Analog Devices AD8362 b Datasheet

50 Hz to 2.7 GHz
V
VTGT

FEATURES

Complete fully calibrated measurement/control system Accurate rms-to-dc conversion from 50 Hz to 2.7 GHz Input dynamic range of >60 dB: −52 dBm to +8 dBm in 50 Ω Waveform and modulation independent:
(Such as GSM/CDMA/TDMA) Linear-in-decibels output, scaled 50 mV/dB Law conformance error of 0.5 dB All functions temperature and supply stable Operates from 4.5 V to 5.5 V at 24 mA from −40°C to +85°C Power-down capability to 1.3 mW

APPLICATIONS

Power amplifier linearization/control loops Transmitter power control Transmitter signal strength indication (TSSI) RF instrumentation

GENERAL DESCRIPTION

The AD8362 is a true rms-responding power detector that has a 60 dB measurement range. It is intended for use in a variety of high frequency communication systems and in instrumentation requiring an accurate response to signal power. It is easy to use, requiring only a single supply of 5 V and a few capacitors. It can operate from arbitrarily low frequencies to over 2.7 GHz and can accept inputs that have rms values from 1 mV to at least 1 V rms, with peak crest factors of up to 6, exceeding the requirements for accurate measurement of CDMA signals.
The input signal is applied to a resistive ladder attenuator that comprises the input stage of a variable gain amplifier. The 12 tap points are smoothly interpolated using a proprietary technique to provide a continuously variable attenuator, which is controlled by a voltage applied to the VSET pin. The resulting signal is applied to a high performance broadband amplifier. Its output is measured by an accurate square-law detector cell. The fluctuating output is then filtered and compared with the output of an identical squarer, whose input is a fixed dc voltage applied to the VTGT pin, usually the accurate reference of 1.25 V provided at the VREF pin.
The difference in the outputs of these squaring cells is integrated in a high gain error amplifier, generating a voltage at the VOUT pin with rail-to-rail capabilities. In a controller mode, this low noise output can be used to vary the gain of a host system’s RF amplifier, thus balancing the set point against
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
60 dB TruPwr™ Detector
AD8362

FUNCTIONAL BLOCK DIAGRAM

CHPF
DECL
INHI
INLO
AD8362
REF
the input power. Optionally, the voltage at VSET may be a replica of the RF signal’s amplitude modulation, in which case the overall effect is to remove the modulation component prior to detection and low-pass filtering. The corner frequency of the averaging filter may be lowered without limit by adding an external capacitor at the CLPF pin. The AD8362 can be used to determine the true power of a high frequency signal having a complex low frequency modulation envelope (or simply as a low frequency rms voltmeter). The high-pass corner generated by its offset-nulling loop can be lowered by a capacitor added on the CHPF pin.
Used as a power measurement device, VOUT is strapped to VSET, and the output is then proportional to the logarithm of the rms value of the input; that is, the reading is presented directly in decibels and is conveniently scaled 1 V per decade, that is, 50 mV/dB; other slopes are easily arranged. In controller modes, the voltage applied to VSET determines the power level required at the input to null the deviation from the setpoint. The output buffer can provide high load currents.
The AD8362 is powered down by a logic high applied to the PWDN pin, i.e., the consumption is reduced to about 1.3 mW. It powers up within about 20 µs to its nominal operating current of 20 mA at 25°C. The AD8362 is supplied in a 16-lead TSSOP package for operation over the industrial temperature range of
−40°C to +85°C. An evaluation board is available.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.
2
x
2
x
Figure 1.
BIAS
PWDNCOMM
CLPF
VOUT
ACOM
VSET
VPOS
02923-B-001
AD8362

TABLE OF CONTENTS

Specifications ...................................................................................3
Uncertainties in R
and Power Calibration............................ 24
IN
Absolute Maximum Ratings ..........................................................6
ESD Caution.................................................................................. 6
Pin Configuration and Function Description .............................7
Equivalent Circuits..........................................................................8
Typical Performance Characteristics............................................ 9
Characterization Setup .................................................................14
Equipment................................................................................... 14
Analysis........................................................................................ 14
Circuit Description........................................................................15
Square-Law Detection ...............................................................15
Effect of Input Coupling on the Intercept Value.................... 16
Offset Elimination...................................................................... 16
Voltage vs. Power Calibration ................................................... 17
Effect of Signal Waveform......................................................... 17
Operation at Low Frequencies.................................................. 17
Choosing the Right Value for CHPF and CLPF..................... 24
Use of Nonstandard Target Voltages........................................ 24
Adjusting the Intercept ..............................................................25
Altering the Slope....................................................................... 25
Envelope Elimination Mode..................................................... 26
Operator in Controller Modes ....................................................27
Use of an Input Balun................................................................ 27
General Applications ....................................................................29
RMS Voltmeter with >100 dB Dynamic Range...................... 29
RF Power Meter with 80 dB Range.......................................... 30
High Slope Detectors Centered on a Narrow Window......... 31
AD8362 Evaluation Board........................................................ 32
Outline Dimensions...................................................................... 34
Ordering Guide .......................................................................... 34
REVISION HISTORY
Time-Domain Response of the Closed Loop .........................17
Alteration of the Internal Target Voltage................................. 18
Effects at Each End of Dynamic Range................................... 18
Input Protection.......................................................................... 19
Power-Enable Response Time .................................................. 19
Using the AD8362......................................................................... 20
Basic Connections...................................................................... 20
Main Modes of Operation............................................................ 21
Operation in Measurement Modes.............................................22
Law Conformance Error............................................................ 22
Alternative Input Coupling Means ..........................................23
Using a Narrow-Band Input Match .........................................23
3/04—Data Sheet Changed from Rev. A to Rev. B.
Updated Format.................................................................Universal
Changes to Specifications............................................................... 3
Changes to the Offset Elimination Section................................16
Changes to the Operation at Low Frequencies Section............17
Changes to the Time-Domain Response of the Closed Loop
Section............................................................................................. 17
Changes to Equation 13................................................................ 24
Changes to Table 5......................................................................... 31
6/03—Data Sheet Changed from Rev. 0 to Rev. A.
Updated Ordering Guide................................................................ 5
Change to Analysis Section.......................................................... 12
Updated AD8362 Evaluation Board Section .............................26
2/03—Revision 0: Initial Version
Rev. B | Page 2 of 36
AD8362

SPECIFICATIONS

VS = 5 V, T = 25°C, ZO = 50 Ω, differential input drive via Balun1, VTGT connec ted to VREF, VOUT tied to VSET, unl ess other wise note d.
Table 1.
Parameter Conditions Min Typ Max Unit
OVERALL FUNCTION
Maximum Input Frequency 2.7 GHz Input Power Range (Differential)
Nominal Low End of Range −52 dBm Nominal High End of Range +8 dBm
Input Voltage Range (Differential)
Nominal Low End of Range 1.12 mV rms Nominal High End of Range 1.12 V rms
Input Power Range (S-Sided)
Nominal Low End of Range −40 dBm Nominal High End of Range 0 dBm
Input Voltage Range (S-Sided) RMS Voltage at Input Terminals, f ≤ 2.7 GHz
Nominal Low End of Range 2.23 mV rms Nominal High End of Range 223 V rms
Output Voltage Range RL ≥ 200 Ω to Ground
Nominal Low End of Range +100 mV
Nominal High End of Range In General, VS – 0.1 V +4.9 V Output Scaling (Log Slope) 50 mV/dB Law Conformance Error Over Central 60 dB Range, f ≤ 2.7 GHz ±0.5 dB
RF INPUT INTERFACE Pins INHI, INLO, AC-Coupled
Input Resistance Single-Ended Drive, wrt DECL 100
Differential Drive 200 Ω OUTPUT INTERFACE Pin VOUT
Available Output Range RL ≥ 200 Ω to Ground 0.1 4.9 V Absolute Voltage Range
Nominal Low End of Range Measurement Mode, f = 900 MHz, PIN = −52 dBm 0.32 0.48 V
Nominal High End of Range Measurement Mode, f = 900 MHz, PIN = +8 dBm 3.44 3.52 V Source/Sink Current VOUT Held at VS/2, to 1% Change 48 mA Slew Rate Rising CL = Open 60 V/µs Slew Rate Falling CL = Open 5 V/µs Rise Time, 10% to 90% 0.2 V to 1.8 V, CLPF = 0 45 ns Fall Time, 90% to 10% 1.8 V to 0.2 V, CLPF = 0 0.4 µs Wideband Noise CLPF = 1000 pF, f
VSET INTERFACE Pin VSET
Nominal Input Voltage Range To ±1 dB Error 0.5 3.75 V Input Resistance 68 kΩ Scaling (Log Slope) f = 900 MHz 46 50 54 mV/dB Scaling (Log Intercept) f = 900 MHz, into 1:4 Balun −64 −60 −56 dBm
−77 −73 −69 dBV VOLTAGE REFERENCE Pin VREF
Output Voltage 25°C 1.225 1.25 1.275 V Temperature Sensitivity3 −40°C ≤ TA ≤ +85°C 0.08 mV/°C Output Resistance 8 Ω
dB Referred to 50 Ω Impedance Level, f ≤ 2.7 GHz, into 1:4 Balun
RMS Voltage at Input Terminals, f ≤ 2.7 GHz, into Input of the Device
Single-Ended Drive, CW Input, f ≤ 2.7 GHz, into Input Resistive Network
SPOT
1
2
≤ 100 kHz 70 nV/√Hz
Rev. B | Page 3 of 36
AD8362
Parameter Conditions Min Typ Max Unit
RMS TARGET INTERFACE Pin VTGT
Nominal Input Voltage Range Measurement Range = 60 dB, to ±1 dB Error 0.625 2.5 V Input Bias Current VTGT = 1.25 V −28 µA VTGT = 0 V −52 µA Incremental Input Resistance 52 kΩ
POWER-DOWN INTERFACE Pin PWDN
Logic Level to Enable Logic Low Enables Logic Level to Disable Logic High Disables 3 Input Current Logic High
Logic Low
Enable Time
Disable Time
POWER SUPPLY INTERFACE Pin VPOS
Supply Voltage Quiescent Current Supply Current When Disabled 0.2 mA
900 MHz
Dynamic Range Error Referred to Best Fit Line (Linear Regression)
±1 dB Linearity, CW Input 65 dB ±0.5 dB Linearity, CW Input 62 dB
Deviation vs. Temperature Deviation from Output at 25°C
−40°C < TA < +85°C; PIN = −45 dBm −1.7 dB
−40°C < TA < +85°C; PIN = −20 dBm −1.4 dB
−40°C < TA < +85°C; PIN = +5 dBm −1 dB
Logarithmic Slope 46 50 54 mV/dB Logarithmic Intercept −64 −60 −56 dBm Deviation from CW Response 5.5 dB Peak-to-RMS Ratio (IS95 Reverse Link) 0.2 dB
12 dB Peak-to-RMS Ratio (WCDMA 4 Channels) 0.2 dB
18 dB Peak-to-RMS Ratio (WCDMA 15 Channels) 0.5 dB
1.9 GHz Dynamic Range Error Referred to Best Fit Line (Linear Regression)
±1 dB Linearity, CW Input 65 dB ±0.5 dB Linearity, CW Input 62 dB
Deviation vs. Temperature Deviation from Output at 25°C
−40°C < TA < +85°C; PIN = −45 dBm −0.6 dB
−40°C < TA < +85°C; PIN = −20 dBm −0.5 dB
−40°C < TA < +85°C; PIN= +5 dBm −0.3 dB
Logarithmic Slope 51 mV/dB Logarithmic Intercept −59 dBm Deviation from CW Response 5.5 dB Peak-to-RMS Ratio (IS95 Reverse Link) 0.2 dB
12 dB Peak-to-RMS Ratio (WCDMA 4 Channels) 0.2 dB 18 dB Peak-to-RMS Ratio (WCDMA 15 Channels) 0.5 dB
From PWDN Low to VOUT within 10% of Final Value, CLPF = 1000 pF
From PWDN High to VOUT within 10% of Final Value, CLPF = 1000 pF
4.5 5 5.5 V
20 22 mA
230 5
14.5
2.5
1 V
V µA µA ns
µs
Rev. B | Page 4 of 36
AD8362
Parameter Conditions Min Typ Max Unit
2.2 GHz Dynamic Range Error Referred to Best Fit Line (Linear Regression)
±1 dB Linearity, CW Input 65 dB ±0.5 dB Linearity, CW Input 65 dB
Deviation vs. Temperature Deviation from Output at 25°C
−40°C < TA < +85°C; PIN = −45 dBm −1.8 dB
−40°C < TA < +85°C; PIN = −20 dBm −1.6 dB
−40°C < TA < +85°C; PIN= +5 dBm −1.3 dB
Logarithmic Slope 50.5 mV/dB Logarithmic Intercept −61 dBm Deviation from CW Response 5.5 dB Peak-to-RMS Ratio (IS95 Reverse Link) 0.2 dB
12 dB Peak-to-RMS Ratio (WCDMA 4 Channels) 0.2 dB 18 dB Peak-to-RMS Ratio (WCDMA 15 Channels) 0.5 dB
2.7 GHz Dynamic Range Error Referred to Best Fit Line (Linear Regression) ±1 dB Linearity, CW Input 63 dB ±0.5 dB Linearity, CW Input 62 dB Deviation vs. Temperature Deviation from Output at 25°C
−40°C < TA < +85°C; PIN = −40 dBm −5.3 dB
−40°C < TA < +85°C; PIN = −15 dBm −5.5 dB
−40°C < TA < +85°C; PIN = +15 dBm −4.8 dB Logarithmic Slope 50.5 mV/dB Logarithmic Intercept −58 dBm Deviation from CW Response 5.5 dB Peak-to-RMS Ratio (IS95 Reverse Link) 0.2 dB
12 dB Peak-to-RMS Ratio (WCDMA 4 Channels) 0.2 dB 18 dB Peak-to-RMS Ratio (WCDMA 15 Channels) 0.4 dB
1
1:4 balun transformer, M/A-COM ETC 1.6-4-2-3.
2
Resistive network consists of 33 Ω shunt and 25 Ω series.
3
See Figure 36.
Rev. B | Page 5 of 36
AD8362

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameters Ratings
Supply Voltage VPOS 5.5 V Input Power (into Input of Device) 13 dBm Equivalent Voltage 2 V rms Internal Power Dissipation 500 mW θJA 125°C/W Maximum Junction Temperature 125°C/W Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C Lead Temperature Range (Soldering 60 sec) 300°C

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Rev. B | Page 6 of 36
AD8362

PIN CONFIGURATION AND FUNCTION DESCRIPTION

COMM
CHPF DECL
INHI
INLO
DECL
PWDN
COMM
1
2
3
AD8362
4
TOP VIEW
5
(Not to Scale)
6
7
8
16
15
14
13
12
11
10
9
ACOM VREF VTGT VPOS VOUT VSET ACOM CLPF
02923-B-002
Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
Pin No.
Mnemonic Description
Equivalent Circuit
1, 8 COMM Common Connection. Connect via low impedance to system common. 2 CHPF Input HPF. Connect to common via a capacitor to determine 3 dB point of input signal high-pass filter. 3, 6 DECL
Decoupling Terminals for INHI and INLO. Connect to common via a large capacitance to complete
input circuit. 4 INHI High Signal Input Terminal. Part of a differential input port with INLO. Circuit A 5 INLO Low Signal Input Terminal. Part of a differential input port with INHI. Circuit A 7 PWDN Disable/Enable Control Input. Apply logic high voltage to shut down the AD8362. 9 CLPF
Connection for loop filter integration (averaging) capacitor, the other pin of which is usually
grounded via a resistor to improve loop stability and response time. 10, 16 ACOM Analog Common Connection for Output Amplifier. 11 VSET
The voltage applied to this pin sets the decibel value of the required RF input voltage that results in
Circuit B
zero current out of CLPF and thus the loop integrating capacitor. 12 VOUT Output of Error Amplifier. In measurement mode, normally connected directly to VSET. Circuit C 13 VPOS Connect to 5 V Power Supply. 14 VTGT
The logarithmic intercept voltage is proportional to the voltage applied to this pin. The use of a lower
Circuit D
target voltage increases the crest factor capacity. 15 VREF General-Purpose Reference Voltage Output of 1.25 V (usually connected only to VTGT). Circuit E
Rev. B | Page 7 of 36
AD8362

EQUIVALENT CIRCUITS

DECL
INHI
INLO
DECL
COMM
100
VGA
100
VPOS
Figure 3. Circuit A
VPOS
COMM
VPOS
VSET
ACOM
COMM
~35k
~35k
VSET
INTERFACE
RAIL-TO-RAIL
0.7V
CLPF
02923-B-004
OUTPUT
2k
500
Figure 6. Circuit D
VPOS
VOUT
ACOM
COMM
02923-B-006
Figure 4. Circuit B
SOURCE ONLY
VPOS
02923-B-003
VTGT
ACOM
COMM
50k
50k
VTGT
INTERFACE
GAIN = 0.12
02923-B-005
~0.35V
REF BUF
13k
5k
Figure 7. Circuit E
Figure 5. Circuit C
VPOS
VOUT
ACOM
COMM
02923-B-007
Rev. B | Page 8 of 36
AD8362

TYPICAL PERFORMANCE CHARACTERISTICS

4.5
4.0
3.5
3.0
2.5
2.0
VOUT (V)
1.5
1.0
0.5
0
–60
–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
900MHz
1900MHz
INPUT AMPLITUDE (dBm)
2200MHz
2700MHz
–10
100MHz
15
02923-B-008
4.0
3.6
3.2
2.8
2.4
2.0
VOUT (V)
1.6 +25°C
1.2
–40°C
0.8
0.4
0 –60–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10 15–10
–40°C
+85°C
+25°C
+85°C
INPUT AMPLITUDE (dBm)
3.0
2.4
1.8
1.2
0.6 0 –0.6 –1.2
ERROR IN VOUT (dB)
–1.8
–2.4
–3.0
02923-B-011
Figure 8. Output Voltage (VOUT) vs. Input Amplitude (dBm),
Frequencies 100 MHz, 900 MHz, 1900 MHz, 2200 MHz, 2700 MHz,
Sine Wave, Differential Drive
3.0
2.5
2.0
1.5 100MHz
1.0
0.5
0 –0.5 –1.0
ERROR IN VOUT (dB)
–1.5 –2.0 –2.5 –3.0
–60
2200MHz
900MHz
2700MHz
–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
INPUT AMPLITUDE (dBm)
1900MHz
–10
Figure 9. Logarithmic Law Conformance vs. Input Amplitude
Frequencies 100 MHz, 900 MHz, 1900 MHz, 2200 MHz, 2700 MHz,
Sine Wave, Differential Drive
4.0
3.6
3.2
2.8
2.4
2.0
VOUT (V)
1.6
1.2
0.8
0.4
–40°C
+25°C
+85°C
–40°C
+85°C
+25°C
0
–55
–50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
INPUT AMPLITUDE (dBm)
–10
15
3.0
2.4
1.8
1.2
0.6
0 –0.6 –1.2
–1.8
–2.4
–3.0
15
02923-B-009
ERROR IN VOUT (dB)
02923-B-010
Figure 11. VOUT and Law Conformance vs. Input Amplitude, Frequency
1900 MHz, Sine Wave, Temperature −40°C, +25°C, and +85°C
4.0
3.6
3.2
2.8
2.4
2.0
VOUT (V)
1.6
1.2 –40°C
0.8
0.4
0
–50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
–60
–55
–40°C
+25°C
+85°C
+25°C
INPUT AMPLITUDE (dBm)
+85°C
–10
3.0
2.4
1.8
1.2
0.6 0 –0.6 –1.2
–1.8
–2.4
–3.0
15
Figure 12. VOUT and Law Conformance vs. Input Amplitude, Frequency
2200 MHz, Sine Wave, Temperature −40°C, +25°C, and +85°C
4.0
3.5
3.0
2.5
2.0
VOUT (V)
1.5
1.0
0.5
0
IS95 REVERSE LINK
–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
–60
INPUT AMPLITUDE (dBm)
CW
WCDMA 8-CHANNEL
WCDMA 15-CHANNEL
–10
15
ERROR IN VOUT (dB)
02923-B-012
02923-B-013
Figure 10. VOUT and Law Conformance vs. Input Amplitude, Frequency
900 MHz, Sine Wave, Temperature −40°C, +25°C, and +85°C
Figure 13. VOUT vs. Input Amplitude with Different Waveforms, CW, IS95
Reverse Link, WCDMA 8-Channel, WCDM 15- Channel, Frequency 900 MHz
Rev. B | Page 9 of 36
AD8362
3.0
2.5
2.0
1.5 WCDMA 8-CHANNEL
–10
WCDMA
8-CHANNEL
WCDMA 8-CHANNEL
WCDMA 15-CHANNEL
–10
–0.5 –1.0
ERROR IN VOUT (dB)
–1.5 –2.0 –2.5 –3.0
1.0
0.5
0
–60
IS95 REVERSE LINK
CW
WCDMA 15-CHANNEL
–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
INPUT AMPLITUDE (dBm)
Figure 14. Output Error from CW Linear Reference vs. Input Amplitude with Different Waveforms, CW, IS95 Reverse Link, WCDMA 8-Channel,
WCDMA 15-Channel, Frequency 900 MHz
3.0
2.5
2.0
1.5
1.0
0.5 0
–0.5 –1.0
ERROR IN VOUT (dB)
–1.5 –2.0 –2.5 –3.0
–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10–10
WCDMA
4-CHANNEL
C
W
WCDMA 15-CHANNEL
INPUT AMPLITUDE (dBm)
Figure 15. Output Error from CW Linear Reference vs. Input Amplitude
with Different WCDMA Channel Loading, 4-Channel, 8-Channel,
15-Channel, Frequency 2200 MHz
3.0
2.5
2.0
1.5
1.0
0.5 0
–0.5 –1.0
ERROR IN VOUT (dB)
–1.5 –2.0 –2.5
–3.0
–60
–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
INPUT AMPLITUDE (dBm)
Figure 16. Output Error from CW Linear Reference vs. Input Amplitude,
3 Sigma to Either Side of Mean, with WCDMA 8-Channel,
WCDMA 15-Channel, Frequency 1900 MHz
3.0
2.5
2.0
1.5
1.0
0.5
–0.5 –1.0
ERROR IN VOUT (dB)
–1.5 –2.0 –2.5
15
02923-B-014
–3.0
WCDMA
8-CHANNEL
0
WCDMA
15-CHANNEL
–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
–60
INPUT AMPLITUDE (dBm)
–10
15
02923-B-017
Figure 17. Output Error from CW Linear Reference vs. Input Amplitude,
3 Sigma to Either Side of Mean, with WCDMA 8-Channel,
15-Channel, Frequency 1900 MHz
3.0
2.5
2.0
WCDMA
8-CHANNEL
1.5
1.0
0.5 0
–0.5 –1.0
ERROR IN VOUT (dB)
–1.5 –2.0 –2.5 –3.0
–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
02923-B-015
–60
WCDMA
15-CHANNEL
INPUT AMPLITUDE (dBm)
–10
15
02923-B-018
Figure 18. Output Error from CW Linear Reference vs. Input Amplitude,
3 Sigma to Either Side of Mean, with WCDMA 8-Channel,
WCDMA 15-Channel, Frequency 2200 MHz
4.0
3.5
3.0
2.5
2.0
VOUT (V)
1.5
1.0
0.5
0
15
02923-B-016
–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
INPUT AMPLITUDE (dBm)
–10
02923-B-019
Figure 19. VOUT vs. Input Amplitude, 3 Sigma to Either Side of Mean,
Sine Wave, Frequency 900 MHz, Part-to-Part Variation
Rev. B | Page 10 of 36
AD8362
4.0
3.5
3.0
2.5
2.0
VOUT (V)
1.5
1.0
0.5
0
–55 –50 –45 –40 –35 –30 –25 –20 –15 –5 0 5
INPUT AMPLITUDE (dBm)
–10
10
Figure 20. VOUT vs. Input Amplitude, 3 Sigma to Either Side of Mean,
Sine Wave, Frequency 1900 MHz, Part-to-Part Variation
3.0
2.5
2.0
1.5
1.0
0.5 0
–0.5 –1.0
ERROR IN VOUT (dB)
–1.5 –2.0 –2.5 –3.0
–55
–50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
–40°C
+25°C
INPUT AMPLITUDE (dBm)
+85°C
–10
Figure 21. Logarithmic Law Conformance vs. Input Amplitude,
3 Sigma to Either Side of Mean, Sine Wave, Frequency 900 MHz,
Temperature −40°C, +25°C, and +85°C
3.0
2.5
2.0
1.5
1.0
0.5 0
–0.5 –1.0
ERROR IN VOUT (dB)
–1.5 –2.0 –2.5 –3.0
–55
–50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
–45°C
+85°C
INPUT AMPLITUDE (dBm)
+25°C
–10
02923-B-022
Figure 22. Logarithmic Law Conformance vs. Input Amplitude,
3 Sigma to Either Side of Mean, Sine Wave, Frequency 1900 MHz,
Temperature −40°C, +25°C, and +85°C
02923-B-020
02923-B-021
3.0
2.5
2.0
1.5
1.0
0.5 0
–0.5 –1.0
ERROR IN VOUT (dB)
–1.5 –2.0 –2.5 –3.0
–55
–50 –45 –40 –35 –30 –25 –20 –15 –5 0 5 10
–40°C
+85°C
+25°C
INPUT AMPLITUDE (dBm)
–10
Figure 23. Logarithmic Law Conformance vs. Input Amplitude,
3 Sigma to Either Side of Mean, Sine Wave, Frequency 2200 MHz,
Temperature −40°C, +25°C, and +85°C
52.0
SLOPE (mV)
51.5
51.0
50.5
50.0
49.5
49.0
900
1000
1100
1200
1300
1400
1500
1600
1700
FREQUENCY (MHz)
1800
1900
2000
2100
2200
+85°C
+25°C
–40°C
2300
2400
2500
2600
Figure 24. Logarithmic Slope vs. Frequency,
Temperature −40°C, +25°C, and +85°C
–53
–54
–55
–56
–57
–58
–59
INTERCEPT (dBm)
–60
–61
–62
–63
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
FREQUENCY (MHz)
1900
2000
2100
2200
2300
+85°C
+25°C
–40°C
2400
2500
2600
Figure 25. Logarithmic Intercept vs. Frequency,
Temperature −40°C, +25°C, and +85°C
2700
2700
02923-B-023
02923-B-024
02923-B-025
Rev. B | Page 11 of 36
Loading...
+ 25 hidden pages