ANALOG DEVICES AD7763 Service Manual

24-Bit, 625 kSPS, 109 dB Sigma-Delta
V
V
ADC with On-Chip Buffers, Serial Interface

FEATURES

120 dB dynamic range at 78 kHz output data rate 109 dB dynamic range at 625 kHz output data rate 112 dB SNR at 78 kHz output data rate 107 dB SNR at 625 kHz output data rate 625 kHz maximum fully filtered output word rate Programmable oversampling rate (32× to 256×) Flexible serial interface Fully differential modulator input On-chip differential amplifier for signal buffering Low-pass finite impulse response (FIR) filter with default
or user-programmable coefficients Overrange alert bit Digital offset and gain correction registers Low power and power-down modes
SYNC
Synchronization of multiple devices via
2
I
S interface mode

APPLICATIONS

Data acquisition systems Vibration analysis Instrumentation
pin
V
REF+
REFGND
MCLK
MCLKGND
SYNC
RESET
SH2:0
ADR2:0
CDIV
AD7763

FUNCTIONAL BLOCK DIAGRAM

IN+
IN–
MULTIBIT
Σ-Δ
MODULATOR
RECONSTRUCTION
PROGRAMMABLE
DECIMATION
FIR FILTER
ENGINE
BUF
AD7763
CONTROL L OGIC
OFFSET AND GAIN
S
2
I
SCP
I/O
REGISTERS
SDL
SCR
DRDY
DIFF
SCO
FSO
SDO
Figure 1.
FSI
SDI
AV
DD1
AV
DD2
AV
DD3
AV
DD4
DECAPA DECAPB
R
BIAS
AGND V
DRIVE
DV
DD
DGND
05476-001

GENERAL DESCRIPTION

The AD7763 high performance, 24-bit, Σ-Δ analog-to-digital converter (ADC) combines wide input bandwidth and high speed with the benefits of Σ-Δ conversion, as well as performance of 107 dB SNR at 625 kSPS, making it ideal for high speed data acquisition. A wide dynamic range, combined with significantly reduced antialiasing requirements, simplifies the design process. An integrated buffer to drive the reference, a differential ampli­fier for signal buffering and level shifting, an overrange flag, internal gain and offset registers, and a low-pass, digital FIR filter make the AD7763 a compact, highly integrated data acquisition device requiring minimal peripheral component selection. In addition, the device offers programmable decimation rates and a digital FIR filter, which can be user­programmed to ensure that its characteristics are tailored for the user’s application. The AD7763 is ideal for applications demanding high SNR without necessitating the design of complex, front­end signal processing.
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
The differential input is sampled at up to 40 MSPS by an analog modulator. The modulator output is processed by a series of low-pass filters, the final filter having default or user­programmable coefficients. The sample rate, filter corner frequencies, and output word rate are set by a combination of the external clock frequency and the configuration registers of the AD7763.
The reference voltage supplied to the AD7763 determines the analog input range. With a 4 V reference, the analog input range is ±3.2 V differential-biased around a common mode of 2 V. This common-mode biasing can be achieved using the on-chip differential amplifiers, further reducing the external signal conditioning requirements.
The AD7763 is available in an exposed paddle, 64-lead TQFP_EP and is specified over the industrial temperature range from
−40°C to +85°C.
Table 1. Related Devices
Part No. Description
AD7760 24-bit, 2.5 MSPS, 100 dB Σ-Δ, parallel interface AD7762 24-bit, 625 kSPS, 109 dB Σ-Δ, parallel interface
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005–2009 Analog Devices, Inc. All rights reserved.
AD7763

TABLE OF CONTENTS

Features .............................................................................................. 1
Example 2 .................................................................................... 19
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Timing Specifications ....................................................................... 5
Timing Diagrams .......................................................................... 6
Absolute Maximum Ratings ............................................................ 7
ESD Caution .................................................................................. 7
Pin Configuration and Function Descriptions ............................. 8
Terminology .................................................................................... 10
Typical Performance Characteristics ........................................... 11
Theory of Operation ...................................................................... 14
AD7763 Interface ............................................................................ 15
Reading Data Using the SPI Interface ..................................... 15
Driving the AD7763 ....................................................................... 20
Using the AD7763 ...................................................................... 21
Bias Resistor Selection ............................................................... 21
Decoupling and Layout Recommendations................................ 22
Supply Decoupling ..................................................................... 23
Additional Decoupling .............................................................. 23
Reference Voltage Filtering ....................................................... 23
Differential Amplifier Components ........................................ 23
Exposed Paddle ........................................................................... 23
Layout Considerations ............................................................... 23
Programmable FIR Filter ............................................................... 24
Downloading a User-Defined Filter ............................................ 25
Example Filter Download ......................................................... 26
Registers ........................................................................................... 27
Control Register 1—Address 0x001 ......................................... 27
Synchronization .......................................................................... 15
Sharing the Serial Bus ................................................................ 15
Writing to the AD7763 .............................................................. 16
Reading Status and Other Registers ......................................... 17
Reading Data Using the I2S Interface ....................................... 18
Clocking the AD7763 ..................................................................... 19
Example 1 .................................................................................... 19

REVISION HISTORY

11/09—Rev. 0 to Rev. A
Changes to Figure 5 .......................................................................... 8
Changes to Sharing the Serial Bus Section .................................. 15
Changes to Figure 26 ...................................................................... 16
Updated Outline Dimensions ....................................................... 29
Changes to Ordering Guide .......................................................... 29
10/05—Revision 0: Initial Version
Control Register 2—Address 0x002 ......................................... 27
Status Register (Read Only) ...................................................... 28
Offset Register—Address 0x003 ............................................... 28
Gain Register—Address 0x004 ................................................. 28
Overrange Register—Address 0x005 ....................................... 28
Outline Dimensions ....................................................................... 29
Ordering Guide .......................................................................... 29
Rev. A | Page 2 of 32
AD7763

SPECIFICATIONS

AV
= DVDD = V
DD1
using on-chip amplifier with components as shown in Table 1 0, unless otherwise noted.
Table 2.
Parameter Test Conditions/Comments Specification Unit
DYNAMIC PERFORMANCE
Decimate × 256 MCLK = 40 MHz, ODR = 78 kHz, FIN = 1 kHz
Dynamic Range Modulator inputs shorted 119
Signal-to-Noise Ratio (SNR)2 Input amplitude = −0.5 dBFS 112 dB typ
Input amplitude = −60 dB 59 dBc typ
Spurious-Free Dynamic Range (SFDR)
Total Harmonic Distortion (THD)
Decimate × 64 MCLK = 40 MHz, ODR = 312.5 kHz, FIN = 1 kHz
Dynamic Range Modulator inputs shorted 112
Signal-to-Noise Ratio (SNR)2 Input amplitude = −0.5 dBFS 109.5 dB typ Spurious-Free Dynamic Range (SFDR) Nonharmonic, input amplitude = −6 dB 126 dBc typ
Decimate × 32 MCLK = 40 MHz, ODR = 625 kHz, FIN = 100 kHz
Dynamic Range Modulator inputs shorted 108
Signal-to-Noise Ratio (SNR)2 Input amplitude = −0.5 dBFS 107 dB typ Spurious-Free Dynamic Range (SFDR) Total Harmonic Distortion (THD)
DC ACCURACY
Resolution 24 Bits
Differential Nonlinearity Guaranteed monotonic to 24 bits
Integral Nonlinearity 0.00076 % typ
Zero Error 0.014 % typ
Gain Error 0.018 % typ
Zero Error Drift 10 %FS/°C typ
Gain Error Drift 0.0002 %FS/°C typ
DIGITAL FILTER RESPONSE
Decimate × 32
Group Delay MCLK = 40 MHz 47 µs typ
Decimate × 64
Group Delay MCLK = 40 MHz 91.5 µs typ
Decimate × 256
Group Delay MCLK = 40 MHz 358 µs typ
ANALOG INPUT
Differential Input Voltage
V
Input Capacitance At internal buffer inputs 5 pF typ
At modulator inputs 55 pF typ
= 2.5 V; AV
DRIVE
DD2
= AV
DD3
= AV
= 5 V; V
DD4
= 4.096 V; MCLK amplitude = 5 V; TA = 25°C; normal mode,
REF
1
dB min
120.5
dB typ
Nonharmonic, input amplitude = −6 dB 126 dBc typ Input amplitude = −60 dB 77 dBc typ Input amplitude = −0.5 dBFS −105 dB typ Input amplitude = −6 dB −106 dBc typ Input amplitude = −60 dB −75 dBc typ
dB min
113
dB typ
dB min
109.5
dB typ
Nonharmonic, input amplitude = −6 dB 120 dBc typ Input amplitude = −0.5 dBFS −105 dB typ Input amplitude = −6 dB −107 dBc typ
0.02 % max
VIN(+) – VIN(−), V
(+) – Vin(−), V
IN
Rev. A | Page 3 of 32
= 2.5 V ±2 V p-p
REF
= 4.096 V ±3.25 V p-p
REF
AD7763
Parameter Test Conditions/Comments Specification Unit
REFERENCE INPUT
V
Input Voltage V
REF
V V
Input DC Leakage Current ±1 µA max
REF
V
Input Capacitance 5 pF max
REF
POWER DISSIPATION
Total Power Dissipation Normal power mode 955.5 mW max Low power mode 651 mW max Standby Mode Clock stopped 6.35 mW typ
POWER REQUIREMENTS
AV
(Modulator Supply) ±5% +2.5 V
DD1
AV
(General Supply) ±5% +5 V
DD2
AV
(Differential Amplifier Supply) +3.15/+5.25 V min/max
DD3
AV
(Reference Buffer Supply) +3.15/+5.25 V min/max
DD4
DVDD ±5% +2.5 V V
+1.65/+2.7 V min/max
DRIVE
Normal Mode
AI
(Modulator) 49/52 mA typ/max
DD1
AI
(General) 40/43 mA typ/max
DD2
AI
(Reference Buffer) AV
DD4
Low Power Mode
AI
(Modulator) 26/28 mA typ/max
DD1
AI
(General) 20/23 mA typ/max
DD2
AI
(Reference Buffer) AV
DD4
AI
(Diff Amp) AV
DD3
DIDD Both modes 56/62 mA typ/max
DIGITAL I/O
MCLK Input Amplitude3 5 V typ Input Capacitance 7.3 pF typ Input Leakage Current ±1 A/pin max Three-State Leakage Current (SDO) ±1 A max V
0.7 × V
INH
V
0.3 × V
INL
4
V
1.5 V min
OH
VOL 0.1 V max
1
See the Terminology section.
2
SNR specifications in dB are referred to a full-scale input, FS, and tested with an input signal at 0.5 dB below full scale, unless otherwise specified.
3
While the AD7763 can function with an MCLK amplitude of less than 5 V, this is the recommended amplitude to achieve the performance as stated.
4
Tested with a 400 A load current.
= 3.3 V ± 5% +2.5 V max
DD3
= 5 V ± 5% +4.096 V max
DD3
= 5 V 35/37 mA typ/max
DD4
= 5 V 10/11 mA typ/max
DD4
= 5 V, both modes 41/45 mA typ/max
DD3
V min
DRIVE
V max
DRIVE
Rev. A | Page 4 of 32
AD7763

TIMING SPECIFICATIONS

AV
= DVDD = V
DD1
Table 3.
Parameter Limit at T
f
1 MHz min Applied master clock frequency
MCLK
40 MHz max f
500 kHz min Internal modulator clock derived from MCLK
ICLK
20 MHz max
1
t
1 × t
1
1
t
1 × t
2
t3 t
4
t
2 ns typ
3A
4
t
3 ns typ
3B
5
t
32 × t
4
4, 5
t
1 ns typ
4A
4, 5
t
2 ns typ
4B
t5 6.5 ns max Initial data access time
4
t
5 ns max SCO rising edge to SDO valid
6
t7 0.5 × t t8 16 × t
t9 t t10 5.5 ns max SDO three-state to SCO rising edge t11 1 × t
t12 12 ns min SDI setup time t13 10 ns min SDI hold time t14 12 ns min t15 16 × t
1
t
= 1/f
ICLK
2
3
4
5
ICLK.
SCO frequency selected by SCR and t
= t1 + t2.
SCO
All edges mentioned refer to SCP = 0. Invert SCO edges for SCP = 1. In decimate × 32 mode, this time specification applies only when
signal is constantly logic low.
= 2.5 V, AV
DRIVE
or 0.5 × t
ICLK
or 0.5 × t
ICLK
3
typ
SCO
MIN
= AV
DD2
, T
Unit Description
MAX
ICLK
ICLK
= AV
DD3
2
typ SCO high period
2
typ SCO low period
= 5 V, TA = 25°C, normal mode, unless otherwise noted.
DD4
DRDY SCO rising edge to DRDY SCO rising edge to DRDY
3
typ
SCO
FSO SCO rising edge to FSO SCO falling edge to FSO
3
ns min SDO valid after SCO falling edge
SCO
3
typ
SCO
3
typ SDL pulse width
SCO
3
min
SCO
3
typ SDL falling edge to SDL falling edge
SCO
CDIV
pins.
CDIV
= 0 and SCR =1. For all other combinations of
DRDY
low period
FSI
setup time
FSI
low period
falling edge rising edge
low period
falling edge
rising edge
rising edge to SDL falling edge
CDIV
and SCR in decimate × 32 mode, the FSO
Rev. A | Page 5 of 32
AD7763

TIMING DIAGRAMS

t
32 ×
4
t
9
t
15
t
SCO
t
13
t
4B
t
10
FSO (O)
SCO (O)
DRDY (O)
SDO (O)
SDL (O)
SCO (O)
FSI (I)
SDI (I)
t
4A
t
t
3A
3B
t
3
t
5
t
1
t
2
t
D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 ST6 ST5 ST4 ST3 ST2 ST1 ST0
6
t
8
t
7
Figure 2. SPI® Interface Serial Read Timing Diagram
t
t
14
t
11
ALL ADR2 ADR1 ADR0 RA11 RA10 RA1 RA0 D15 D14 D1 D0
1
t
2
t
12
05476-002
SCO (O)
DRDY A (O)
SDO (O)
FSO A
FSO B
FSO C
FSO D
Figure 3. Register Write
32 ×
t
SCO
SERIAL DATA F ROM ADC A
32 ×
t
SCO
SERIAL DATA F ROM ADC B S ERIAL DATA FROM ADC C SERI AL DATA FROM ADC D
32 ×
t
SCO
Figure 4. SPI Interface Serial Read Timing with Multiple AD7763 Devices Sharing the Serial Bus
32 ×
05476-003
t
SCO
05476-004
Rev. A | Page 6 of 32
AD7763

ABSOLUTE MAXIMUM RATINGS

= 25°C, unless otherwise noted.
T
A
Table 4.
Parameter Rating
AV
to GND −0.3 V to +3 V
DD1
(AV
, AV
, AV
DD2
DD3
) to GND −0.3 V to +6 V
DD4
DVDD to GND −0.3 V to +3 V V
to GND −0.3 V to +3 V
DRIVE
V
, V
to GND −0.3 V to +6 V
IN+
IN–
Digital Input Voltage to GND1 −0.3 V to DV
+ 0.3 V
DD
MCLK to MCLKGND −0.3 V to +6 V V
to GND2 −0.3 V to AV
REF
+ 0.3 V
DD4
AGND to DGND −0.3 V to +0.3 V Input Current to Any Pin
Except Supplies
3
Operating Temperature Range
±10 mA
−40°C to +85°C
Commercial
Storage Temperature Range −65°C to +150°C Junction Temperature 150°C TQFP_EP Exposed Paddle
θJA Thermal Impedance 92.7°C/W
θJC Thermal Impedance 5.1°C/W
Lead Temperature, Soldering
Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C
ESD 600 V
1
Absolute maximum voltage on digital inputs is 3.0 V or DVDD + 0.3 V,
whichever is lower.
2
Absolute maximum voltage on V
whichever is lower.
3
Transient currents of up to 200 mA do not cause SCR latch-up.
input is 6.0 V or AV
REF
+ 0.3 V,
DD4
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. A | Page 7 of 32
AD7763

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

S
DRIVE
2
DGND63V
DGND61I
64
1
DGND
MCLKGND
MCLK AV
DD2
AGND2
AV
DD1
AGND1 DECAPA REFGND
V
REF+
AGND4
AV
DD4
AGND2
AV
DD2
AV
DD2
AGND2
NOTES
1. THE PADDLE M US T BE CONNECTED DIRECT LY TO T HE GROUND PLANE O F THE PCB USING MULTIPLE VIAS.
PIN 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17
18
BIAS
R
Table 5. Pin Function Descriptions
Pin No. Mnemonic Description
6, 33 AV
DD1
Power Supply for Modulator, 2.5 V. These pins should be decoupled to AGND1 with 100 nF and 10 µF capacitors on each pin.
4, 14, 15, 27 AV
DD2
Power Supply, 5 V. These pins should be decoupled to AGND2 with 100 nF capacitors on each of Pin 4, Pin 14, and Pin 15. Pin 27 should be connected to Pin 14 via an 8.2 nH inductor.
24 AV
DD3
Power Supply for Differential Amplifier, 3.3 V to 5 V. This pin should be decoupled to AGND3 with a 100 nF capacitor.
12 AV
DD4
Power Supply for Reference Buffer, 3.3 V to 5 V. This pin should be decoupled to AGND4
with a 10 nF capacitor in series with a 10 resistor. 7, 34 AGND1 Power Supply Ground for Analog Circuitry Powered by AV 5, 13, 16, 18, 28 AGND2 Power Supply Ground for Analog Circuitry Powered by AV 23, 29, 31, 32 AGND3 Power Supply Ground for Analog Circuitry Powered by AV 11 AGND4 Power Supply Ground for Analog Circuitry Powered by AV 9 REFGND Reference Ground. Ground connection for the reference voltage. 41 DVDD
Power Supply for Digital Circuitry and FIR Filter, 2.5 V. This pin should be decoupled to DGND
with a 100 nF capacitor. 44, 63 V
DRIVE
Logic Power Supply Input, 1.8 V to 2.5 V. The voltage supplied at these pins determines
the operating voltage of the logic interface. These pins must be connected together and
tied to the same supply. Each pin should also be decoupled to DGND with a 100 nF capacitor. 1, 35, 42, 43, 53, 57, 59,
DGND Ground Reference for Digital Circuitry.
62, 64 19 VINA+ Positive Input to Differential Amplifier. 20 VINA− Negative Input to Differential Amplifier. 21 V 22 V
A− Negative Output from Differential Amplifier.
OUT
A+ Positive Output from Differential Amplifier.
OUT
25 VIN+ Positive Input to the Modulator. 26 VIN− Negative Input to the Modulator. 10 V
REF+
Reference Input. The input range of this pin is determined by the reference buffer supply voltage (AV
SCR59DGND58CDIV57DGND56FSO55SCO54SDO53DGND52SDI51FSI50SDL49SCP
62
60
AD7763
TOP VIEW
(Not to S cale)
19
20
21
22
23
24
25
26
A–
A–
A+
A+
IN
IN
V
V
AGND2
OUT
V
V
+
IN
DD3
V
AV
OUT
AGND3
Figure 5. Pin Configuration
). See the Reference Voltage Filtering section for more details.
DD4
48
ADR0
47
ADR1
46
ADR2
45
SH0
44
V
DRIVE
43
DGND
42
DGND
41
DV
DD
40
SH1
39
SH2
38
DRDY
37
RESET
36
SYNC
35
DGND
34
AGND1
33
AV
DD1
27
28
30
AGND229AGND3
31
AGND332AGND3
DECAPB
05476-005
.
DD1
.
DD2
.
DD3
.
DD4
IN
DD2
V
AV
Rev. A | Page 8 of 32
AD7763
Pin No. Mnemonic Description
8 DECAPA Decoupling Pin. A 100 nF capacitor must be inserted between this pin and AGND1. 30 DECAPB Decoupling Pin. A 33 pF capacitor must be inserted between this pin and AGND3. 17 R
37
3 MCLK
2 MCLKGND Master Clock Ground Sensing Pin. 36
38
39, 40, 45 SH2:0
46 to 48 ADR2:0
49 SCP
50 SDL
51
52 SDI
54 SDO
55 SCO
56
58
60 SCR 61 I2S
BIAS
Bias Current Setting. A resistor must be inserted between this pin and AGND. See the Bias Resistor Selection section.
RESET
A falling edge on this pin resets all internal digital circuitry. Holding this pin low keeps the AD7763 in a reset state.
Master Clock Input. A low jitter digital clock must be applied to this pin. The output data rate depends on the frequency of this clock. See the Clocking the AD7763 section.
SYNC
Synchronization Input. A falling edge on this pin resets the internal filter. This can be used to synchronize multiple devices in a system.
DRDY
Data Ready Output. Each time new conversion data is available, an active low pulse, ½ ICLK period wide, is produced on this pin. See the AD7763 Interface section.
Share Pins 2:0. For multiple AD7763 devices sharing a common serial bus. Each device is wired with the binary value that represents the number of devices sharing the serial bus. SH2 is the MSB. See the Sharing the Serial Bus section.
Address 2:0. Allows multiple AD7763 devices to share a common serial bus. Each device must be programmed with an individual address using these three pins. See the Sharing the Serial Bus section.
Serial Clock Polarity. Determines on which edge of SCO the data bits are clocked out and on which edge they are valid. All timing diagrams are shown with SCP = 0, and all SCO edges shown should be inverted for SCP = 1.
Serial Data Latch. A pulse is output on this pin after every 16 data bits. The pulse is one SCO period wide and can be used in conjunction with FSO as an alternative framing method for serial transfers requiring a framing signal more frequent than every 32 bits.
FSI
Frame Sync In. The status of this pin is checked on the falling edge of SCO. If this pin is low, then the first data bit is latched in on the next SCO falling edge when SCP = 0 or on the rising edge of SCO if SCP = 1.
Serial Data In. The first data bit (MSB) must be valid on the next SCO falling edge when SCP = 0 (or SCO rising edge SCP = 1) after the FSI event has been latched. Each write requires 32 bits: the ALL bit, 3 address bits, and 12 register address bits, followed by the remaining 16 bits of data to be written to the device.
Serial Data Out. Address, status, and data bits are clocked out on this line during each serial transfer. If SCP = 0, each bit is clocked out on an SCO rising edge and is valid on the falling edge. When
2
S pin is set to logic high, this pin outputs the signal defined as SD in the I2S bus
the I specification. See the Reading Data Using the I
2
S Interface section for details.
Serial Clock Out. This clock signal is derived from the internal ICLK signal. The frequency of SCO is equal to either ICLK or ICLK/2, depending on the state of the CDIV
2
S pin is logic high, this pin outputs the signal defined as
Reading Data Using the I2S Interface
FSO
occurs in decimate × 32 mode, where, for certain
FSO
signal is constantly logic low. See the
Reading Data Using the I2S Interface
FSO
AD7763 Interface SCK by the I
Frame Sync Out. This signal frames the serial data output and is 32 SCO periods wide. The
section). When the I
2
S bus specification. See the section.
exception to the framing behavior of combinations of CDIV Using the SPI Interface
defined as WS in the I
Clock Divider. This pin is used to select the ratio of MCLK to ICLK. See the AD7763 Interface
CDIV
and SCR, the
section. When the I2S pin is set to logic high, this pin outputs the signal
2
S bus specification. See the section.
and SCR pins (see the
Reading Data
section. Serial Clock Rate. This pin and the CDIV
2
S Select. A Logic 1 on this pin changes the serial data-out mode from SPI to I2S. The SDO pin
I outputs as the SD signal, the SCO pin outputs the SCK signal, and the
signal. When writing to the AD7763, the I See the section for further details. Reading Data Using the I
pin program the SCO frequency (see ). Table 7
2
2
S pin is set to logic low and the SPI interface is used.
S Interface
FSO
pin outputs the WS
Rev. A | Page 9 of 32
AD7763

TERMINOLOGY

Signal-to-Noise Ratio (SNR) Integral Nonlinearity (INL)
The ratio of the rms value of the actual input signal to the rms sum of all other spectral components below the Nyquist fre­quency, excluding harmonics and dc. The value for SNR is expressed in decibels.
The ratio of the rms sum of harmonics to the fundamental. For the AD7763, it is defined as
22222
VVVVV
++++
54
THD
()
log20dB
=
32
V
1
6
where:
V
is the rms amplitude of the fundamental.
1
V
, V3, V4, V5, and V6 are the rms amplitudes of the second
2
to the sixth harmonic.
Nonharmonic Spurious-Free Dynamic Range (SFDR)
The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component, excluding harmonics.
Dynamic Range
The ratio of the rms value of the full scale to the rms noise measured with the inputs shorted together. The value for dynamic range is expressed in decibels.
The maximum deviation from a straight line passing through the endpoints of the ADC transfer function.
Differential Nonlinearity (DNL)
The difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC.
Total Harmonic Distortion (THD)
Zero Error
The difference between the ideal midscale input voltage (0 V) and the actual voltage producing the midscale output code.
Zero Error Drift
The change in the actual zero error value due to a temperature change of 1°C. It is expressed as a percentage of full scale at room temperature.
Gain Error
The first transition (from 100…000 to 100…001) should occur for an analog voltage 1/2 LSB above the nominal negative full scale. The last transition (from 011…110 to 011…111) should occur for an analog voltage 1 1/2 LSB below the nominal full scale. The gain error is the deviation of the difference between the actual level of the last transition and the actual level of the first transition, from the difference between the ideal levels.
Gain Error Drift
The change in the actual gain error value due to a temperature change of 1°C. It is expressed as a percentage of full scale at room temperature.
Rev. A | Page 10 of 32
Loading...
+ 22 hidden pages