ANALOG DEVICES AD8250 Service Manual

10 MHz, 20 V/μs, G = 1, 2, 5, 10 iCMOS
Programmable Gain Instrumentation Amplifier

FEATURES

Small package: 10-lead MSOP Programmable gains: 1, 2, 5, 10 Digital or pin-programmable gain setting Wide supply: ±5 V to ±15 V Excellent dc performance
High CMRR 98 dB (minimum), G = 10 Low gain drift: 10 ppm/°C (maximum) Low offset drift: 1.7 V/°C (maximum), G = 10
Excellent ac performance
Fast settling time: 615 ns to 0.001% (maximum) High slew rate: 20 V/µs (minimum) Low distortion: −110 dB THD at 1 kHz High CMRR over frequency: 80 dB to 50 kHz (minimum) Low noise: 18 nV/√Hz, G = 10 (maximum) Low power: 4.1 mA

APPLICATIONS

Data acquisition Biomedical analysis Test and measurement

GENERAL DESCRIPTION

The AD8250 is an instrumentation amplifier with digitally programmable gains that has GΩ input impedance, low output noise, and low distortion making it suitable for interfacing with sensors and driving high sample rate analog-to-digital converters (ADCs). It has a high bandwidth of 10 MHz, low THD of −110 dB and fast settling time of 615 ns (maximum) to 0.001%. Offset drift and gain drift are guaranteed to 1.7 μV/°C and 10 ppm/°C, respectively, for G = 10. In addition to its wide input common voltage range, it boasts a high common-mode rejection of 80 dB at G = 1 from dc to 50 kHz. The combination of precision dc performance coupled with high speed capabilities makes the AD8250 an excellent candidate for data acquisition. Furthermore, this monolithic solution simplifies design and manufacturing and boosts performance of instrumentation by maintaining a tight match of internal resistors and amplifiers.
The AD8250 user interface consists of a parallel port that allows users to set the gain in one of two ways (see Figure 1). A 2-bit word sent via a bus can be latched using the
to use the transparent gain mode where the state of the logic levels at the gain port determines the gain.
input. An alternative is
WR
AD8250

FUNCTIONAL BLOCK DIAGRAM

A1 A0DGND WR
4562
1
–IN
10
+IN
8 3
+V
25
20
15
10
5
GAIN (dB)
0
–5
–10
1k 10k 100k 1M 10M 100M
Table 1. Instrumentation Amplifiers by Category
General Purpose Zero Drift
AD82201 AD82311 AD620 AD6271 AD8250 AD8221 AD85531 AD621 AD6231 AD8251 AD8222 AD85551 AD524 AD82231 AD8253 AD82241 AD85561 AD526 AD8228 AD85571 AD624
1
Rail-to-rail output.
The AD8250 is available in a 10-lead MSOP package and is specified over the −40°C to +85°C temperature range, making it an excellent solution for applications where size and packing density are important considerations.
LOGIC
S
–V
S
Figure 1.
G = 10
G = 5
G = 2
G = 1
FREQUENCY (Hz)
Figure 2. Gain vs. Frequency
Mil Grade
AD8250
Low Power
REF
9
7
OUT
06288-001
High Speed PGA
06288-023
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007–2010 Analog Devices, Inc. All rights reserved.
AD8250

TABLE OF CONTENTS

Features.............................................................................................. 1
Input Bias Current Return Path ............................................... 17
Applications....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Timing Diagram........................................................................... 5
Absolute Maximum Ratings............................................................ 6
Maximum Power Dissipation..................................................... 6
ESD Caution.................................................................................. 6
Pin Configuration and Function Descriptions............................. 7
Typical Performance Characteristics ............................................. 8
Theory of Operation ...................................................................... 15
Gain Selection ............................................................................. 15
Power Supply Regulation and Bypassing ................................17
Input Protection ......................................................................... 17
Reference Terminal .................................................................... 18
Common-Mode Input Voltage Range..................................... 18
Layout .......................................................................................... 18
RF Interference........................................................................... 19
Driving an ADC ......................................................................... 19
Applications..................................................................................... 20
Differential Output .................................................................... 20
Setting Gains with a Microcontroller...................................... 20
Data Acquisition......................................................................... 21
Outline Dimensions....................................................................... 22
Ordering Guide .......................................................................... 22

REVISION HISTORY

11/10—Rev. A to Rev. B
Changes to Voltage Offset, Offset RTI V
Temperature Coefficient Parameter in Table 2............................. 3
Updated Outline Dimensions....................................................... 22
5/08—Rev. 0 to Rev. A
Changes to Table 1............................................................................ 1
Changes to Table 2............................................................................ 3
Changes to Table 3............................................................................ 6
Added Figure 17; Renumbered Sequentially ................................ 9
Changes to Figure 23...................................................................... 10
, Average
OS
Changes to Figure 24 to Figure 26................................................ 11
Added Figure 29 ............................................................................. 11
Changes to Figure 31...................................................................... 12
Deleted Figure 43 to Figure 46; Renumbered Sequentially ...... 14
Inserted Figure 45 and Figure 46.................................................. 14
Changes to Timing for Latched Gain Mode Section ................. 16
Changes to Layout Section and Coupling Noise Section.......... 18
Changes to Figure 59...................................................................... 21
1/07—Revision 0: Initial Version
Rev. B | Page 2 of 24
AD8250

SPECIFICATIONS

+VS = 15 V, −VS = −15 V, V
Table 2.
Parameter Conditions Min Typ Max Unit
COMMON-MODE REJECTION RATIO (CMRR)
CMRR to 60 Hz with 1 kΩ Source Imbalance +IN = −IN = −10 V to +10 V
G = 1 80 98 dB G = 2 86 104 dB G = 5 94 110 dB G = 10 98 110 dB
CMRR to 50 kHz +IN = −IN = −10 V to +10 V
G = 1 80 dB G = 2 86 dB G = 5 90 dB G = 10 90 dB
NOISE
Voltage Noise, 1 kHz, RTI
G = 1 40 nV/√Hz G = 2 27 nV/√Hz G = 5 21 nV/√Hz G = 10 18 nV/√Hz
0.1 Hz to 10 Hz, RTI G = 1 2.5 μV p-p G = 2 2.5 μV p-p G = 5 1.5 μV p-p G = 10 1.0 μV p-p
Current Noise, 1 kHz 5 pA/√Hz Current Noise, 0.1 Hz to 10 Hz 60 pA p-p
VOLTAGE OFFSET
Offset RTI VOS G = 1, 2, 5, 10 ±(70 + 200/G) ±(200 + 600/G) μV
Over Temperature T = −40°C to +85°C ±(90 + 300/G) ±(260 + 900/G) μV Average Temperature Coefficient T = −40°C to +85°C ±(0.6 + 1.5/G) ±(1.2 + 5/G) μV/°C
Offset Referred to the Input vs. Supply (PSR) VS = ±5 V to ±15 V ±(2 + 7/G) ±(6 + 20/G) μV/V
INPUT CURRENT
Input Bias Current 5 30 nA
Over Temperature T = −40°C to +85°C 40 nA Average Temperature Coefficient T = −40°C to +85°C 400 pA/°C
Input Offset Current 5 30 nA
Over Temperature T = −40°C to +85°C 30 nA Average Temperature Coefficient T = −40°C to +85°C 160 pA/°C
DYNAMIC RESPONSE
Small Signal −3 dB Bandwidth
G = 1 10 MHz G = 2 10 MHz G = 5 10 MHz G = 10 3 MHz
Settling Time 0.01% ΔOUT = 10 V step
G = 1 585 ns G = 2 605 ns G = 5 605 ns G = 10 648 ns
= 0 V @ TA = 25°C, G = 1, RL = 2 kΩ, unless otherwise noted.
REF
Rev. B | Page 3 of 24
AD8250
Parameter Conditions Min Typ Max Unit
Settling Time 0.001% ΔOUT = 10 V step
G = 1 615 ns G = 2 635 ns G = 5 635 ns G = 10 685 ns
Slew Rate
G = 1 20 V/μs G = 2 25 V/μs G = 5 25 V/μs G = 10 25 V/μs
Total Harmonic Distortion
f = 1 kHz, R
= 10 kΩ, ±10 V,
L
G = 1, 10 Hz to 22 kHz band-pass filter
GAIN
Gain Range G = 1, 2, 5, 10 1 10 V/V Gain Error OUT = ±10 V
G = 1 0.03 % G = 2, 5, 10 0.04 %
Gain Nonlinearity OUT = −10 V to +10 V
G = 1 RL = 10 kΩ, 2 kΩ, 600 Ω 6 ppm G = 2 RL = 10 kΩ, 2 kΩ, 600 Ω 8 ppm G = 5 RL = 10 kΩ, 2 kΩ, 600 Ω 8 ppm G = 10 RL = 10 kΩ, 2 kΩ, 600 Ω 10 ppm
Gain vs. Temperature All gains 10 ppm/°C
INPUT
Input Impedance
Differential 5.3||0.5 Common Mode 1.25||2
Input Operating Voltage Range VS = ±5 V to ±15 V −VS + 1.5 +VS − 1.5 V Over Temperature T = −40°C to +85°C −VS + 1.6 +VS − 1.7 V
OUTPUT
Output Swing −13.5 +13.5 V Over Temperature T = −40°C to +85°C −13.5 +13.5 V Short-Circuit Current 37 mA
REFERENCE INPUT
RIN 20 kΩ IIN +IN, −IN, REF = 0 1 μA Voltage Range −VS +VS V Gain to Output 1 ± 0.0001 V/V
DIGITAL LOGIC
Digital Ground Voltage, DGND Referred to GND −VS + 4.25 0 +VS − 2.7 V Digital Input Voltage Low Referred to GND DGND 2.1 V Digital Input Voltage High Referred to GND 2.8 +VS V Digital Input Current 1 μA Gain Switching Time1 325 ns t
See Figure 3 timing diagram 20 ns
SU
tHD See Figure 3 timing diagram 10 ns t
-LOW
WR
t
-HIGH
WR
See Figure 3 timing diagram 20 ns See Figure 3 timing diagram 40 ns
−110 dB
||pF GΩ||pF
Rev. B | Page 4 of 24
AD8250
Parameter Conditions Min Typ Max Unit
POWER SUPPLY
Operating Range ±5 ±15 V Quiescent Current, +IS 4.1 4.5 mA Quiescent Current, −IS 3.7 4.5 mA Over Temperature T = −40°C to +85°C 4.5 mA
TEMPERATURE RANGE
Specified Performance −40 +85 °C
1
Add time for the output to slew and settle to calculate the total time for a gain change.

TIMING DIAGRAM

WR
t
WR-HIGH
t
WR-LOW
A0, A1
t
SU
t
HD
6288-057
Figure 3. Timing Diagram for Latched Gain Mode (See the Timing for Latched Gain Mode Section)
Rev. B | Page 5 of 24
AD8250

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Rating
Supply Voltage ±17 V Power Dissipation See Figure 4 Output Short-Circuit Current Indefinite1 Common-Mode Input Voltage +VS + 13 V, −VS − 13 V Differential Input Voltage +VS + 13 V, −VS − 13 V2 Digital Logic Inputs ±VS Storage Temperature Range −65°C to +125°C Operating Temperature Range3 −40°C to +85°C Lead Temperature (Soldering, 10 sec) 300°C Junction Temperature 140°C θJA (Four-Layer JEDEC Standard Board) 112°C/W Package Glass Transition Temperature 140°C
1
Assumes that the load is referenced to midsupply.
2
Current must be kept to less than 6 mA.
3
Temperature for specified performance is −40°C to +85°C. For performance
to 125°C, see the Typical Performance Characteristics section.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation in the AD8250 package is limited by the associated rise in junction temperature (T the die. The plastic encapsulating the die locally reaches the junction temperature. At approximately 140°C, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit can change the stresses that the package exerts on the die, permanently shifting the parametric performance of the AD8250. Exceeding a junction temperature of 140°C for an extended period can result in changes in silicon devices, potentially causing failure.
The still-air thermal properties of the package and PCB (θ the ambient temperature (T the package (P
) determine the junction temperature of the die.
D
), and the total power dissipated in
A
The junction temperature is calculated as
T
= TA + (PD × θJA)
J
) on
J
JA
),
The power dissipated in the package (P quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. The quiescent power is the voltage between the supply pins (V quiescent current (I
). Assuming that the load (RL) is referenced
S
to midsupply, the total drive power is V is dissipated in the package and some in the load (V
The difference between the total drive power and the load power is the drive power dissipated in the package.
P
= Quiescent Power + (Total Drive PowerLoad Power)
D
V
V
()
D
IVP
SS
⎜ ⎝
OUTS
×+×=
2
R
L
In single-supply operation with R case is V
OUT
= VS/2.
Airflow increases heat dissipation, effectively reducing θ addition, more metal directly in contact with the package leads from metal traces, through holes, ground, and power planes reduces the θ
.
JA
Figure 4 shows the maximum safe power dissipation in the package vs. the ambient temperature on a four-layer JEDEC standard board.
2.00
1.75
1.50
1.25
1.00
0.75
0.50
MAXIMUM POWER DISSIPATI ON (W)
0.25
0
–40 –20 120100806040200
Figure 4. Maximum Power Dissipation vs. Ambient Temperature
AMBIENT TEM P E RATURE (°C)

ESD CAUTION

) is the sum of the
D
) times the
S
/2 × I
S
⎞ ⎟
⎟ ⎠
2
V
OUT
R
L
referenced to −VS, the worst
L
, some of which
OUT
× I
OUT
OUT
JA
. In
).
06288-004
Rev. B | Page 6 of 24
AD8250

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

–IN
1 2
DGND
–V
A0 A1
3
S
4 5
AD8250
TOP VIEW
(Not to Scale)
Figure 5. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 −IN Inverting Input Terminal. True differential input. 2 DGND Digital Ground. 3 −VS Negative Supply Terminal. 4 A0 Gain Setting Pin (LSB). 5 A1 Gain Setting Pin (MSB). 6
WR
Write Enable.
7 OUT Output Terminal. 8 +VS Positive Supply Terminal. 9 REF Reference Voltage Terminal. 10 +IN Noninverting Input Terminal. True differential input.
10
+IN
9
REF +V
8
S
7
OUT
6
WR
06288-005
Rev. B | Page 7 of 24
AD8250

TYPICAL PERFORMANCE CHARACTERISTICS

TA = 25°C, +VS = +15 V, −VS = −15 V, RL = 10 k, unless otherwise noted.
1400
500
1200
1000
800
600
NUMBER OF UNITS
400
200
0
–120 –90 –60 –30 0 30 60 90 120
CMRR (µV/V)
Figure 6. Typical Distribution of CMRR, G = 1
350
300
250
200
150
NUMBER OF UNITS
100
50
0
–200 2001000–100 –50 50–150 150
OFFSET VOLTAGE RTI ( µ V)
Figure 7. Typical Distribution of Offset Voltage, V
400
300
200
NUMBER OF UNITS
100
0
–30 3020100–20 –10
06288-006
INPUT OF FSET CURRENT (nA)
06288-009
Figure 9. Typical Distribution of Input Offset Current
90
80
70
60
50
40
30
NOISE RTI ( nV/ Hz)
20
10
0
1 10 100 1k 10k 100k
06288-007
OSI
Figure 10. Voltage Spectral Density Noise vs. Frequency
G = 1
G = 2 G = 5
G = 10
FREQUENCY (Hz)
06288-010
600
500
400
300
200
NUMBER OF UNITS
100
0
–30 3010 200–10–20
INPUT BIAS CURRENT (nA)
Figure 8. Typical Distribution of Input Bias Current
06288-008
Rev. B | Page 8 of 24
1s/DIV2µV/DIV
Figure 11. 0.1 Hz to 10 Hz RTI Voltage Noise, G = 1
6288-011
Loading...
+ 16 hidden pages