ANALOG DEVICES AD6653 Service Manual

A
www.BDTIC.com/ADI
IF Diversity Receiver

FEATURES

SNR = 70.8 dBc (71.8 dBFS) in a 32.7 MHz BW at
70 MHz @ 150 MSPS
SFDR = 83 dBc to 70 MHz @ 150 MSPS
1.8 V analog supply operation
1.8 V to 3.3 V CMOS output supply or 1.8 V LVDS ou
tput supply Integer 1-to-8 input clock divider Integrated dual-channel ADC
Sample rates up to 150 MSPS
IF sampling frequencies to 450 MHz Internal ADC voltage reference Integrated ADC sample-and-hold inputs Flexible analog input range: 1 V p-p to 2 V p-p ADC clock duty cycle stabilizer 95 dB channel isolation/crosstalk
Integrated wideband digital downconverter (DDC)
32-bit, complex, numerically controlled oscillator (NCO) Decimating half-band filter and FIR filter Supports real and complex output modes Fast attack/threshold detect bits
Composite signal monitor Energy-saving power-down modes

FUNCTIONAL BLOCK DIAGRAM

AVDD FD[0:3]
AD6653

APPLICATIONS

Communications Diversity radio systems Multimode digital receivers (3G)
TD-SCDMA, WiMax, WCDMA,
CDMA20 I/Q demodulation systems Smart antenna systems General-purpose software radios Broadband data applications

PRODUCT HIGHLIGHTS

1. Integrated dual, 12-bit, 125 MSPS/150 MSPS ADC.
2. I
3. F
4. P
5. F
6. S
7. 3
00, GSM, EDGE, LTE
ntegrated wideband decimation filter and 32-bit
complex NCO.
ast overrange detect and signal monitor with serial output. roprietary differential input maintains excellent SNR
performance for input frequencies up to 450 MHz.
lexible output modes, including independent CMOS,
interleaved CMOS, IQ mode CMOS, and interleaved LVDS.
YNC input allows synchronization of multiple devices.
-bit SPI port for register programming and register readback.
DVDD DRVDD
FD BITS/T HRESHOLD
DETECT
VIN+A
VIN–A
VREF
SENSE
CML
RBIAS
VIN–B
VIN+B
NOTES
1. PIN NAMES ARE FOR THE CMO S PIN CONF IGURATIO N ONLY; SEE FIGURE 10 FOR LVDS PIN NAMES.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
SHA
REF
SELECT
SHA ADC
MULTI-CHI P
AGND
SYNC
SYNC FD[0:3]B SMI
ADC
SIGNAL
MONITOR
FD BITS/THRESHOLD
DETECT
32-BIT
TUNING
NCO
SIGNAL MONITOR
DATA
I
DECIMATING
HB FILTER +
Q
Q
DECIMATING
HB FILTER +
I
Figure 1.
AD6653
LP/HP
FIR
DIVIDE 1
f
/8
ADC
NCO
LP/HP
FIR
SIGNAL MO NITOR
INTERFACE
SMI SCLK/ PDWN
SMI
SDO/
OEB
SDFS
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 Β©2007 Analog Devices, Inc. All rights reserved.
TO 8
DUTY
CYCLE
STABILIZER
PROGRAMMING DATA
SDIO/
DCS
SPI
SCLK/
DFS
GENERATION
CSB DRGND
CMOS/LV DS
DCO
CMOS
D11A
D0A
OUTPUT BUFFER
CLK+
CLK–
DCOA
DCOB
D11B
D0B
OUTPUT BUFFER
6708-001
AD6653
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
Product Highlights ........................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 3
General Description ......................................................................... 4
Specifications..................................................................................... 5
ADC DC Specifications ............................................................... 5
ADC AC Specifications ............................................................... 6
Digital Specifications ................................................................... 7
Switching Specifications.............................................................. 9
Timing Specifications ................................................................10
Absolute Maximum Ratings.......................................................... 13
Thermal Characteristics ............................................................13
ESD Caution................................................................................ 13
Pin Configurations and Function Descriptions ......................... 14
Equivalent Circuits......................................................................... 18
Typical Performance Characteristics ........................................... 19
Theory of Operation ...................................................................... 24
ADC Architecture ......................................................................24
Analog Input Considerations.................................................... 24
Voltage Reference....................................................................... 26
Clock Input Considerations...................................................... 27
Power Dissipation and Standby Mode..................................... 29
Digital Outputs ........................................................................... 30
Digital Downconverter .................................................................. 31
Downconverter Modes.............................................................. 31
Numerically Controlled Oscillator (NCO) ............................. 31
Half-Band Decimating Filter and FIR Filter........................... 31
f
/8 Fixed-Frequency NCO ................................................... 31
ADC
Numerically Controlled Oscillator (NCO) .................................32
Frequency Translation............................................................... 32
NCO Synchronization ............................................................... 32
Phase Offset................................................................................. 32
NCO Amplitude and Phase Dither.......................................... 32
Decimating Half-Band Filter and FIR Filter............................... 33
Half-Band Filter Coefficients.................................................... 33
Half-Band Filter Features .......................................................... 33
Fixed-Coefficient FIR Filter...................................................... 33
Synchronization.......................................................................... 34
Combined Filter Performance.................................................. 34
Final NCO ................................................................................... 34
ADC Overrange and Gain Control.............................................. 35
Fast Detect Overview................................................................. 35
ADC Fast Magnitude................................................................. 35
ADC Overrange (OR)................................................................ 36
Gain Switching............................................................................ 36
Signal Monitor................................................................................ 38
Peak Detector Mode................................................................... 38
RMS/MS Magnitude Mode....................................................... 38
Threshold Crossing Mode......................................................... 39
Additional Control Bits ............................................................. 39
DC Correction ............................................................................ 39
Signal Monitor SPORT Output ................................................ 40
Channel/Chip Synchronization.................................................... 41
Serial Port Interface (SPI).............................................................. 42
Configuration Using the SPI..................................................... 42
Hardware Interface..................................................................... 42
Configuration Without the SPI................................................ 43
SPI Accessible Features.............................................................. 43
Memory Map .................................................................................. 44
Reading the Memory Map Register Table............................... 44
Memory Map Register Table..................................................... 45
Memory Map Register Description ......................................... 49
Applications Information.............................................................. 53
Design Guidelines ...................................................................... 53
Evaluation Board............................................................................ 55
Power Supplies............................................................................ 55
Input Signals................................................................................ 55
Output Signals ............................................................................ 55
Default Operation and Jumper Selection Settings................. 56
Alternative Clock Configurations............................................ 56
Alternative Analog Input Drive Configuration...................... 57
Schematics................................................................................... 58
Evaluation Board Layouts ......................................................... 68
Bill of Materials........................................................................... 76
Outline Dimensions....................................................................... 78
Ordering Guide .......................................................................... 78
Rev. 0 | Page 2 of 80
AD6653
www.BDTIC.com/ADI

REVISION HISTORY

11/07β€”Revision 0: Initial Version
Rev. 0 | Page 3 of 80
AD6653
www.BDTIC.com/ADI

GENERAL DESCRIPTION

The AD6653 is a mixed-signal intermediate frequency (IF) receiver consisting of dual, 12-bit, 125 MSPS/150 MSPS ADCs and a wideΒ­band digital downconverter (DDC). The AD6653 is designed to support communications applications where low cost, small size, and versatility are desired.
The dual ADC core features a multistage, differential pipelined a
rchitecture with integrated output error correction logic. Each ADC features wide bandwidth differential sample-and-hold analog input amplifiers supporting a variety of user-selectable input ranges. An integrated voltage reference eases design considerations. A duty cycle stabilizer is provided to compenΒ­sate for variations in the ADC clock duty cycle, allowing the converters to maintain excellent performance.
ADC data outputs are internally connected directly to the
tal downconverter (DDC) of the receiver, simplifying layout
digi and reducing interconnection parasitics. The digital receiver has two channels and provides processing flexibility. Each receive channel has four cascaded signal processing stages: a 32-bit frequency translator (numerically controlled oscillator (NCO)), a decimating half-band filter, a fixed FIR filter, and an f fixed-frequency NCO.
In addition to the receiver, DDC, the AD6653 has several functions tha
t simplify the automatic gain control (AGC) function in the system receiver. The fast detect feature allows fast overrange detection by outputting four bits of input level information with short latency.
ADC
/8
In addition, the programmable threshold detector allows
itoring of the incoming signal power using the four fast
mon detect bits of the ADC with low latency. If the input signal level exceeds the programmable threshold, the coarse upper threshold indicator goes high. Because this threshold indicator has low latency, the user can quickly turn down the system gain to avoid an overrange condition.
The second AGC-related function is the signal monitor. This block
lows the user to monitor the composite magnitude of the
al incoming signal, which aids in setting the gain to optimize the dynamic range of the overall system.
After digital processing, data can be routed directly to the two e
xternal 12-bit output ports. These outputs can be set from 1.8 V to 3.3 V CMOS or as 1.8 V LVDS. The CMOS data can also be output in an interleaved configuration at a double data rate, using only Port A.
The AD6653 receiver digitizes a wide spectrum of IF frequencies.
ach receiver is designed for simultaneous reception of the main
E channel and the diversity channel. This IF sampling architecture greatly reduces component cost and complexity compared with traditional analog techniques or less integrated digital methods. Flexible power-down options allow significant power savings, when desired.
Programming for setup and control is accomplished using a 3-bit
PI-compatible serial interface.
S
The AD6653 is available in a 64-lead LFCSP and is specified over t
he industrial temperature range of βˆ’40Β°C to +85Β°C.
Rev. 0 | Page 4 of 80
AD6653
www.BDTIC.com/ADI

SPECIFICATIONS

ADC DC SPECIFICATIONS

AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = βˆ’1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, unless otherwise noted.
Table 1.
AD6653BCPZ-125 AD6653BCPZ-150
Parameter Temperature
Min Typ Max Min Typ Max
RESOLUTION Full 12 12 Bits ACCURACY
No Missing Codes Full Guaranteed Guaranteed Offset Error Full Β±0.3 Β±0.6 Β±0.2 Β±0.6 % FSR Gain Error Full βˆ’3.9 βˆ’2.7 βˆ’0.7 βˆ’5.2 βˆ’3.2 βˆ’0.9 % FSR
MATCHING CHARACTERISTIC
Offset Error 25Β°C Β±0.3 Β±0.6 Β±0.2 Β±0.7 % FSR Gain Error 25Β°C Β±0.1 Β±0.7 Β±0.2 Β±0.7 % FSR
TEMPERATURE DRIFT
Offset Error Full Β±19 Β±17 ppm/Β°C Gain Error Full Β±38 Β±49 ppm/Β°C
INTERNAL VOLTAGE REFERENCE
Output Voltage Error (1 V Mode) Full Β±5 Β±18 Β±5 Β±18 mV Load Regulation @ 1.0 mA Full 7 7 mV
INPUT-REFERRED NOISE
VREF = 1.0 V 25Β°C 0.21 0.21 LSB rms
ANALOG INPUT
Input Span, VREF = 1.0 V Full 2 2 V p-p Input Capacitance
1
Full 8 8 pF VREF INPUT RESISTANCE Full 6 6 kΞ© POWER SUPPLIES
Supply Voltage
AVDD, DVDD Full 1.7 1.8 1.9 1.7 1.8 1.9 V DRVDD (CMOS Mode) Full 1.7 3.3 3.6 1.7 3.3 3.6 V DRVDD (LVDS Mode) Full 1.7 1.8 1.9 1.7 1.8 1.9 V
Supply Current
2, 3
I
AVDD
2, 3
I
DVDD
2
I
(3.3 V CMOS) Full 20 24 mA
DRVDD
2
I
(1.8 V CMOS) Full 12 15 mA
DRVDD
2
I
(1.8 V LVDS) Full 57 57 mA
DRVDD
Full 390 440 mA
Full 270
689
320
785
POWER CONSUMPTION
DC Input Full 770 800 870 905 mW Sine Wave Input2 (DRVDD = 1.8 V) Full 1215 1395 mW Sine Wave Input2 (DRVDD = 3.3 V) Full 1275 1450 mW Standby Power
4
Full 77 77 mW
Power-Down Power Full 2.5 8 2.5 8 mW
1
Input capacitance refers to the effective capacitance between one differential input pin and AGND. See Figure 11 for the equivalent analog input structure.
2
Measured with a 9.7 MHz, full-scale sine wave input, NCO enabled with a frequency of 13 MHz, FIR filter enabled and the fS/8 output mix enabled with approximately
5 pF loading on each output bit.
3
The maximum limit applies to the combination of I
4
Standby power is measured with a dc input and with the CLK pin inactive (set to AVDD or AGND).
AVDD
and I
DVDD
currents.
Unit
mA
Rev. 0 | Page 5 of 80
AD6653
www.BDTIC.com/ADI

ADC AC SPECIFICATIONS

AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = βˆ’1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, NCO enabled, half-band filter enabled, FIR filter enabled, unless otherwise noted.
Table 2.
Parameter
SIGNAL-TO-NOISE-RATIO (SNR)
fIN = 2.4 MHz 25Β°C 71.0 70.9 dB fIN = 70 MHz 25Β°C 70.8 70.8 dB Full 69.8 69.4 dB fIN = 140 MHz 25Β°C 70.6 70.6 dB fIN = 220 MHz 25Β°C 70.2 70.0 dB
WORST SECOND OR THIRD HARMONIC
fIN = 2.4 MHz 25Β°C βˆ’85 βˆ’84 dBc fIN = 70 MHz 25Β°C βˆ’84 βˆ’83 dBc Full βˆ’74 βˆ’73 dBc fIN = 140 MHz 25Β°C βˆ’83 βˆ’82 dBc fIN = 220 MHz 25Β°C βˆ’81 βˆ’77 dBc
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
fIN = 2.4 MHz 25Β°C 85 84 dBc fIN = 70 MHz 25Β°C 84 83 dBc Full 74 73 dBc fIN = 140 MHz 25Β°C 83 82 dBc fIN = 220 MHz 25Β°C 81 77 dBc
WORST OTHER HARMONIC OR SPUR
fIN = 2.4 MHz 25Β°C βˆ’92 βˆ’90 dBc fIN = 70 MHz 25Β°C βˆ’90 βˆ’87 dBc Full βˆ’82 βˆ’80 dBc fIN = 140 MHz 25Β°C βˆ’88 βˆ’83 dBc fIN = 220 MHz 25Β°C βˆ’84 βˆ’78 dBc
TWO-TONE SFDR
fIN = 29.12 MHz, 32.12 MHz (βˆ’7 dBFS) 25Β°C 85 85 dBc
fIN = 169.12 MHz, 172.12 MHz (βˆ’7 dBFS) 25Β°C 81 81 dBc CROSSTALK ANALOG INPUT BANDWIDTH 25Β°C 650 650 MHz
1
See Application Note AN-835, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.
2
See the Applications Information section for more information about the worst other specifications for the AD6653.
3
Crosstalk is measured at 100 MHz with βˆ’1 dBFS on one channel and with no input on the alternate channel.
1
2
3
Temperature
Full 95 95 dB
AD6653BCPZ-125 AD6653BCPZ-150
Min Typ Max Min Typ Max
Unit
Rev. 0 | Page 6 of 80
AD6653
www.BDTIC.com/ADI

DIGITAL SPECIFICATIONS

AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = βˆ’1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, unless otherwise noted.
Table 3.
AD6653BCPZ-125 AD6653BCPZ-150
Parameter Temp
DIFFERENTIAL CLOCK INPUTS
(CLK+, CLKβˆ’) Logic Compliance CMOS/LVDS/LVPECL CMOS/LVDS/LVPECL Internal Common-Mode Bias Full 1.2 1.2 V Differential Input Voltage Full 0.2 6 0.2 6 V p-p Input Voltage Range Full AVDD βˆ’ 0.3 AVDD + 1.6 AVDD βˆ’ 0.3 AVDD + 1.6 V Input Common-Mode Range Full 1.1 V AVDD 1.1 V AVDD V High Level Input Voltage Full 1.2 3.6 1.2 3.6 V Low Level Input Voltage Full 0 0.8 0 0.8 V High Level Input Current Full βˆ’10 +10 βˆ’10 +10 ΞΌA Low Level Input Current Full βˆ’10 +10 βˆ’10 +10 ΞΌA Input Capacitance Full 4 4 pF Input Resistance Full 8 10 12 8 10 12 kΞ©
SYNC INPUT
Logic Compliance CMOS CMOS Internal Bias Full 1.2 1.2 V Input Voltage Range Full AVDD βˆ’ 0.3 AVDD + 1.6 AVDD βˆ’ 0.3 AVDD + 1.6 V High Level Input Voltage Full 1.2 3.6 1.2 3.6 V Low Level Input Voltage Full 0 0.8 0 0.8 V High Level Input Current Full βˆ’10 +10 βˆ’10 +10 ΞΌA Low Level Input Current Full βˆ’10 +10 βˆ’10 +10 ΞΌA Input Capacitance Full 4 4 pF Input Resistance Full 8 10 12 8 10 12 kΞ©
LOGIC INPUT (CSB)
High Level Input Voltage Full 1.22 3.6 1.22 3.6 V Low Level Input Voltage Full 0 0.6 0 0.6 V High Level Input Current Full βˆ’10 +10 βˆ’10 +10 ΞΌA Low Level Input Current Full 40 132 40 132 ΞΌA Input Resistance Full 26 26 kΞ© Input Capacitance Full 2 2 pF
LOGIC INPUT (SCLK/DFS)
High Level Input Voltage Full 1.22 3.6 1.22 3.6 V Low Level Input Voltage Full 0 0.6 0 0.6 V High Level Input Current Full βˆ’92 βˆ’135 βˆ’92 βˆ’135 ΞΌA Low Level Input Current Full βˆ’10 +10 βˆ’10 +10 ΞΌA Input Resistance Full 26 26 kΞ© Input Capacitance Full 2 2 pF
LOGIC INPUTS (SDIO/DCS, SMI SDFS)
High Level Input Voltage Full 1.22 3.6 1.22 3.6 V Low Level Input Voltage Full 0 0.6 0 0.6 V High Level Input Current Full βˆ’10 +10 βˆ’10 +10 ΞΌA Low Level Input Current Full 38 128 38 128 ΞΌA Input Resistance Full 26 26 kΞ© Input Capacitance Full 5 5 pF
1
2
1
Min Typ Max Min Typ Max
Unit
Rev. 0 | Page 7 of 80
AD6653
www.BDTIC.com/ADI
AD6653BCPZ-125 AD6653BCPZ-150
Parameter Temp
LOGIC INPUTS (SMI SDO/OEB, SMI SCLK/PDWN)
High Level Input Voltage Full 1.22 3.6 1.22 3.6 V
Low Level Input Voltage Full 0 0.6 0 0.6 V
High Level Input Current Full βˆ’90 βˆ’134 βˆ’90 βˆ’134 ΞΌA
Low Level Input Current Full βˆ’10 +10 βˆ’10 +10 ΞΌA
Input Resistance Full 26 26 kΞ©
Input Capacitance Full 5 5 pF DIGITAL OUTPUTS
CMOS Modeβ€”DRVDD = 3.3 V
High Level Output Voltage
IOH = 50 ΞΌA Full 3.29 3.29 V IOH = 0.5 mA Full 3.25 3.25 V
Low Level Output Voltage
IOL = 1.6 mA Full 0.2 0.2 V IOL = 50 ΞΌA Full 0.05 0.05 V
CMOS Modeβ€”DRVDD = 1.8 V
High Level Output Voltage
IOH = 50 ΞΌA Full 1.79 1.79 V IOH = 0.5 mA Full 1.75 1.75 V
Low Level Output Voltage
IOL = 1.6 mA Full 0.2 0.2 V IOL = 50 ΞΌA Full 0.05 0.05 V
LVDS Modeβ€”DRVDD = 1.8 V
Differential Output Voltage (VOD),
ANSI Mode Output Offset Voltage (VOS), ANSI Mode Full 1.15 1.25 1.35 1.15 1.25 1.35 V Differential Output Voltage (VOD),
Reduced Swing Mode Output Offset Voltage (VOS),
Reduced Swing Mode
1
Pull up.
2
Pull down.
2
Full 250 350 450 250 350 450 mV
Full 150 200 280 150 200 280 mV
Full 1.15 1.25 1.35 1.15 1.25 1.35 V
Min Typ Max Min Typ Max
Unit
Rev. 0 | Page 8 of 80
AD6653
www.BDTIC.com/ADI

SWITCHING SPECIFICATIONS

Table 4.
AD6653BCPZ-125 AD6653BCPZ-150
Parameter Temperature
CLOCK INPUT PARAMETERS
Input Clock Rate Full 625 625 MHz Conversion Rate1
DCS Enabled Full 20 125 20 150 MSPS
DCS Disabled Full 10 125 10 150 MSPS CLK Periodβ€”Divide-by-1 Mode (t CLK Pulse Width High (t
Divide-by-1 Mode, DCS Enabled Full 2.4 4 5.6 2.0 3.33 4.66 ns
Divide-by-1 Mode, DCS Disabled Full 3.6 4 4.4 3.0 3.33 3.66 ns
Divide-by-2 Mode, DCS Enabled Full 1.6 1.6 ns
Divide-by-3 Through Divide-by-8 Modes,
DCS Enabled
DATA OUTPUT PARAMETERS (DATA, FD)
CMOS Noninterleaved Modeβ€”DRVDD = 1.8 V
Data Propagation Delay (tPD)2 Full 1.6 3.9 6.2 1.6 3.9 6.2 ns
DCO Propagation Delay (t
Setup Time (tS) Full 9.5 8.16 ns
Hold Time (tH) Full 6.5 5.16 ns CMOS Noninterleaved Modeβ€”DRVDD = 3.3 V
Data Propagation Delay (tPD)2 Full 1.9 4.1 6.4 1.9 4.1 6.4 ns
DCO Propagation Delay (t
Setup Time (tS) Full 9.7 8.36 ns
Hold Time (tH) Full 6.3 4.96 ns CMOS Interleaved and IQ Modeβ€”DRVDD = 1.8 V
Data Propagation Delay (tPD)2 Full 1.6 3.9 6.2 1.6 3.9 6.2 ns
DCO Propagation Delay (t
Setup Time (tS) Full 4.9 4.23 ns
Hold Time (tH) Full 3.1 2.43 ns CMOS Interleaved and IQ Modeβ€”DRVDD = 3.3 V
Data Propagation Delay (tPD) 2 Full 1.9 4.1 6.4 1.9 4.1 6.4 ns
DCO Propagation Delay (t
Setup Time (tS) Full 5.1 4.43 ns
Hold Time (tH) Full 2.9 2.23 ns LVDS Modeβ€”DRVDD = 1.8 V
Data Propagation Delay (tPD)2 Full 2.5 4.8 7.0 2.5 4.8 7.0 ns
DCO Propagation Delay (t Pipeline Delay (Latency) NCO, FIR, fS/8 Mix Disabled Full 38 38 Cycles Pipeline Delay (Latency) NCO Enabled; FIR and fS/8
Mix Disabled (Complex Output Mode) Pipeline Delay (Latency) NCO, FIR Filter, and fS/8 Mix
Enabled
Aperture Delay (tA) Full 1.0 1.0 ns
Aperture Uncertainty (Jitter, tJ) Full 0.1 0.1 ps rms
Wake-Up Time3 Full 350 350 ΞΌs
OUT-OF-RANGE RECOVERY TIME Full 44 44 Cycles
1
Conversion rate is the clock rate after the divider.
2
Output propagation delay is measured from CLK 50% transition to DATA 50% transition, with a 5 pF load.
3
Wake-up time is dependent on the value of the decoupling capacitors.
)
CLKH
) Full 8 6.66 ns
CLK
Full 0.8 0.8 ns
) Full 4.0 5.4 7.3 4.0 5.4 7.3 ns
DCO
) Full 4.4 5.8 7.7 4.4 5.8 7.7 ns
DCO
) Full 3.4 4.8 6.7 3.4 4.8 6.7 ns
DCO
) Full 3.8 5.2 7.1 3.8 5.2 7.1 ns
DCO
) Full 3.7 5.3 7.3 3.7 5.3 7.3 ns
DCO
Full 38 38 Cycles
Full 109 109 Cycles
Min Typ Max Min Typ Max
Unit
Rev. 0 | Page 9 of 80
AD6653
www.BDTIC.com/ADI

TIMING SPECIFICATIONS

Table 5.
Parameter Conditions Min Typ Max Unit
SYNC TIMING REQUIREMENTS
t
SYNC to the rising edge of CLK setup time 0.24 ns
SSYNC
t
SYNC to the rising edge of CLK hold time 0.4 ns
HSYNC
SPI TIMING REQUIREMENTS
tDS Setup time between the data and the rising edge of SCLK 2 ns tDH Hold time between the data and the rising edge of SCLK 2 ns t
Period of the SCLK 40 ns
CLK
tS Setup time between CSB and SCLK 2 ns tH Hold time between CSB and SCLK 2 ns t
Minimum period that SCLK should be in a logic high state 10 ns
HIGH
t
Minimum period that SCLK should be in a logic low state 10 ns
LOW
t
EN_SDIO
Time required for the SDIO pin to swit
ch from an input to an output
relative to the SCLK falling edge
t
DIS_SDIO
Time required for the SDIO pin to switch from an output to an input
elative to the SCLK rising edge
r
SPORT TIMING REQUIREMENTS
t
Delay from rising edge of CLK+ to rising edge of SMI SCLK 3.2 4.5 6.2 ns
CSSCLK
t
Delay from rising edge of SMI SCLK to SMI SDO βˆ’0.4 0 +0.4 ns
SSLKSDO
t
Delay from rising edge of SMI SCLK to SMI SDFS βˆ’0.4 0 +0.4 ns
SSCLKSDFS

Timing Diagrams

10 ns
10 ns
CLK+
t
PD
FD BITS
t
CHANNEL A/B
DATA BITS
S
DECIMATED CMOS DAT A
DECIMATED
FD DATA
DECIMATED
DCOA/DCOB
CHANNEL A/B
FD BITS
CHANNEL A/B
Figure 2. Decimated Noninterleaved CMOS Mode D
CLK+
t
PD
DECIMATED
CMOS DATA
DECIMATED
FD DATA
DECIMATED
DCOA/DCOB
Figure 3. Decimated Noninterleaved CMOS Mode Data and Fast Detect Out
CHANNEL A/B
CHANNEL A/B
t
S
DATA BITS
FD BITS
t
DCO
CHANNEL A/B
FD BITS
t
H
CHANNEL A/B
CHANNEL A/B
FD BITS
DATA BIT S
CHANNEL A/B
FD BITS
CHANNEL A/B
CHANNEL A/B
FD BITS
DATA BIT S
ata and Fast Detect Output Timing (Fast Detect Mode Select Bits = 000)
t
DCO
CHANNEL A/B
DATA BITS
CHANNEL A/B
FD BITS
t
H
CHANNEL A/B
DATA BITS
CHANNEL A/B
FD BITS
put Timing (Fast Detect Mode Select Bits = 001 Through Fast Detect Mode Select Bits = 100)
06708-109
06708-002
Rev. 0 | Page 10 of 80
AD6653
www.BDTIC.com/ADI
CLK+
t
PD
t
DCO
OUTPUT DATA
DECIMATED
INTERLEAVED
CMOS DATA
DECIMATED
INTERLEAVED
FD DATA
DECIMATED
DCO
CLK+
DECIMAT ED
CMOS IQ
CMOS FD
DATA
DECIMAT ED
DCOA/DCOB
CLK–
CHANNEL A:
DATA
CHANNEL A:
FD BITS
CHANNEL A/B:
Q DATA
CHANNEL A/B:
FD BITS
CHANNEL B:
DATA
CHANNEL B:
FD BITS
Figure 4. Decimated Interleaved CMO
t
PD
CHANNEL A/B:
I DATA
CHANNEL A/B:
FD BITS
t
S
t
H
CHANNEL A:
DATA
CHANNEL A:
FD BITS
t
S
CHANNEL A/B:
Q DATA
CHANNEL A/B:
FD BITS
CHANNEL B:
DATA
CHANNEL B:
FD BITS
t
H
S Mode Data and Fast Detect Output Timing
t
DCO
CHANNEL A/B:
I DATA
CHANNEL A/B:
FD BITS
Figure 5. Decimated IQ Mode CMOS Data and Fast Detect Output Timing
CHANNEL A:
DATA
CHANNEL A:
FD BITS
CHANNEL A/B:
Q DATA
CHANNEL A/B:
FD BITS
CHANNEL B:
DATA
CHANNEL B:
FD BITS
CHANNEL A/ B:
I DATA
CHANNEL A/ B:
FD BITS
06708-003
06708-004
CLK+
LVDS
DATA
LVDS
FAST DET
DCO–
DCO+
t
PD
CHANNEL A:
DATA
CHANNEL A:
FD
Figure 6. Decimated Interleaved
CHANNEL B:
DATA
CHANNEL B:
FD
CHANNEL A:
DATA
CHANNEL A:
FD
t
DCO
CHANNEL B:
DATA
CHANNEL B:
FD
LVDS Mode Data and Fast Detect Output Timing
CHANNEL A:
DATA
CHANNEL A:
FD
06708-005
CLK+
SYNC
t
SSYNC
t
HSYNC
06708-006
Figure 7. SYNC Timing Inputs
Rev. 0 | Page 11 of 80
AD6653
S
www.BDTIC.com/ADI
CLK+
CLK–
MI SCLK
SMI SDFS
SMI SDO
t
CSSCLK
t
SSCLKSDFS
Figure 8. Signal Monitor SPORT
t
SSCLKSDFS
Output Timing
DATA DATA
06708-007
Rev. 0 | Page 12 of 80
AD6653
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 6.
Parameter Rating
ELECTRICAL
AVDD, DVDD to AGND βˆ’0.3 V to +2.0 V DRVDD to DRGND βˆ’0.3 V to +3.9 V AGND to DRGND βˆ’0.3 V to +0.3 V VIN+A/VIN+B, VINβˆ’A/VINβˆ’B to AGND βˆ’0.3 V to AVDD + 0.2 V CLK+, CLKβˆ’ to AGND βˆ’0.3 V to +3.9 V SYNC to AGND βˆ’0.3 V to +3.9 V VREF to AGND βˆ’0.3 V to AVDD + 0.2 V SENSE to AGND βˆ’0.3 V to AVDD + 0.2 V CML to AGND βˆ’0.3 V to AVDD + 0.2 V RBIAS to AGND βˆ’0.3 V to AVDD + 0.2 V CSB to AGND βˆ’0.3 V to +3.9 V SCLK/DFS to DRGND βˆ’0.3 V to +3.9 V SDIO/DCS to DRGND βˆ’0.3 V to DRVDD + 0.3 V SMI SDO/OEB to DRGND βˆ’0.3 V to DRVDD + 0.3 V SMI SCLK/PDWN to DRGND βˆ’0.3 V to DRVDD + 0.3 V SMI SDFS to DRGND βˆ’0.3 V to DRVDD + 0.3 V D0A/D0B through D11A/D11B
to DRGND FD0A/FD0B through FD3A/FD3B
to DRGND DCOA/DCOB to DRGND βˆ’0.3 V to DRVDD + 0.3 V
ENVIRONMENTAL
Operating Temperature Range
(Ambient)
Maximum Junction Temperature
Under Bias
Storage Temperature Range
(Ambient)
βˆ’0.3 V to DRVDD + 0.3 V
βˆ’0.3 V to DRVDD + 0.3 V
βˆ’40Β°C to +85Β°C
150Β°C
βˆ’65Β°C to +125Β°C
Stresses above those listed under Absolute Maximum Ratings
y cause permanent damage to the device. This is a stress
ma rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

The exposed paddle must be soldered to the ground plane for the LFCSP package. Soldering the exposed paddle to the customer board increases the reliability of the solder joints and maximizes the thermal capability of the package.
Table 7. Thermal Resistance
Airflow Package Typ e
64-Lead LFCSP
9 mm Γ— 9 mm (CP-64-3)
1
Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board.
2
Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).
3
Per MIL-Std 883, Method 1012.1.
4
Per JEDEC JESD51-8 (still air).
Ve
lo city
(m/s) ΞΈ
0 18.8 0.6 6.0 Β°C/W
1.0 16.5 Β°C/W
2.0 15.8 Β°C/W
1, 2
JA
1, 3
ΞΈ
JC
1, 4
ΞΈ
Unit
JB
Typical ΞΈJA is specified for a 4-layer PCB with a solid ground plane. As shown, airflow increases heat dissipation, which reduces ΞΈ
. In addition, metal in direct contact with the
JA
package leads from metal traces, through holes, ground, and power planes, reduces the ΞΈ
.
JA

ESD CAUTION

Rev. 0 | Page 13 of 80
AD6653
www.BDTIC.com/ADI

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

DRGND
D3B
D2B
D1B
D0B (LSB)
DNC
DNC
DVDD
FD3B
FD2B
FD1B
FD0B
SYNC
CSB
CLK–
CLK+
49
48
SCLK/DFS
47
SDIO/DCS
46
AVDD
45
AVDD
44
VIN+B
43
VIN–B
42
RBIAS
41
CML
40
SENSE
39
VREF
38
VIN–A
37
VIN+A
36
AVDD
35
SMI SDFS
34
SMI SCLK/PDWN
33
SMI SDO/OEB
DRVDD
D4B D5B D6B D7B D8B D9B
D10B
D11B (MSB)
DCOB DCOA
DNC DNC
D0A (LSB)
D1A D2A
646362616059585756555453525150
PIN 1
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
INDICAT OR
EXPOSED PADDLE, PIN 0 (BOTTO M OF PACKAGE)
AD6653
PARALLEL CMO S
TOP VIEW
(Not to Scale)
DNC = DO NOT CONNECT
171819202122232425262728293031
D3A
D4A
D5A
D6A
D7A
D8A
D9A
D10A
FD0A
DRGND
DVDD
DRVDD
FD1A
D11A (MSB)
32
FD2A
FD3A
06708-008
Figure 9. LFCSP Parallel CMOS Pin Configuration (Top View)
Table 8. Pin Function Descriptions (Parallel CMOS Mode)
Pin No. Mnemonic Type Description
ADC Power Supplies 20, 64 DRGND Ground Digital Output Ground. 1, 21 DRVDD Supply Digital Output Driver Supply (1.8 V to 3.3 V). 24, 57 DVDD Supply Digital Power Supply (1.8 V Nominal). 36, 45, 46 AVDD Supply Analog Power Supply (1.8 V Nominal). 0 AGND Ground Analog Ground. Pin 0 is the exposed thermal pad on the bottom of the package. 12, 13, 58, 59 DNC Do Not Connect. ADC Analog 37 VIN+A Input Differential Analog Input Pin (+) for Channel A. 38 VINβˆ’A Input Differential Analog Input Pin (βˆ’) for Channel A. 44 VIN+B Input Differential Analog Input Pin (+) for Channel B. 43 VINβˆ’B Input Differential Analog Input Pin (βˆ’) for Channel B. 39 VREF Input/Output Voltage Reference Input/Output. 40 SENSE Input Voltage Reference Mode Select. See Table 11 for details. 42 RBIAS Input/Output External Reference Bias Resistor. 41 CML Output Common-Mode Level Bias Output for Analog Inputs. 49 CLK+ Input ADC Clock Inputβ€”True. 50 CLKβˆ’ Input ADC Clock Inputβ€”Complement. ADC Fast Detect Outputs 29 FD0A Output Channel A Fast Detect Indicator. See Ta ble 17 for details. 30 FD1A Output Channel A Fast Detect Indicator. See Ta ble 17 for details. 31 FD2A Output Channel A Fast Detect Indicator. See Ta ble 17 for details. 32 FD3A Output Channel A Fast Detect Indicator. See Ta ble 17 for details. 53 FD0B Output Channel B Fast Detect Indicator. See Table 17 for details. 54 FD1B Output Channel B Fast Detect Indicator. See Table 17 for details. 55 FD2B Output Channel B Fast Detect Indicator. See Table 17 for details. 56 FD3B Output Channel B Fast Detect Indicator. See Table 17 for details.
Rev. 0 | Page 14 of 80
AD6653
www.BDTIC.com/ADI
Pin No. Mnemonic Type Description
Digital Inputs 52 SYNC Input Digital Synchronization Pin. Slave mode only. Digital Outputs 14 D0A (LSB) Output Channel A CMOS Output Data. 15 D1A Output Channel A CMOS Output Data. 16 D2A Output Channel A CMOS Output Data. 17 D3A Output Channel A CMOS Output Data. 18 D4A Output Channel A CMOS Output Data. 19 D5A Output Channel A CMOS Output Data. 22 D6A Output Channel A CMOS Output Data. 23 D7A Output Channel A CMOS Output Data. 25 D8A Output Channel A CMOS Output Data. 26 D9A Output Channel A CMOS Output Data. 27 D10A Output Channel A CMOS Output Data. 28 D11A (MSB) Output Channel A CMOS Output Data. 60 D0B (LSB) Output Channel B CMOS Output Data. 61 D1B Output Channel B CMOS Output Data. 62 D2B Output Channel B CMOS Output Data. 63 D3B Output Channel B CMOS Output Data. 2 D4B Output Channel B CMOS Output Data. 3 D5B Output Channel B CMOS Output Data. 4 D6B Output Channel B CMOS Output Data. 5 D7B Output Channel B CMOS Output Data. 6 D8B Output Channel B CMOS Output Data. 7 D9B Output Channel B CMOS Output Data. 8 D10B Output Channel B CMOS Output Data. 9 D11B (MSB) Output Channel B CMOS Output Data. 11 DCOA Output Channel A Data Clock Output. 10 DCOB Output Channel B Data Clock Output. SPI Control 48 SCLK/DFS Input SPI Serial Clock/Data Format Select Pin in External Pin Mode. 47 SDIO/DCS Input/Output SPI Serial Data I/O/Duty Cycle Stabilizer Pin in External Pin Mode. 51 CSB Input SPI Chip Select. Active low. Signal Monitor Port 33 SMI SDO/OEB Input/Output Signal Monitor Serial Data Output/Output Enable Input (Active Low) in External Pin Mode.
35 SMI SDFS Output Signal Monitor Serial Data Frame Sync. 34 SMI SCLK/PDWN Input/Output Signal Monitor Serial Clock Output/Power-Down Input in External Pin Mode.
Rev. 0 | Page 15 of 80
AD6653
www.BDTIC.com/ADI
DRGND
DNC
DNC
FD3+
FD3–
FD2+
FD2–
DVDD
FD1+
FD1–
FD0+
FD0–
SYNC
CSB
CLK–
CLK+
49
48
SCLK/DFS
47
SDIO/DCS
46
AVDD
45
AVDD
44
VIN+B
43
VIN–B
42
RBIAS
41
CML
40
SENSE
39
VREF
38
VIN–A
37
VIN+A
36
AVDD
35
SMI SDFS
34
SMI SCLK/PDWN
33
SMI SDO/OEB
DRVDD
DNC
DNC D0– (LSB) D0+ (LSB )
D1– D1+ D2– D2+
DCO–
DCO+
D3– D3+ D4– D4+ D5–
646362616059585756555453525150
PIN 1
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
INDICATO R
EXPOSED PADDLE, PIN 0 (BOTTOM OF PACKAGE)
AD6653
PARALLEL L VDS
TOP VIEW
(Not to Scale)
DNC = DO NOT CONNECT
171819202122232425262728293031
D6–
D7–
D8–
D5+
D6+
DRGND
DRVDD
D7+
DVDD
D8+
D9–
D9+
D10–
D10+
32
D11– (MSB)
D11+ (MSB)
06708-009
Figure 10. LFCSP Interleaved Parallel LVDS Pin Configuration (Top View)
Table 9. Pin Function Descriptions (Interleaved Parallel LVDS Mode)
Pin No. Mnemonic Type Description
ADC Power Supplies 20, 64 DRGND Ground Digital Output Ground. 1, 21 DRVDD Supply Digital Output Driver Supply (1.8 V to 3.3 V). 24, 57 DVDD Supply Digital Power Supply (1.8 V Nominal). 36, 45, 46 AVDD Supply Analog Power Supply (1.8 V Nominal). 0 AGND Ground Analog Ground. Pin 0 is the exposed thermal pad on the bottom of the package. 2, 3, 62, 63 DNC Do Not Connect. ADC Analog 37 VIN+A Input Differential Analog Input Pin (+) for Channel A. 38 VINβˆ’A Input Differential Analog Input Pin (βˆ’) for Channel A. 44 VIN+B Input Differential Analog Input Pin (+) for Channel B. 43 VINβˆ’B Input Differential Analog Input Pin (βˆ’) for Channel B. 39 VREF Input/Output Voltage Reference Input/Output. 40 SENSE Input Voltage Reference Mode Select. See Table 1 1 for details. 42 RBIAS Input/Output External Reference Bias Resistor. 41 CML Output Common-Mode Level Bias Output for Analog Inputs. 49 CLK+ Input ADC Clock Inputβ€”True. 50 CLKβˆ’ Input ADC Clock Inputβ€”Complement. ADC Fast Detect Outputs 54 FD0+ Output Channel A/Channel B LVDS Fast Detect Indicator 0β€”True. See Table 17 for details. 53 FD0βˆ’ Output
Channel A/Channel B LVDS Fast Detect Indicator 0β€”Complement. See Table 1 7
r details.
fo 56 FD1+ Output Channel A/Channel B LVDS Fast Detect Indicator 1β€”True. See Table 17 for details. 55 FD1βˆ’ Output
Channel A/Channel B LVDS Fast Detect Indicator 1β€”Complement. See Table 1 7
r details.
fo 59 FD2+ Output Channel A/Channel B LVDS Fast Detect Indicator 2β€”True. See Table 17 for details. 58 FD2βˆ’ Output
Channel A/Channel B LVDS Fast Detect Indicator 2β€”Complement. See Table 1 7
r details.
fo 61 FD3+ Output Channel A/Channel B LVDS Fast Detect Indicator 3β€”True. See Table 17 for details. 60 FD3βˆ’ Output
Channel A/Channel B LVDS Fast Detect Indicator 3β€”Complement. See Table 1 7
r details.
fo
Rev. 0 | Page 16 of 80
AD6653
www.BDTIC.com/ADI
Pin No. Mnemonic Type Description
Digital Inputs 52 SYNC Input Digital Synchronization Pin. Slave mode only. Digital Outputs 5 D0+ (LSB) Output Channel A/Channel B LVDS Output Data 0β€”True. 4 D0βˆ’ (LSB) Output Channel A/Channel B LVDS Output Data 0β€”Complement. 7 D1+ Output Channel A/Channel B LVDS Output Data 1β€”True. 6 D1βˆ’ Output Channel A/Channel B LVDS Output Data 1β€”Complement. 9 D2+ Output Channel A/Channel B LVDS Output Data 2β€”True. 8 D2βˆ’ Output Channel A/Channel B LVDS Output Data 2β€”Complement. 13 D3+ Output Channel A/Channel B LVDS Output Data 3β€”True. 12 D3βˆ’ Output Channel A/Channel B LVDS Output Data 3β€”Complement. 15 D4+ Output Channel A/Channel B LVDS Output Data 4 β€”True. 14 D4βˆ’ Output Channel A/Channel B LVDS Output Data 4β€”Complement. 17 D5+ Output Channel A/Channel B LVDS Output Data 5β€”True. 16 D5βˆ’ Output Channel A/Channel B LVDS Output Data 5β€”Complement. 19 D6+ Output Channel A/Channel B LVDS Output Data 6β€”True. 18 D6βˆ’ Output Channel A/Channel B LVDS Output Data 6β€”Complement. 23 D7+ Output Channel A/Channel B LVDS Output Data 7β€”True. 22 D7βˆ’ Output Channel A/Channel B LVDS Output Data 7β€”Complement. 26 D8+ Output Channel A/Channel B LVDS Output Data 8β€”True. 25 D8βˆ’ Output Channel A/Channel B LVDS Output Data 8β€”Complement. 28 D9+ Output Channel A/Channel B LVDS Output Data 9β€”True. 27 D9βˆ’ Output Channel A/Channel B LVDS Output Data 9β€”Complement. 30 D10+ Output Channel A/Channel B LVDS Output Data 10β€”True. 29 D10βˆ’ Output Channel A/Channel B LVDS Output Data 10β€”Complement. 32 D11+ (MSB) Output Channel A/Channel B LVDS Output Data 11β€”True. 31 D11βˆ’ (MSB) Output Channel A/Channel B LVDS Output Data 11β€”Complement. 11 DCO+ Output Channel A/Channel B LVDS Data Clock Outputβ€”True. 10 DCOβˆ’ Output Channel A/Channel B LVDS Data Clock Outputβ€”Complement. SPI Control
48 SCLK/DFS Input SPI Serial Clock/Data Format Select Pin in External Pin Mode. 47 SDIO/DCS Input/Output SPI Serial Data Input/Output/Duty Cycle Stabilizer in External Pin Mode. 51 CSB Input SPI Chip Select. Active low.
Signal Monitor Port
33 SMI SDO/OEB Input/Output
35 SMI SDFS Output Signal Monitor Serial Data Frame Sync. 34 SMI SCLK/PDWN Input/Output
Signal Monitor Serial Data O Pin Mode.
Signal Monitor Serial Clock Output/Power-D Pin Mode.
utput/Output Enable Input (Active Low) in External
own Input (Active High) in External
Rev. 0 | Page 17 of 80
AD6653
V
C
S
A
V
www.BDTIC.com/ADI

EQUIVALENT CIRCUITS

LK+
IN
06708-010
Figure 11. Equivalent Analog Input Circuit
AVDD
1.2V
10kΩ 10kΩ
Figure 12. Equivalent Clock lnp
DRVDD
ut Circuit
CLK–
SCLK/DFS
Figure 15. Equivalent SCLK
SENSE
06708-011
1kΩ
26kΩ
/DFS Input Circuit
1kΩ
06708-014
06708-015
Figure 16. Equivalent SENSE Circuit
DRGND
6708-012
Figure 13. Equivalent Digital Output Circuit
DRVDD
DRVDD
26kΩ
DIO/DCS
1kΩ
06708-013
Figure 14. Equivalent SDIO/DCS Circuit or SMI SDFS Circuit
VDD
26kΩ
CSB
1kΩ
06708-016
Figure 17. Equivalent CSB Input Circuit
AVDD
REF
6kΩ
06708-017
Figure 18. Equivalent VREF Circuit
Rev. 0 | Page 18 of 80
AD6653
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

AVDD = 1.8 V, DVDD = 1.8 V, DRVDD = 1.8 V, sample rate = 150 MSPS, DCS enabled, 1.0 V internal reference, 2 V p-p differential input, VIN = βˆ’1.0 dBFS, 64k sample, T the location of the second and third harmonics is noted when they fall in the pass band of the filter.
0
–20
–40
–60
–80
AMPLITUDE ( dBFS)
–100
SECOND HARMONIC
THIRD HARMONIC
= 25Β°C, NCO enabled, FIR filter enabled, unless otherwise noted. In the FFT plots that follow,
A
150MSPS
2.4MHz @ –1dBF S SNR = 70.9dBc (71. 9dBFS) SFDR = 83.2dBc
f
= 18.75MHz
NCO
0
150MSPS
140.1MHz @ –1dBF S SNR = 70.6dBc (71.6dBFS)
–20
SFDR = 82.9dBc
f
= 126MHz
NCO
–40
–60
–80
AMPLITUDE ( dBFS)
–100
THIRD HARMONIC
SECOND HARMONIC
–120
–140
03
FREQUENCY (MHz)
Figure 19. AD6653-150 Single-Tone FFT with f
0
150MSPS
30.3MHz @ –1dBF S SNR = 71.0dBc (72.0dBFS)
–20
SFDR = 92.3dBc
f
= 24MHz
NCO
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
–140
03
FREQUENCY (MHz)
Figure 20. AD6653-150 Single-Tone FFT with f
0
150MSPS
70.1MHz @ –1dBF S SNR = 70.8dBc (71.8dBFS)
–20
SFDR = 82.9dBc
f
= 56MHz
NCO
–40
= 2.4 MHz, f
IN
= 30.3 MHz, f
IN
–120
5
30252015105
06708-018
= 18.75 MHz
NCO
5
30252015105
06708-019
= 24 MHz
NCO
–140
Figure 22. AD6653-150 Single-Tone FFT with f
–20
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
–140
Figure 23. AD6653-150 Single-Tone FFT with f
–20
–40
035
0
150MSPS
220.1MHz @ –1dBF S SNR = 70.0dBc (71.0dBFS) SFDR = 80.9dBc
f
= 205MHz
NCO
03530252015105
0
150MSPS
332.1MHz @ –1dBF S SNR = 69.4dBc (70.4dBFS) SFDR = 91.2dBc
f
= 321.5MHz
NCO
FREQUENCY (MHz)
IN
THIRD HARMONIC
FREQUENCY (MHz)
IN
30252015105
= 140.1 MHz, f
= 220.1 MHz, f
= 126 MHz
NCO
= 205 MHz
NCO
06708-021
06708-022
–60
–80
AMPLITUDE ( dBFS)
–100
–120
–140
03
THIRD HARMONIC
FREQUENCY (MHz)
Figure 21. AD6653-150 Single-Tone FFT with f
= 70.1 MHz, f
IN
5
30252015105
06708-020
= 56 MHz
NCO
–60
–80
AMPLITUDE ( dBFS)
–100
–120
–140
03530252015105
Figure 24. AD6653-150 Single-Tone FFT with f
Rev. 0 | Page 19 of 80
FREQUENCY (MHz)
f
= 321.5 MHz
NCO
= 332.1 MHz,
IN
06708-023
AD6653
www.BDTIC.com/ADI
0
150MSPS
445.1MHz @ –1dBF S SNR = 69.1dBc (70.1dBFS)
–20
SFDR = 73.7dBc
f
= 429MHz
NCO
–40
–60
–80
AMPLITUDE ( dBFS)
100
–
SECOND HARMONIC
THIRD HARMONIC
0
–20
–40
–60
–80
AMPLITUDE ( dBFS)
–100
125MSPS
70.3MHz @ –1dBFS SNR = 70.9dBc (71. 9dBFS) SFDR = 85.9dBc
f
= 78MHz
NCO
THIRD HARMONIC
–120
–140
03
FREQUENCY (MHz)
Figure 25. AD6653-150 Single-Tone FFT with f
0
–20
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
–140
SECOND HARMONIC
THIRD HARMONIC
03
FREQUENCY (MHz)
Figure 26. AD6653-125 Single-Tone FFT with f
0
125MSPS
30.3MHz @ –1dBF S SNR = 70.9dBc (71.9dBFS)
–20
SFDR = 90.7dBc
f
= 21MHz
NCO
–40
30252015105
= 445.1 MHz, f
IN
125MSPS
2.4MHz @ –1dBF S SNR = 71.0dBc (72. 0dBFS) SFDR = 84.6dBc
f
= 15.75MHz
NCO
= 2.4 MHz, f
IN
252015105
NCO
= 429 MHz
NCO
= 15.75 MHz
–120
–140
5
06708-024
030252015105
Figure 28. AD6653-125 Single-Tone FFT with f
0
–20
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
–140
0
06708-025
030252015105
Figure 29. AD6653-125 Single-Tone FFT with f
0
–20
–40
FREQUENCY (MHz)
IN
125MSPS
140.1MHz @ –1dBF S SNR = 70.6dBc (71. 6dBFS) SFDR = 86.1dBc
f
NCO
FREQUENCY (MHz)
= 140.1 MHz, f
IN
125MSPS
220.1MHz @ –1dBF S SNR = 70.2dBc (71. 2dBFS) SFDR = 87.9dBc
f
NCO
= 70.3 MHz, f
= 142MHz
THIRD HARMONIC
= 231MHz
= 78 MHz
NCO
= 142 MHz
NCO
06708-027
06708-028
–60
–80
AMPLITUDE ( dBFS)
–100
–120
–140
03
FREQUENCY (MHz)
Figure 27. AD6653-125 Single-Tone FFT with f
252015105
= 30.3 MHz, f
IN
THIRD
HARMONIC
0
06708-026
= 21 MHz
NCO
–60
–80
AMPLITUDE ( dBFS)
–100
–120
–140
030252015105
Figure 30. AD6653-125 Single-Tone FFT with f
Rev. 0 | Page 20 of 80
FREQUENCY (MHz)
= 220.1 MHz, f
IN
= 231 MHz
NCO
06708-029
AD6653
–
www.BDTIC.com/ADI
120
95
SNR/SFDR (dBc AND dBFS)
100
80
60
40
20
0
–90 0–10–20–30–40–50–60–70–80
SNR (dBFS)
SFDR (dBc)
SFDR (dBFS)
SNR (dBc)
INPUT AMPLITUDE (dBFS)
Figure 31. AD6653-150 Single-Tone S
= 2.4 MHz, f
f
IN
120
SFDR (dBFS)
SNR (dBc)
INPUT AMPLITUDE (dBFS)
SNR/SFDR (dBc AND dBFS)
100
80
60
40
20
0
–90 0–10–20–30–40–50–60–70–80
SNR (dBFS)
SFDR (dBc)
Figure 32. AD6653-150 Single-Tone S
= 98.12 MHz, f
f
IN
85dB REFERENCE LI NE
NR/SFDR vs. Input Amplitude (A
= 18.75 MHz
NCO
85dB REFERENCE LI NE
NR/SFDR vs. Input Amplitude (A
= 100.49 MHz
NCO
) with
IN
) with
IN
90
85
80
75
SNR/SFDR (dBc)
70
65
60
0440035030025020015010050
06708-030
SFDR = –40Β°C
Figure 34. AD6653-125 Single-Tone SNR/SFDR vs. Input Frequency (f
SFDR = +85Β°C
SNR = +25Β°C SNR = +85Β°C SNR = –40Β°C
INPUT FREQ UENCY (MHz)
SFDR = +25Β°C
50
06708-033
) and
IN
Temperature with DRVDD = 3.3 V
1.5
–2.0
OFFSET
–2.5
–3.0
GAIN ERROR (%F SR)
–3.5
–4.0
–40 806040200–20
06708-031
GAIN
TEMPERATURE (Β° C)
0.5
0.4
0.3
0.2
0.1
0
OFFSET ERROR (%FSR)
06708-034
Figure 35. AD6653-150 Gain and Offset vs. Temperature
95
90
SFDR = +85Β°C
85
80
75
SNR/SFDR (dBc)
70
65
60
04
SFDR = –40Β°C
SNR = +25Β°C SNR = +85Β°C SNR = –40Β°C
INPUT FREQ UENCY (MHz)
25020015010050
SFDR = +25Β°C
Figure 33. AD6653-125 Single-Tone SNR/SFDR vs. Input Frequency (f
Temperature with DRVDD = 1.8 V
50400350300
06708-032
) and
IN
Rev. 0 | Page 21 of 80
0
–20
SFDR (dBc)
–40
–60
–80
SFDR/IMD3 (dBc AND dBFS )
–100
–120
–90 –78 –66 –54 –42 –30 –18 –6
IMD3 (d Bc)
SFDR (dBFS)
IMD3 (dBFS)
INPUT AMPLITUDE (dBFS )
Figure 36. AD6653-150 Two-Tone SFDR/IMD3 vs. Input Amplitude (A
= 29.12 MHz, f
f
IN1
= 32.12 MHz, fS = 150 MSPS, f
IN2
= 22 MHz
NCO
) with
IN
06708-035
AD6653
www.BDTIC.com/ADI
0
–20
SFDR (dBc)
–40
IMD3 (d Bc)
–60
–80
SFDR/IMD3 (dBc AND dBFS )
SFDR (dBFS)
–100
IMD3 (dBFS)
0
–20
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
150MSPS
169.12MHz @ –7dBF S
172.12MHz @ –7dBF S SFDR = 83.6dBc (90.6dBFS )
f
= 177MHz
NCO
–120
–90 –78 –66 –54 –42 –30 –18 –6
INPUT AMPLITUDE (dBFS )
Figure 37. AD6653-150 Two-Tone SFDR/IMD3 vs. Input Amplitude (A
= 169.12 MHz, f
f
IN1
0
–20
–40
–60
–80
AMPLITUDE ( dBFS)
–100
–120
–140
0 5 10 15 20 25 30
Figure 38. AD6653-125, Two 64k WCDMA Carriers with f
0
150MSPS
29.12MHz @ –7dBF S
32.12MHz @ –7dBF S
–20
SFDR = 91.1dBc (98.1dBFS)
f
NCO
–40
= 172.12 MHz, fS = 150 MSPS, f
IN2
FREQUENCY ( MHz)
= 122.88 MHz, f
f
S
= 22MHz
= 168.96 MHz
NCO
= 177 MHz
NCO
= 170 MHz,
IN
) with
IN
–140
0330252015105
06708-036
Figure 40. AD6653-150 Two-Tone FFT with f
= 172.12 MHz, fS = 150 MSPS, f
f
IN2
0
–20
–40
–60
–80
AMPLITUDE ( dBFS)
–100
06708-037
–120
0 37.530.022.515.07. 5
FREQUENCY (MHz)
FREQUENCY (MHz )
= 169.12 MHz,
IN1
= 177 MHz
NCO
NPR = 61.9dBc NOTCH @ 18.5MHz NOTCH WIDT H = 3MHz
5
06708-039
06708-040
Figure 41. AD6653-150 Noise Power Ratio (NPR)
95
90
85
SFDR
–60
–80
AMPLITUDE ( dBFS)
–100
–120
–140
03
FREQUENCY (MHz)
Figure 39. AD6653-150 Two-Tone FFT with f
= 150 MSPS, f
f
S
NCO
= 29.12 MHz, f
IN1
= 22 MHz
30252015105
5
06708-038
= 32.12 MHz,
IN2
80
75
SNR/SFDR (dBc)
70
65
60
0 150125100755025
SAMPLE RATE (MSPS)
Figure 42. AD6653-150 Single-Tone SNR/SFDR vs. Sample Rate (f
f
Rev. 0 | Page 22 of 80
= 2.3 MHz
IN
SNR
) with
S
06708-041
AD6653
www.BDTIC.com/ADI
12
0.21 LSB rms
90
10
8
6
4
NUMBER OF HIT S (1M)
2
0
N – 3 N – 2 N – 1 N N + 1 N + 2 N + 3
OUTPUT CODE
Figure 43. AD6653 Grounded Input Histogram
90
85
SFDR DCS ON
80
SFDR DCS OFF
SNR DCS OFF
SNR/SFDR (dBc)
75
SNR DCS ON
70
85
SFDR
80
75
SNR/SFDR (dBc)
SNR
70
65
0.2 0.4 0. 6 0. 8 1. 0 1.2 1.4 1.6
06708-042
INPUT COMMON-MODE VOLTAGE (V)
06708-044
Figure 45. AD6653-150 SNR/SFDR vs. Input Common Mode (VCM) with
= 30.3 MHz, f
f
IN
= 45 MHz
NCO
65
20 30 40 50 60 70 80
DUTY CYCLE (%)
Figure 44. AD6653-150 SNR/SFDR vs. Duty Cycle with f
= 45 MHz
f
NCO
= 30.3 MHz,
IN
06708-043
Rev. 0 | Page 23 of 80
AD6653
www.BDTIC.com/ADI

THEORY OF OPERATION

The AD6653 has two analog input channels, two decimating channels, and two digital output channels. The intermediate frequency (IF) input signal passes through several stages before appearing at the output port(s) as a filtered, decimated digital signal.
The dual ADC design can be used for diversity reception of signals,
here the ADCs operate identically on the same carrier but from
w two separate antennae. The ADCs can also be operated with indeΒ­pendent analog inputs. The user can sample any f
/2 frequency
S
segment from dc to 150 MHz, using appropriate low-pass or band-pass filtering at the ADC inputs with little loss in ADC performance. Operation to 450 MHz analog input is permitted but occurs at the expense of increased ADC noise and distortion.
In nondiversity applications, the AD6653 can be used as a b
aseband receiver, where one ADC is used for I input data,
and the other is used for Q input data.
Synchronization capability is provided to allow synchronized timin
g between multiple channels or multiple devices. The NCO phase can be set to produce a known offset relative to another channel or device.
Programming and control of the AD6653 are accomplished usin
g a 3-bit SPI-compatible serial interface.

ADC ARCHITECTURE

AD6653 architecture consists of a front-end sample-and-hold amplifier (SHA), followed by a pipelined switched-capacitor ADC. The quantized outputs from each stage are combined into a final 12-bit result in the digital correction logic. The pipelined architecture permits the first stage to operate on a new input sample and the remaining stages to operate on the preceding samples. Sampling occurs on the rising edge of the clock.
Each stage of the pipeline, excluding the last, consists of a low
esolution flash ADC connected to a switched-capacitor digital-
r to-analog converter (DAC) and an interstage residue amplifier (MDAC). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each stage to facilitate digital correction of flash errors. The last stage simply consists of a flash ADC.
The input stage of each channel contains a differential SHA that ca
n be ac- or dc-coupled in differential or single-ended modes. The output staging block aligns the data, corrects errors, and passes the data to the output buffers. The output buffers are powered from a separate supply, allowing adjustment of the output voltage swing. During power-down, the output buffers go into a high impedance state.

ANALOG INPUT CONSIDERATIONS

The analog input to the AD6653 is a differential switchedΒ­capacitor SHA that has been designed for optimum performance while processing a differential input signal.
The clock signal alternatively switches the SHA between sample mode and hold mode (see Figure 46). When the SHA is switched in
to sample mode, the signal source must be capable of charging
the sample capacitors and settling within 1/2 of a clock cycle.
A small resistor in series with each input can help reduce the
eak transient current required from the output stage of the
p driving source. A shunt capacitor can be placed across the inputs to provide dynamic charging currents. This passive network creates a low-pass filter at the ADC input; therefore, the precise values are dependent on the application.
In IF undersampling applications, any shunt capacitors should b
e reduced. In combination with the driving source impedance, the shunt capacitors limit input bandwidth. Refer to Application Note AN-742, Frequency Domain Response of Switched-
Capacitor ADCs; Application Note AN-827, A Resonant Approach to Interfacing Amplifiers to Switched-Capacitor ADCs; and the Analog Dialogue article, β€œ
Wi
deband A/D Converters,” for more information on this subject
(see www.analog.com).
Transformer-Coupled Front-End for
In general, the precise values are
dependent on the application.
S
C
H
C
H
S
06708-048
VIN+
VIN–
C
PIN, PAR
C
PIN, PAR
Figure 46. Switched-Capac
S
S
C
S
H
C
S
itor SHA Input
For best dynamic performance, the source impedances driving VIN+ and VINβˆ’ should be matched such that common-mode settling errors are symmetrical. These errors are reduced by the common-mode rejection of the ADC.
An internal differential reference buffer creates positive and n
egative reference voltages that define the input span of the ADC core. The output common mode of the reference buffer is set to VCMREF (approximately 1.6 V).

Input Common Mode

The analog inputs of the AD6653 are not internally dc biased. In ac-coupled applications, the user must provide this bias externally. Setting the device so that V
= 0.55 Γ— AVDD is
CM
recommended for optimum performance, but the device functions over a wider range with reasonable performance (see Figure 45). An o
n-board common-mode voltage reference is included in the design and is available from the CML pin. Optimum performance is achieved when the common-mode voltage of the analog input is set by the CML pin voltage (typically 0.55 Γ— AVDD).
Rev. 0 | Page 24 of 80
Loading...
+ 56 hidden pages