DESCRIPTION

The AD8385 provides a fast, 10-bit, latched decimating digital input that drives 12 high voltage outputs. 10-bit input words are loaded into 12 separate high speed, bipolar DACs sequentially. Flexible digital input format allows several AD8385s to be used in parallel in high resolution displays. The output signal can be adjusted for dc reference, signal inversion, and contrast for maximum flexibility. Integrated level shifters convert timing signals from a 3 V timing controller to high voltage for LCD panel timing inputs. Two, serial, 8-bit DACs are integrated to provide dc reference signals. A 3-wire serial interface controls overload protection, output mode, and the serial DACs.
LCD DECDRIVER

FUNCTIONAL BLOCK DIAGRAM

BYP VRH
VRH VRL
DB(0:9)
R/L
CLK
STSQ
XFR
INV
TSTM
SDI SCL SEN
SVRH SVRL SVRL
DYIN
DXIN DIRYIN DIRXIN
NRGIN ENBX1I ENBX2I ENBX3I ENBX4I
CLXIN CLYIN
MONITI
3
10
4
V1 V2
BIAS
/
SCALING
CONTROL
/
SEQUENCE
/
3
/
3
/
9
/
2
/
CONTROL
®
with Level Shifters
AD8385
VID0 VID1 VID2
9
/
2
/
2
/
AD8385
12
/
VID3 VID4 VID5 VID6 VID7 VID8 VID9 VID10 VID11
VAO1 VAO2
DY DX DIRY DIRX NRG ENBX1 ENBX2 ENBX3 ENBX4
CLX CLY
CLXN CLYN
MONITO
2-STAGE
LATCH
CONTROL
12-BIT SHIFT
REGISTER
INV
R
S
Figure 1.
DACs
DUAL
DAC
04514-0-001
The AD8385 is fabricated on ADI’s fast bipolar, 26 V XFHV process, which provides fast input logic, bipolar DACs with trimmed accuracy and fast settling, high voltage, precision drive amplifiers on the same chip.
The AD8385 dissipates 1.84 W nominal static power.
The AD8385 is offered in a 100-lead, 14 mm × 14 mm TQFP E-pad package and operates over the commercial temperature range of 0°C to 85°C.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.326.8703 © 2005 Analog Devices, Inc. All rights reserved.
www.analog.com
AD8385
TABLE OF CONTENTS
Specifications..................................................................................... 3
DECDRIVER Section .................................................................. 3
Level Shifters ................................................................................. 4
Level Shifting Edge Detector ...................................................... 5
Serial Interface.............................................................................. 5
Power Supplies .............................................................................. 6
Operating Temperature ............................................................... 6
Absolute Maximum Ratings............................................................ 7
ESD Caution.................................................................................. 7
Overload Protection ..................................................................... 8
Exposed Paddle............................................................................. 8
Maximum Power Dissipation ..................................................... 8
Operating Temperature Range ................................................... 8
Pin Configuration and Function Descriptions............................. 9
Block Diagrams and Timing Diagrams .......................................11
Reference and Control Input.................................................... 16
Output Operating Mode............................................................ 17
Overload Protection................................................................... 17
Serial DACs ................................................................................. 17
Theory of Operation...................................................................... 18
Transfer Function and Analog Output Voltage ...................... 18
Accuracy ...................................................................................... 18
Applications..................................................................................... 19
Optimized Reliability with the Thermal Switch..................... 19
Operation in High Ambient Temperature .............................. 20
Power Supply Sequencing ......................................................... 20
VBIAS Generation—V1, V2 Input Pin Functionality ........... 20
Applications Circuit................................................................... 21
PCB Design for Optimized Thermal Performance ............... 21
Thermal Pad Design .................................................................. 21
DECDRIVER Section ................................................................ 11
Level Shifters ............................................................................... 13
Level Shifting Edge Detector .................................................... 14
Serial Interface............................................................................ 15
Functional Description ..................................................................16
REVISION HISTORY
1/05—Revision 0: Initial Version
Thermal Via Structure Design.................................................. 21
AD8385 PCB Design Recommendations ............................... 22
Outline Dimensions....................................................................... 23
Ordering Guide .......................................................................... 23
Rev. 0 | Page 2 of 24
AD8385

SPECIFICATIONS

DECDRIVER SECTION

@ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, T
Table 1.
Parameter Conditions Min Typ Max Unit
VIDEO DC PERFORMANCE
1
VDE DAC Code 450 to 800 –7.5 +7.5 mV VCME DAC Code 450 to 800 –3.5 +3.5 mV
VIDEO OUTPUT DYNAMIC PERFORMANCE T
Data Switching Slew Rate 20% to 80% 460 V/µs Invert Switching Slew Rate 20% to 80% 560 V/µs Data Switching Settling Time to 1% 19 24 ns Data Switching Settling Time to 0.25% 30 50 ns Invert Switching Settling Time to 1% 75 120 ns Invert Switching Settling Time to 0.25% 250 500 ns Invert Switching Overshoot 100 200 mV CLK and Data Feedthrough All-Hostile Crosstalk
2
3
Amplitude 10 mV p-p Glitch Duration 30 ns
DAC Transition Glitch Energy DAC Code 511 to 512 0.3 nV-s
VIDEO OUTPUT CHARACTERISTICS
Output Voltage Swing AVCC – VOH, VOL – AGND 1.1 1.3 V Output Voltage—Grounded Mode 0.25 V Data Switching Delay: t INV Switching Delay: t INV to CLK Setup Time: t
4
9
5
10
27
Output Current 100 mA Output Resistance 22
REFERENCE INPUTS
V1 Range V2 Range V1 Input Current –5 µA
V2 Input Current –27 µA VRL Range VRH ≥ VRL V1 – 0.5 AVCC – 1.3 V VRH Range VRH ≥ VRL VRL AVCC V VRH to VRL Range VFS =2 × (VRH – VRL) 0 2.75 V VRH Input Resistance To VRL 20 kΩ VRL Bias Current –0.2 µA VRH Input Current 125 µA
RESOLUTION
Coding Binary 10 Bits
A MIN
= 0°C, T
T
to T
MIN
to T
MIN
= 85°C, VRH = 9.5 V, VRL = V1 = V2 = 7 V, unless otherwise noted.
A MAX
MAX
, VO = 5 V step, CL = 150 pF
MAX
10 mV p-p
50 % of VIDx 10 12 14 ns 50 % of VIDx 13 15 17 ns
0.5 f
V2 (V1 – 0.25 V) V2 (V1 – 0.25 V)
5 AVCC – 4 V 5 AVCC – 4 V
CLK
5.5 f
CLK
ns
Rev. 0 | Page 3 of 24
AD8385
Parameter Conditions Min Typ Max Unit
DIGITAL INPUT CHARACTERISTICS Input tr, tf = 2 ns
Max. Input Data Update Rate 100 Ms/s Data Setup Time: t STSQ Setup Time: t XFR Setup Time: t Data Hold Time: t STSQ Hold Time: t XFR Hold Time: t CLK High Time: t CLK Low Time: t C
IN
I
IH
I
IL
V
IH
V
IL
V
TH
1
3
5
2
4
6
7
8
1
VDE = differential error voltage; VCME = common-mode error voltage; VFS = full-scale output voltage = 2 × (VRH – VRL). See the section. Accuracy
2
Measured on two outputs differentially as CLK and DB(0:9) are driven and XFR is held low.
3
Measured on two outputs differentially as the other four are transitioning by 5 V. Measured for both states of INV.
4
Measured from 50% of rising CLK edge to 50% of output change. Measurement is made for both states of INV.
5
Measured from 50% of rising CLK edge that follows a valid XFR to 50% of output change. Refer to for the definition. Figure 6

LEVEL SHIFTERS

@ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, T
Table 2.
Parameter Conditions Min Typ Max Unit
LEVEL SHIFTER LOGIC INPUTS
C
IN
I
IH
I
IL
V
TH
V
IH
V
IL
LEVEL SHIFTER OUTPUTS RL > 10 kΩ
V
OH
V
OL
LEVEL SHIFTER DYNAMIC PERFORMANCE T
Output Rise, Fall Times—tr, t
DX, CLX, CLXN, ENBX[1–4] CL = 40 pF 18.5 30 ns DY, CLY, CLYN CL = 40 pF 40 70 ns DIRX, DIRY CL = 40 pF 102 200 ns NRG CL = 200 pF 43 50 ns NRG CL = 300 pF 61 100 ns
Propagation Delay Times—t11, t12, t13, t
DX, CLX, CLXN, ENBX[1–4] CL = 40 pF 20 50 ns DY, CLY, CLYN CL = 40 pF 29 50 ns DIRX, DIRY CL = 40 pF 70 100 ns NRG CL = 200 pF 30 100 ns NRG CL = 300 pF 37 ns
Output Skew
ENBX[1-4]—t15, t
16
DX to ENBX[1–4]—t DX to CLX—t15, t16, t17, t DY, CLY, CLYN—t15, t16, t17, t
f
14
16
18
18
0 ns 0 ns 0 ns 3 ns
3 ns 3 ns 3 ns
2.5 ns 3 pF
0.05 µA –0.6 µA 2 V
0.8 V
1.65 V
A MIN
= 0°C, T
= 85°C, VRH = 9.5 V, VRL = V1 = V2 = 7 V, unless otherwise noted.
A MAX
3 pF
0.05 2 µA –2 –0.6 µA
1.65 V
2.0 DVCC V DGND 0.8 V
AVCC – 0.25 V
0.25 V
A MIN
to T
A MAX
CL = 40 pF 2 ns CL = 40 pF 2 ns CL = 40 pF 10 ns CL = 40 pF 20 ns
Rev. 0 | Page 4 of 24
AD8385

LEVEL SHIFTING EDGE DETECTOR

@ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, T
Table 3.
Parameter Conditions Min Typ Max Unit
V V V V V
V I I t ∆t t ∆t t t
IL
IH
TH LH
TH HL
OH
OL
IH
IL
19
19
20
20
r
f
Input Low Voltage AGND AGND + 0.75 V Input High Voltage AVCC – 0.7 AVCC V Input Rising Edge Threshold Voltage AGND + 1 V Input Falling Edge Threshold Voltage AVCC – 1 V Output High Voltage
Output Low Voltage 0.25 V Input Current High State 1.2 2.5 µA Input Current Low State –2.5 –1.2 µA Input Rising Edge Propagation Delay Time CL = 10 pF 16 ns t19 Variation with Temperature 2 ns Input Falling Edge Propagation Delay Time CL = 10 pF 12 ns t20 Variation with Temperature 2 ns Output Rise Time 10% to 90% 5 ns Output Fall Time 10% to 90% 6 ns

SERIAL INTERFACE

@ 25 C, AVCC = 15.5 V, DVCC = 3.3 V, T
Table 4.
Parameter Conditions Min Typ Max Unit
SERIAL DAC REFERENCE INPUTS SVFS = (SVRH – SVRL)
SVRH Range SVRL ≤ SVRH SVRL + 1 AVCC – 3.5 V SVRL Range SVRL ≤ SVRH AGND + 1.5 SVRH – 1 V SVFS Range 1 8 V SVRH Input Current SVFS = 5 V 125 150 µA SVRL Input Current SVFS = 5 V –2.8 –2.5 mA SVRH Input Resistance 40 kΩ
SERIAL DAC ACCURACY
DNL SVFS = 5 V, RL = ∞ –1.0 +1.0 LSB INL SVFS = 5 V, RL = ∞ –1.5 +1.5 LSB Output Offset Error –2.0 +2.0 LSB Scale Factor Error –3 +3 LSB
SERIAL DAC LOGIC INPUTS Input tr, tf = 10 ns
C
IN
I
Low Level Input Current –0.6 µA
IN LOW
I
High Level Input Current 0.05 µA
IN HIGH
VTH Input Threshold Voltage 1.65 V VIH Input High Voltage 2.0 DVCC V VIL Input Low Voltage DGND 0.8 V
SERIAL DAC OUTPUTS
Maximum Output Voltage SVRH – 1 LSB V Minimum Output Voltage SVRL V VAO1—Grounded Mode 0.1 V I
OUT
C
Low Range
LOAD
C
High Range1 0.047 µF
LOAD
1
A MIN
A MIN
= 0°C, T
= 0°C, T
= 85°C, VRH = 9.5 V, VRL = V1 = V2 = 7 V, unless otherwise noted.
A MAX
DVCC 0.25
= 85°C, SVFS = 5 V, SVRL = 4 V, SVRH = 9 V, unless otherwise noted.
A MAX
V
3 pF
±30 mA
0.002 µF
Rev. 0 | Page 5 of 24
AD8385
Parameter Conditions Min Typ Max Unit
SERIAL INTERFACE DYNAMIC PERFORMANCE
SEN to SCL Setup Time, t SCL, High Level Pulse Width, t SCL, Low Level Pulse Width, t SDI Setup Time, t SDI Hold Time, t
25
SCL to SEN Hold Time, t VAO1, VAO2 Settling Time, t VAO1, VAO2 Settling Time, t
20
21
22
24
23
26
26
1
Outputs VAO1 and VAO2 are designed to drive very high capacitive loads. For proper operation of these outputs, load capacitance must be ≤0.002 µF or ≥0.047 µF.
Load capacitance in the range of 0.002 µF to 0.047 µF causes the output overshoot to exceed 100 mV.

POWER SUPPLIES

@ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, T
Table 5.
AD8385 Power Supplies Min Typ Max Unit
DVCC, Operating Range 3 3.3 3.6 V DVCC, Quiescent Current 56 mA AVCC Operating Range 9 18 V Total AVCC Quiescent Current 111 mA
10 ns 10 ns 10 ns 10 ns 10 ns 10 ns SVFS = 5 V, to 0.5%, CL = 100 pF 1 2 ms SVFS = 5 V, to 0.5%, CL = 33 µF 15 ms
A MIN
= 0°C, T
= 85°C, SVFS = 5 V, SVRL = 4 V, SVRH = 9 V, unless otherwise noted.
A MAX

OPERATING TEMPERATURE

@ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, T
Table 6.
Parameter Min Typ Max Unit
Ambient Temperature Range, T Ambient Temperature Range, T
1
A
2
A
1
Operation at high ambient temperature requires a thermally-optimized PCB layout (see the section), input data update rate not exceeding 85 MHz, black-
to-white transition ≤ 4 V and C protection enabled. For operation above 75°C, see Endnote 2.
2
In addition to the requirements stated in Endnote 1, operation at 85°C ambient temperature requires 200 lfm airflow or the overload protection disabled.
≤ 150 pF. In systems with limited or no airflow, the maximum ambient operating temperature is limited to 75°C with the overload
L
A MIN
= 0°C, T
= 85°C, SVFS = 5 V, SVRL = 4 V, SVRH = 9 V, unless otherwise noted.
A MAX
0 75 °C 0 85 °C
Applications
Rev. 0 | Page 6 of 24
AD8385

ABSOLUTE MAXIMUM RATINGS

Table 7.
Parameter Rating
Supply Voltage
AVCCx – AGNDx 18 V DVCC – DGND 4.5 V
Input Voltage
Maximum Digital Input Voltage DVCC + 0.5 V Minimum Digital Input Voltage DGND – 0.5 V Maximum Analog Input Voltage AVCC + 0.5 V Minimum Analog Input Voltage AGND – 0.5 V
Internal Power Dissipation
TQFP E-Pad Package @ TA = 25°C 5.00 W Operating Temperature Range 0°C to 85°C Storage Temperature Range –65°C to 125°C Lead Temperature Range (Soldering, 10 sec) 300°C
1

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Stresses above those listed under the Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to the absolute maximum ratings for extended periods may reduce device reliability.
1
100-lead TQFP E-pad package: θJA = 20°C/W (still air),
JEDEC STD, 4-layer PCB in still air.
Rev. 0 | Page 7 of 24
AD8385
(
)

OVERLOAD PROTECTION

The AD8385 employs a 2-stage overload protection circuit with an enable/disable function that is programmable through the 3-wire serial interface. It consists of an output current limiter and a thermal shut down.

OPERATING TEMPERATURE RANGE

The maximum operating junction temperature is 150°C. The junction temperature trip point of the overload protection is 165°C. Production test guarantees a minimum junction temperature trip point of 125°C.
When enabled, the maximum current at any one output of the AD8385 is, on average, internally limited to 100 mA. In the event of a momentary short circuit between a video output and a power supply rail (VCC or AGND), the output current limit is sufficiently low to provide temporary protection.
The thermal shutdown debiases the output amplifier when the junction temperature reaches the internally set trip point. In the event of an extended short circuit between a video output and a power supply rail, the output amplifier current continues to switch between 0 mA and 100 mA typ, with a period deter­mined by the thermal time constant and the hysteresis of the thermal trip point. Thermal shutdown provides long-term protection by limiting the average junction temperature to a safe level. When disabled, no overload protection is present.

EXPOSED PADDLE

To ensure optimal thermal performance, the exposed paddle must be electrically connected to an external plane such as AVCC or GND, as described in the Applications Circuit section.

MAXIMUM POWER DISSIPATION

The junction temperature limits the maximum power that can be safely dissipated by the AD8385. The maximum safe junction temperature for plastic encapsulated devices, determined by the glass transition temperature of the plastic, is approximately 150°C. Exceeding this limit can cause a temporary shift in the parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of 175°C for an extended period can result in device failure.
Consequently, the maximum guaranteed operating junction temperature is 125°C with the overload protection enabled, and 150°C with the overload protection disabled.
To ensure operation within the specified operating temperature range, the maximum power dissipation must be limited:
TT
P
DMAX
3.0
STILL AIR
100MHz
2.5
60Hz XGA
2.0 QUIESCENT
MAXIMUM POWER DISSIPATION (W)
AD8385 on a 4-layer JEDEC PCB with a thermally optimized landing pattern, as described in the Applications Circuit section.
*OVERLOAD PROTECTION ENABLED
**OVERLOAD PROTECTION DISABLED
1.5
Figure 2. Maximum Power Dissipation vs. Temperature
×
JA
AMBIENT TEMPERATURE (°C)
AJMAX
3
200 lfm
858070 75*65 90 95 100 105
11010595 100**90 115 120 125 130
)9.0(
lfminAirflowθ
500 lfm
04514-0-002
Note that the quiescent power dissipation of the AD8385 is
1.84 W when operating under the conditions specified in this data sheet. When driving a 12-channel XGA panel with an input capacitance of 150 pF, the AD8385 dissipates a total of 2.3 W when displaying 1 pixel wide alternating white and black vertical lines generated by a standard 60 Hz XGA input video. When the frequency of the pixel clock is raised to 100 MHz, the total power dissipation increases to 2.54 W. These specific power dissipations are shown in Figure 2 for reference.
Rev. 0 | Page 8 of 24
Loading...
+ 16 hidden pages