ANALOG DEVICES AD 628 ARMZ Datasheet

Page 1
High Common-Mode Voltage,
Programmable Gain Difference Amplifier

FEATURES

High common-mode input voltage range
±120 V at V Gain range 0.1 to 100 Operating temperature range: −40°C to +85°C Supply voltage range
Dual supply: ±2.25 V to ±18 V
Single supply: 4.5 V to 36 V Excellent ac and dc performance Offset temperature stability RTI: 10 μV/°C maximum Offset: ±1.5 V mV maximum CMRR RTI: 75 dB minimum, dc to 500 Hz, G = +1

APPLICATIONS

High voltage current shunt sensing Programmable logic controllers Analog input front end signal conditioning
+5 V, +10 V, ±5 V, ±10 V, and 4 to 20 mA Isolation Sensor signal conditioning Power supply monitoring Electrohydraulic controls Motor controls

GENERAL DESCRIPTION

The AD628 is a precision difference amplifier that combines excellent dc performance with high common-mode rejection over a wide range of frequencies. When used to scale high voltages, it allows simple conversion of standard control voltages or currents for use with single-supply ADCs. A wideband feedback loop minimizes distortion effects due to capacitor charging of Σ- ADCs.
A reference pin (V to single-sided signals. The AD628 converts +5 V, +10 V, ±5 V, ±10 V, and 4 to 20 mA input signals to a single-ended output within the input range of single-supply ADCs.
The AD628 has an input common mode and differential mode operating range of ±120 V. The high common mode, input impedance makes the device well suited for high voltage measurements across a shunt resistor. The inverting input of the buffer amplifier is available for making a remote Kelvin connection.
= ±15 V
S
) provides a dc offset for converting bipolar
REF
AD628

FUNCTIONAL BLOCK DIAGRAM

EXT2
R
EXT1
R
G
67
–IN
+IN
AD628
VS = ±2.5V
A2
OUT
5
R
+V
S
–IN
+IN
100k
8
100k
1
10k
G = +0.1
–IN
A1
+IN
10k
2 3 4
–V
S
10k
V
REF
C
FILT
Figure 1.
130
120
110
100
90
80
CMRR (dB)
70
60
50
40
30
10010 1k 10k 100k
VS = ±15V
FREQUENCY (Hz)
Figure 2. CMRR vs. Frequency of the AD628
A precision 10 kΩ resistor connected to an external pin is provided for either a low-pass filter or to attenuate large differential input signals. A single capacitor implements a low­pass filter. The AD628 operates from single and dual supplies and is available in an 8-lead SOIC_N or an 8-lead MSOP. It operates over the standard industrial temperature range of
−40°C to +85°C.
2992-001
02992-002
Rev. G
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2002–2007 Analog Devices, Inc. All rights reserved.
Page 2
AD628

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications....................................................................................... 1
General Description......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 7
Thermal Characteristics .............................................................. 7
ESD Caution.................................................................................. 7
Pin Configuration and Function Descriptions............................. 8
Typical Performance Characteristics ............................................. 9
Test Cir c ui t s .....................................................................................13

REVISION HISTORY

4/07—Rev. F to Rev. G
Changes to Features.......................................................................... 1
Changes to Figure 22...................................................................... 11
Changes to Figure 25...................................................................... 13
Changes to Voltage Level Conversion Section............................ 17
Changes to Monitoring Battery Voltages Section ...................... 18
Changes to Figure 34...................................................................... 18
Changes to Figure 35...................................................................... 19
Updated Outline Dimensions....................................................... 20
3/06—Rev. E to Rev. F
Changes to Table 1............................................................................ 3
Changes to Figure 3.......................................................................... 7
Replaced Voltage Level Conversion Section ............................... 16
Changes to Figure 32 and Figure 33............................................. 17
Updated Outline Dimensions....................................................... 19
Changes to Ordering Guide.......................................................... 19
5/05—Rev. D to Rev. E
Changes to Table 1........................................................................... 3
Changes to Table 2........................................................................... 5
Changes to Figure 33.....................................................................18
3/05—Rev. C to Rev. D
Updated Format................................................................ Universal
Changes to Table 1........................................................................... 3
Changes to Table 2........................................................................... 5
4/04—Rev. B to Rev. C
Updated Format................................................................ Universal
Changes to Specifications............................................................... 3
Theory of Operation ...................................................................... 15
Applications Information.............................................................. 16
Gain Adjustment........................................................................ 16
Input Voltage Range................................................................... 16
Voltage Level Conversion.......................................................... 17
Current Loop Receiver .............................................................. 18
Monitoring Battery Voltages..................................................... 18
Filter Capacitor Values............................................................... 19
Kelvin Connection ..................................................................... 19
Outline Dimensions ....................................................................... 20
Ordering Guide .......................................................................... 20
Changes to Absolute Maximum Ratings...................................... 7
Changes to Figure 3......................................................................... 7
Changes to Figure 26.....................................................................13
Changes to Figure 27.....................................................................13
Changes to Theory of Operation................................................. 14
Changes to Figure 29.....................................................................14
Changes to Table 5.........................................................................15
Changes to Gain Adjustment Section......................................... 15
Added the Input Voltage Range Section..................................... 15
Added Figure 30 ............................................................................15
Added Figure 31 ............................................................................15
Changes to Voltage Level Conversion Section ..........................16
Changes to Figure 32.....................................................................16
Changes to Table 6.........................................................................16
Changes to Figure 33 and Figure 34............................................ 17
Changes to Figure 35.....................................................................18
Changes to Kelvin Connection Section...................................... 18
6/03—Rev. A to Rev. B
Changes to General Description ...................................................1
Changes to Specifications............................................................... 2
Changes to Ordering Guide........................................................... 4
Changes to TPCs 4, 5, and 6 .......................................................... 5
Changes to TPC 9............................................................................ 6
Updated Outline Dimensions...................................................... 14
1/03—Rev. 0 to Rev. A
Change to Ordering Guide............................................................. 4
11/02—Rev. 0: Initial Version
Rev. G | Page 2 of 20
Page 3
AD628

SPECIFICATIONS

TA = 25°C, VS = ±15 V, RL = 2 kΩ, R
Table 1.
AD628AR AD628ARM Parameter Conditions Min Typ Max Min Typ Max Unit
DIFFERENTIAL AND OUTPUT AMPLIFIER
Gain Equation G = +0.1 (1 + R Gain Range See Figure 29 0.11 100 0.11 100 V/V Offset Voltage
vs. Temperature 4 8 4 8 μV/°C
3
CMRR
500 Hz 75 75 dB
Minimum CMRR Over Temperature −40°C to +85°C 70 70 dB
vs. Temperature 1 4 1 4 (μV/V)/°C PSRR (RTI) VS = ±10 V to ±18 V 77 94 77 94 dB Input Voltage Range
Common Mode −120 +120 −120 +120 V Differential −120 +120 −120 +120 V
Dynamic Response
Small Signal Bandwidth −3 dB G = +0.1 600 600 kHz Full Power Bandwidth 5 5 kHz Settling Time G = +0.1, to 0.01%, 100 V step 40 40 μs Slew Rate 0.3 0.3 V/μs
Noise (RTI)
Spectral Density 1 kHz 300 300 nV/√Hz
0.1 Hz to 10 Hz 15 15 μV p-p DIFFERENTIAL AMPLIFIER
Gain 0.1 0.1 V/V
Error −0.1 +0.01 +0.1 −0.1 +0.01 +0.1 %
vs. Temperature 5 5 ppm/°C
Nonlinearity 5 5 ppm
vs. Temperature 3 10 3 10 ppm Offset Voltage RTI of input pins −1.5 +1.5 −1.5 +1.5 mV
vs. Temperature 8 8 μV/°C
Input Impedance
Differential 220 220 kΩ Common Mode 55 55
4
CMRR
500 Hz 75 75 dB
Minimum CMRR Over Temperature −40°C to +85°C 70 70 dB
vs. Temperature 1 4 1 4 (μV/V)/°C Output Resistance 10 10
Error −0.1 +0.1 −0.1 +0.1 %
= 10 kΩ, R
EXT1
V
EXT2
= 0 V; RTI of input pins2;
CM
output amplifier G = +1
RTI of input pins; G = +0.1 to +100
RTI of input pins; G = +0.1 to +100
= ∞, V
EXT1/REXT2
= 0 V, unless otherwise noted.
REF
) V/V
−1.5 +1.5 −1.5 +1.5 mV
75 75 dB
75 75 dB
Rev. G | Page 3 of 20
Page 4
AD628
AD628AR AD628ARM Parameter Conditions Min Typ Max Min Typ Max Unit
OUTPUT AMPLIFIER
Gain Equation G = (1 + R
Nonlinearity G = +1, V
EXT1/REXT2
OUT
Offset Voltage RTI of output amp −0.15 +0.15 −0.15 +0.15 mV
vs. Temperature 0.6 0.6 μV/°C
Output Voltage Swing RL = 10 kΩ −14.2 +14.1 −14.2 +14.1 V
R
= 2 kΩ −13.8 +13.6 −13.8 +13.6 V
L
Bias Current 1.5 3 1.5 3 nA Offset Current 0.2 0.5 0.2 0.5 nA CMRR VCM = ±13 V 130 130 dB Open-Loop Gain V
= ±13 V 130 130 dB
OUT
POWER SUPPLY
Operating Range ±2.25 ±18 ±2.25 ±18 V Quiescent Current 1.6 1.6 mA
TEMPERATURE RANGE −40 +85 −40 +85 °C
1
To use a lower gain, see the Ga section. in Adjustment
2
The addition of the difference amplifier and output amplifier offset voltage does not exceed this specification.
3
Error due to common mode as seen at the output:
4
Error due to common mode as seen at the output of A1:
OUT
=V
⎢ ⎢
V
OUT
) V/V
= ±10 V 0.5 0.5 ppm
)(0.1)(
V
10
A1
CM
×
75
20
⎡ ⎢
=
⎢ ⎢
)(0.1)(
V
CM
.
75
20
10
][
GainAmplifierOutput
.
Rev. G | Page 4 of 20
Page 5
AD628
TA = 25°C, VS = 5 V, RL = 2 kΩ, R
Table 2.
AD628AR AD628ARM Parameter Conditions Min Typ Max Min Typ Max Unit
DIFFERENTIAL AND OUTPUT AMPLIFIER
Gain Equation G = +0.1(1+ R Gain Range See Figure 29 0.11 100 0.11 100 V/V Offset Voltage
vs. Temperature 6 15 6 15 μV/°C
3
CMRR 500 Hz 75 75 dB
Minimum CMRR Over Temperature −40°C to +85°C 70 70 dB
vs. Temperature 1 4 1 4 (μV/V)/°C
PSRR (RTI) VS = 4.5 V to 10 V 77 94 77 94 dB Input Voltage Range
Common Mode
4
Differential −15 +15 −15 +15 V
Dynamic Response
Small Signal Bandwidth – 3 dB G = +0.1 440 440 kHz Full Power Bandwidth 30 30 kHz Settling Time G = +0.1; to 0.01%, 30 V step 15 15 μs Slew Rate 0.3 0.3 V/μs
Noise (RTI)
Spectral Density 1 kHz 350 350 nV/√Hz
0.1 Hz to 10 Hz 15 15 μV p-p DIFFERENTIAL AMPLIFIER
Gain 0.1 0.1 V/V
Error –0.1 +0.01 +0.1 –0.1 +0.01 +0.1 % Nonlinearity 3 3 ppm
vs. Temperature 3 10 3 10 ppm
Offset Voltage RTI of input pins −2.5 +2.5 −2.5 +2.5 mV
vs. Temperature 10 10 μV/°C
Input Impedance
Differential 220 220 kΩ Common Mode 55 55
5
CMRR 500 Hz 75 75 dB
Minimum CMRR Over Temperature −40°C to +85°C 70 70 dB
vs. Temperature 1 4 1 4 (μV/V)/°C
Output Resistance 10 10
Error −0.1 +0.1 −0.1 +0.1 %
OUTPUT AMPLIFIER
Gain Equation G = (1 + R
Nonlinearity G = +1, V
Output Offset Voltage RTI of output amplifier −0.15 +0.15 −0.15 +0.15 mV
vs. Temperature 0.6 0.6 μV/°C Output Voltage Swing RL = 10 kΩ 0.9 4.1 0.9 4.1 V R Bias Current 1.5 3 1.5 3 nA Offset Current 0.2 0.5 0.2 0.5 nA CMRR VCM = 1 V to 4 V 130 130 dB Open-Loop Gain V
= 10 kΩ, R
EXT1
= ∞, V
EXT2
= 2.25 V; RTI of input pins2;
V
CM
= 2.5 V, unless otherwise noted.
REF
EXT1/REXT2
) V/V
−3.0 +3.0 −3.0 +3.0 mV
output amplifier G = +1
RTI of input pins; G = +0.1 to +100 75 75 dB
−12 +17 −12 +17 V
RTI of input pins; G = +0.1 to +100 75 75 dB
EXT1/REXT2
OUT
= 2 kΩ 1 4 1 4 V
L
= 1 V to 4 V 130 130 dB
OUT
) V/V
= 1 V to 4 V 0.5 0.5 ppm
Rev. G | Page 5 of 20
Page 6
AD628
AD628AR AD628ARM Parameter Conditions Min Typ Max Min Typ Max Unit
POWER SUPPLY
Operating Range ±2.25 +36 ±2.25 +36 V Quiescent Current 1.6 1.6 mA
TEMPERATURE RANGE −40 +85 −40 +85 °C
1
To use a lower gain, see the Gain Adjustment section.
2
The addition of the difference amplifier and output amplifier offset voltage does not exceed this specification.
10
A1
)(0.1)(
V
CM
×
75
20
.
REF
⎡ ⎢
=
⎢ ⎢
)(0.1)(
V
CM
.
75
20
10
GainAmplifierOutput
3
Error due to common mode as seen at the output: ][
4
Greater values of voltage are possible with greater or lesser values of V
5
Error due to common mode as seen at the output of A1:
V .
=
OUT
⎢ ⎢
V
OUT
Rev. G | Page 6 of 20
Page 7
AD628
A

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Rating
Supply Voltage ±18 V Internal Power Dissipation See Figure 3 Input Voltage (Common Mode) ±120 V Differential Input Voltage ±120 V
1
1
Output Short-Circuit Duration Indefinite Storage Temperature Range −65°C to +125°C Operating Temperature Range –40°C to +85°C Lead Temperature (Soldering, 10 sec) 300°C
1
When using ±12 V supplies or higher, see the section. Input Voltage Range
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

1.6
1.4
1.2
1.0
TION (W)
0.8
0.6
POWER DISSIP
0.4
0.2
8-LEAD SOIC PACKAGE
MSOP SOIC
0
(JEDEC; 4-L AYER BOARD) = 132.54°C/W
JA
(JEDEC; 4-L AYER BOARD) = 154°C/W
JA
AMBIENT TEMPERATURE (°C)
8-LEAD MSOP PACKAGE
200–40 –20–60 40 60 80 100
Figure 3. Maximum Power Dissipation vs. Temperature
TJ = 150°C
02992-003

ESD CAUTION

Rev. G | Page 7 of 20
Page 8
AD628

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

8
–IN
7
+V
S
6
R
G
5
OUT
02992-004
V
C
+IN
–V
REF
FILT
S
1
2
AD628
TOP VIEW
3
(Not to Scale)
4
Figure 4. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 +IN Noninverting Input 2 −VS Negative Supply Voltage 3 V 4 C
Reference Voltage Input
REF
Filter Capacitor Connection
FILT
5 OUT Amplifier Output 6 RG Output Amplifier Inverting Input 7 +VS Positive Supply Voltage 8 −IN Inverting Input
Rev. G | Page 8 of 20
Page 9
AD628

TYPICAL PERFORMANCE CHARACTERISTICS

140
G = +0.1
120
100
80
60
PSRR (d B)
40
20
–15V +15V
+2.5V
% OF UNIT S
40
8440 UNITS
35
30
25
20
15
10
5
0
–1.6 –1. 2 –0.8 –0.4 0 0.4 0.8 1.2 1.6 2.0
INPUT OFFSET VOLTAGE (mV)
Figure 5. Typical Distribution of Input Offset Voltage,
= ±15 V, SOIC_N Package
V
S
25
8440 UNITS
20
15
10
% OF UNITS
5
0
–74 –78 –82 –86 –90 –94 –98 –102 –106 –110
CMRR (dB)
Figure 6. Typical Distribution of CMRR, SOIC_N Package
130
120
110
100
90
80
CMRR (dB)
70
60
50
40
30
10010 1k 10k 100k
VS = ±15V
VS = ±2.5V
FREQUENCY (Hz)
Figure 7. CMRR vs. Frequency
0
0.1 1 10 100 1k 10k 100k 1M
02992-005
FREQUENCY ( Hz)
02992-008
Figure 8. PSRR vs. Frequency, Single and Dual Supplies
1000
VOLTAGE NOISE DENSITY (nV/ Hz)
100
1 10 100 1k 10k 100k
02992-006
Figure 9. Voltage Noise Spectral Density, RTI, V
FREQUENCY (Hz)
= ±15 V
S
02992-009
1000
VOLTAGE NOISE DENSITY (nV/Hz )
100
1 10 100 1k 10k 100k
02992-007
Figure 10. Voltage Noise Spectral Density, RTI, V
FREQUENCY ( Hz)
= ±2.5 V
S
02992-010
Rev. G | Page 9 of 20
Page 10
AD628
40
1s
100
90
9638 UNITS
35
30
25
20
NOISE (5µV/DIV)
10
0
0
5
TIME (S econds)
Figure 11. 0.1 Hz to 10 Hz Voltage Noise, RTI
60
50
G = +100
40
30
G = +10
20
10
G = +1
GAIN (dB)
0
–10
G = +0.1
–20
–30
–40
100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
Figure 12. Small Signal Frequency Response,
V
= 200 mV p-p, G = +0.1, +1, +10, and +100
OUT
60
50
G = +100
40
30
G = +10
20
10
G = +1
GAIN (dB)
0
–10
G = +0.1
–20
–30
–40
10 100 1k 10k 100k 1M
FREQUENCY (Hz)
Figure 13. Large Signal Frequency Response,
V
= 20 V p-p, G = +0.1, +1, +10, and +100
OUT
15
% OF DEVICES
10
5
10
02992-011
0
012345678910
GAIN ERROR (ppm)
02992-014
Figure 14. Typical Distribution of +1 Gain Error
150
UPPER CMV LIMIT
100
–40°C
50
0
+25°C
–50
COMMON-MODE VOLTAGE (V)
–100
–150
02992-012
+85°C
–40°C
+85°C
501015
VS (±V)
V
= 0V
REF
LOWER CMV LIMIT
20
02992-015
Figure 15. Common-Mode Operating Range vs.
Power Supply Voltage for Three Temperatures
500µV
100
90
OUTPUT ERROR ( µV)
10
0
02992-013
Figure 16. Normalized Gain Error vs. V
VS= ±15V
RL = 1k
RL = 2k
RL = 10k
OUTPUT VOLTAGE (V)
, VS = ±15 V
OUT
4.0V
02992-016
Rev. G | Page 10 of 20
Page 11
AD628
100µV
100
90
OUTPUT ERROR (µ V)
10
0
Figure 17. Normalized Gain Error vs. V
VS= ±2.5V
RL = 1k
RL = 2k
RL = 10k
OUTPUT VOLTAGE (V)
, VS = ±2.5 V
OUT
4
3
2
BIAS CURRENT (nA)
1
0
–40 –20 0 20 40 60 80 100
TEMPERATURE (°C)
Figure 18. Bias Current vs. Temperature Buffer
15
10
5
–40°C
–25°C
+85°C
+25°C
500mV
500mV
100
90
10
0
50mV
02992-017
4µs
02992-020
Figure 20. Small Signal Pulse Response,
= 2 kΩ, CL = 0 pF, Top: Input, Bottom: Output
R
L
500mV
100
90
10
0
50mV
02992-018
4µs
02992-021
Figure 21. Small Signal Pulse Response,
= 2 kΩ, CL = 1000 pF, Top: Input, Bottom: Output
R
L
100
90
10.0V
0
–5
OUTPUT VOLTAGE SWING (V)
–10
–15
0 5 10 15 2 0 25
OUTPUT CURRENT ( mA)
+85°C
+25°C
–40°C
–25°C
Figure 19. Output Voltage Operating Range vs. Output Current
02992-019
Rev. G | Page 11 of 20
10.0V
10
0
Figure 22. Large Signal Pulse Response,
= 2 kΩ, CL = 1000 pF, Top: Input, Bottom: Output
R
L
40µs
02992-022
Page 12
AD628
100
90
5V
10mV
10
0
100µs
Figure 23. Settling Time to 0.01%, 0 V to 10 V Step
02992-023
100
90
5V
10mV
10
0
100µs
Figure 24. Settling Time to 0.01% 0 V to −10 V Step
02992-024
Rev. G | Page 12 of 20
Page 13
AD628

TEST CIRCUITS

HP3589A
SPECTRUM ANALYZER
+V
S
7
–IN
8
100k
+IN
1
100k
–IN
8
100k
+IN
1
100k
10k 10k
–IN
G = +0.1
+IN
10k
C
V
REF
3246
FILT
–V
S
OP177
+
Figure 25. CMRR vs. Frequency
+V
S
7
10k 10k
–IN
G = +0.1
+IN
10k
G = +100
+IN
–IN
AD628
+IN
–IN
R
G
AD628
OUT
5
OUT
5
1VAC
+15V
20
AD829
+
G = +100
G = +100
+
AD829
FET
PROBE
SCOPE
02992-025
32 46
V
REF
C
FILT
–V
S
R
G
Figure 26. PSRR vs. Frequency
Rev. G | Page 13 of 20
02992-026
Page 14
AD628
HP3561A
SPECTRUM ANALYZER
+V
S
C
FILT
7
4
–IN
+IN
100k
8
100k
1
V
REF
10k 10k
–IN
G = +0.1
+IN
10k
–V
S
10k
+IN
–IN
5
OUT
AD628
623
R
G
10k
02992-027
Figure 27. Noise Tests
Rev. G | Page 14 of 20
Page 15
AD628

THEORY OF OPERATION

The AD628 is a high common-mode voltage difference amplifier, combined with a user-configurable output amplifier (see
Figure 28 and Figure 29). Differential mode voltages in excess of 120 V are accurately scaled by a precision 11:1 voltage divider at the input. A reference voltage input is available to the user at Pin 3 (V
). The output common-mode voltage of the
REF
difference amplifier is the same as the voltage applied to the reference pin. If the uncommitted amplifier is configured for gain, connect Pin 3 to one end of the external gain resistor to establish the output common-mode voltage at Pin 5 (OUT).
The output of the difference amplifier is internally connected to a 10 kΩ resistor trimmed to better than ±0.1% absolute accuracy. The resistor is connected to the noninverting input of the output amplifier and is accessible at Pin 4 (C
). A capacitor
FILT
can be connected to implement a low-pass filter, a resistor can be connected to further reduce the output voltage, or a clamp circuit can be connected to limit the output swing.
The uncommitted amplifier is a high open-loop gain, low offset, low drift op amp, with its noninverting input connected to the internal 10 kΩ resistor. Both inputs are accessible to the user.
Careful layout design has resulted in exceptional common­mode rejection at higher frequencies. The inputs are connected to Pin 1 (+IN) and Pin 8 (−IN), which are adjacent to the power pins, Pin 2 (−V
) and Pin 7 (+VS). Because the power pins are at
S
ac ground, input impedance balance and, therefore, common­mode rejection are preserved at higher frequencies.
R
G
6
–IN
+IN
10k
10k
G = +0.1
A1
V
REF
10k
–IN
A2
+IN
43
C
FILT
5
OUT
–IN
+IN
100k
8
100k
1
Figure 28. Simplified Schematic
02992-028
C
FILT
47
AD628
+IN
A2
–IN
6
G
R
EXT3
R
EXT1
5
OUT
02992-029
–IN
+IN
+V
S
S
REFERENCE
10k
G = +0.1
–IN
A1
+IN
10k
VOLTAGE
10k
32
V
REF
R
R
EXT2
100k
8
100k
1
–V
Figure 29. Circuit Connections
Rev. G | Page 15 of 20
Page 16
AD628
+

APPLICATIONS INFORMATION

GAIN ADJUSTMENT

The AD628 system gain is provided by an architecture consisting of two amplifiers (see input stage is fixed at 0.1; the output buffer is user adjustable as G
= 1 + R
A2
G 10.1
TOTAL
EXT1/REXT2
. The system gain is then
R
+×=
R
At a 2 nA maximum, the input bias current of the buffer amplifier is very low and any offset voltage induced at the buffer amplifier by its bias current may be neglected (2 nA × 10 kΩ = 20 µV). However, to absolutely minimize bias current effects, select R
EXT1
and R
so that their parallel combination is 10 kΩ. If
EXT2
practical resistor values force the parallel combination of R and R for the difference.
below 10 kΩ, add a series resistor (R
EXT2
Table 5 lists several values of gain and
corresponding resistor values.
Table 5. Nearest Standard 1% Resistor Values for Various Gains (see
Total Gai n (V/V)
Figure 29)
A2 Gain (V/V)
0.1 1 10 k ∞ 0
0.2 2 20 k 20 k 0
0.25 2.5 25.9 k 18.7 k 0
0.5 5 49.9 k 12.4 k 0 1 10 100 k 11 k 0 2 20 200 k 10.5 k 0 5 50 499 k 10.2 k 0 10 100 1 M 10.2 k 0
To set the system gain to <0.1, create an attenuator by placing Resistor R
from Pin 4 (C
EXT4
divider is formed by the 10 kΩ resistor that is in series with the positive input of A2 and Resistor R unity gain.
Using a divider and setting A2 to unity gain yields
G
/
DIVIDERW
0.1
×=
⎜ ⎝
Figure 29). The gain of the
EXT1
(1)
EXT2
EXT1
) to make up
EXT3
(Ω) R
R
EXT1
) to the reference voltage. A
FILT
EXT4
R
EXT4
R
k10
+
EXT4
(Ω) R
EXT2
EXT3
. A2 is configured for
⎞ ⎟
1
×
⎟ ⎠
(Ω)

INPUT VOLTAGE RANGE

VREF and the supply voltage determine the common-mode input voltage range. The relation is expressed by
VVV
10)V2.1–(11
(2)
+
UPPER
LOWER
SCM
SCM
where:
V
is the positive supply.
S+
is the negative supply.
V
S−
1.2 V is the headroom needed for suitable performance.
Equation 2 provides a general formula for calculating the common-mode input voltage range. However, keep the AD628 within the maximum limits listed in optimal performance. This is illustrated in maximum common-mode input voltage is limited to ±120 V. Figure 31 shows the common-mode input voltage bounds for single-supply voltages.
200
150
100
50
0
–50
–100
INPUT COMMON-MODE VOLTAGE (V)
–150
–200
Figure 30. Input Common-Mode Voltage vs. Supply Voltage
100
80
60
40
20
0
–20
–40
INPUT COMMON-MODE VOLTAGE (V)
–60
–80
Figure 31. Input Common-Mode Voltage vs.
Supply Voltage for Single Supplies
MAXIMUM INPUT COMMON-MODE
SUPPLY VOLTAGE (±V)
for Dual Supplies
VOLTAGE WHEN V
SINGLE- SUPPLY VOLTAGE (V)
REF
VV 10)V2.1(11V
REF
Tabl e 1 to maintain
Figure 30 where the
VOLTAGE WHEN V
862401012
MAXIMUM INPUT COMMON-MODE
862401012
= GND
REF
1416
02992-035
= MIDSUPPLY
REF
1416
02992-034
Rev. G | Page 16 of 20
Page 17
AD628
V
–12V
The differential input voltage range is constrained to the linear operation of the internal amplifiers, A1 and A2. The voltage applied to the inputs of A1 and A2 should be between
+ 1.2 V and VS+ − 1.2 V. Similarly, the outputs of A1 and A2
V
S−
should be kept between V
+ 0.9 V and VS+ − 0.9 V.
S−

VOLTAGE LEVEL CONVERSION

Industrial signal conditioning and control applications typically require connections between remote sensors or amplifiers and centrally located control modules. Signal conditioners provide output voltages of up to ±10 V full scale. However, ADCs or microprocessors operating on single 3.3 V to 5 V logic supplies are now the norm. Thus, the controller voltages require further reduction in amplitude and reference.
Furthermore, voltage potentials between locations are seldom compatible, and power line peaks and surges can generate destructive energy between utility grids. The AD628 offers an ideal solution to both problems. It attenuates otherwise destruc­tive signal voltage peaks and surges by a factor of 10 and shifts the differential input signal to the desired output voltage.
Conversion from voltage-driven or current-loop systems is easily accomplished using the circuit shown in shows a circuit for converting inputs of various polarities and amplitudes to the input of a single-supply ADC.
To adjust common-mode output voltage, connect Pin 3 (V and the lower end of the 10 kΩ resistor to the desired voltage. The output common-mode voltage is the same as the reference voltage.
Figure 32. This
REF
)
Designing such an application can be done in a few simple steps, which includes the following:
Determine the required gain. For example, if the input
voltage must be changed from ±10 V to +5 V, the gain now needs to be +5/+20 or +0.25.
Determine if the circuit common-mode voltage should be
changed. An
AD7940 ADC is illustrated for this example.
When operating from a 5 V supply, the common-mode voltage of the
AD7940 is half the supply, or 2.5 V. If the
AD628 reference pin and the lower terminal of the 10 kΩ resistor are connected to a 2.5 V voltage source, the output common-mode voltage is 2.5 V.
Tabl e 6 shows resistor and reference values for commonly used single-supply converter voltages. R
is included as an option
EXT3
to balance the source impedance into A2. This is described in more detail in the
Gain Adjustment section.
Table 6. Nearest 1% Resistor Values for Voltage Level Conversion Applications
Input Voltage (V)
ADC Supply Voltage (V)
Desired Output Voltage (V)
V (V)
REF
R
EXT1
(kΩ)
R
EXT2
kΩ)
±10 5 2.5 2.5 15 10 ±5 5 2.5 2.5 39.7 10 +10 5 2.5 0 39.7 10 +5 5 2.5 0 89.8 10 ±10 3 1.25 1.25 2.49 10 ±5 3 1.25 1.25 15 10 +10 3 1.25 0 15 10 +5 3 1.25 0 39.7 10
+12
10F0.1F 10F0.1F
±10V
7
–IN
8
100k
+IN
1
100k
+V
S
10k
A1
10k
V
REF
3 4
AD628 REFERENCE VO LTAGE
15nF
10k
C
FILT
R
10k
–V
EXT2
2
S
6
AD628
A2
R
G
R
1
1
OUT
E
1
T
X
5
k
AD8606
1/2
SERIAL DATA
SCLK
49.9
5
33nF
2
3
10k
10k
7
AD8606
2/2
AD7940
3
V
IN
GND
2
10F
8
5
6
4
SDATA
V
DD
1
0.1F
V
0.1F
CS
OUT
4
5
6
6
10F
REF195
4
V
IN
+12V
2
3
02992-030
Figure 32. Level Shifter
Rev. G | Page 17 of 20
Page 18
AD628
249

CURRENT LOOP RECEIVER

Analog data transmitted on a 4 to 20 mA current loop can be detected with the receiver shown in ideal choice for such a function because the current loop is driven with a compliance voltage sufficient to stabilize the loop, and the resultant common-mode voltage often exceeds commonly used supply voltages. Note that with large shunt values, a resistance of equal value must be inserted in series with the inverting input to compensate for an error at the noninverting input.
Figure 33. The AD628 is an

MONITORING BATTERY VOLTAGES

Figure 34 illustrates how the AD628 is used to monitor a battery charger. Voltages approximately eight times the power supply voltage can be applied to the input with no damage. The resistor divider action is well suited for the measurement of many power supply applications, such as those found in battery chargers or similar equipment.
For proper operation, the common-mode voltage must satisfy the input specifications in
Tabl e 1, as well as Equation 2.
V
= 15V
CM
100k249
1
100k
8
I = 4 TO 20mA
10k
+15V
–15V
7 23
10k
10k
210k 100k
+2.5V 9.53k
4
6
AD628
0V TO 5V
5
TO ADC
02992-031
Figure 33. Level Shifter for 4 to 20 mA Current Loop
+5V
nV
(V)
CHARGING
CIRCUIT
BAT
+1.5V
BATTERY
OTHER
BATTERIES IN
CHARGING
CIRCUIT
–IN
+IN
100k
100k
10k
–IN
+IN
10k
G=+0.1
A1
10k
+IN
–IN
AD628
TO ADC
A2
OUT
R
R
EXT1
10k
G
V
–5V
REF
Figure 34. Battery Voltage Monitor
Rev. G | Page 18 of 20
C
FILT
02992-032
Page 19
AD628

FILTER CAPACITOR VALUES

Connect a capacitor to Pin 4 (C filter. The capacitor value is
C = 15.9/f
where f
(µF)
t
is the desired 3 dB filter frequency.
t
Tabl e 7 shows several frequencies and their closest standard capacitor values.
Table 7. Capacitor Values for Various Filter Frequencies
Frequency (Hz) Capacitor Value (μF)
10 1.5 50 0.33 60 0.27 100 0.15 400 0.039 1 k 0.015 5 k 0.0033 10 k 0.0015
) to implement a low-pass
FILT
+V
S

KELVIN CONNECTION

In certain applications, it may be desirable to connect the inverting input of an amplifier to a remote reference point. This eliminates errors resulting in circuit losses in inter­connecting wiring. The AD628 is particularly suited for this type of connection. In feedback matches the source impedance of A2. This is described in more detail in the
Figure 35, a 10 kΩ resistor added in the
Gain Adjustment section.
–IN
+IN
100k
10k
–IN
+IN
G = +0.1
A1
10k10k100k
+IN
–IN
A2
OUT
R
G
CIRCUIT
LOSS
10k
LOAD
AD628
V
–V
S
REF
VS/2
C
FILT
02992-033
Figure 35. Kelvin Connection
Rev. G | Page 19 of 20
Page 20
AD628

OUTLINE DIMENSIONS

3.20
3.00
2.80
8
5
4
SEATING PLANE
5.15
4.90
4.65
1.10 MAX
0.23
0.08
8° 0°
3.20
3.00
1
2.80
PIN 1
0.95
0.85
0.75
0.65 BSC
0.15
0.38
0.00
0.22
COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 36. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
0.25 (0.0098)
0.10 (0.0040)
COPLANARI TY
0.10
CONTROL LING DIMENSI ONS ARE IN MIL LIMET ERS; IN CH DIMENSI ONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
85
1
1.27 (0.0500)
SEATING
PLANE
COMPLIANT TO JEDE C STANDARDS MS-012-A A
BSC
6.20 (0. 2441)
5.80 (0. 2284)
4
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
8° 0°
0.25 (0.0098)
0.17 (0.0067)
Figure 37. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)
0.80
0.60
0.40
0.50 (0. 0196)
0.25 (0. 0099)
1.27 (0. 0500)
0.40 (0. 0157)
45°
012407-A

ORDERING GUIDE

Model Temperature Range Description Package Option Branding
AD628AR −40°C to +85°C 8-Lead SOIC_N R-8 AD628AR-REEL −40°C to +85°C 8-Lead SOIC_N 13" Reel R-8 AD628AR-REEL7 −40°C to +85°C 8-Lead SOIC_N 7" Reel R-8 AD628ARZ AD628ARZ-RL AD628ARZ-R7 AD628ARM −40°C to +85°C 8-Lead MSOP RM-8 JGA AD628ARM-REEL −40°C to +85°C 8-Lead MSOP 13" Reel RM-8 JGA AD628ARM-REEL7 −40°C to +85°C 8-Lead MSOP 7" Reel RM-8 JGA AD628ARMZ AD628ARMZ-RL AD628ARMZ-R7 AD628-EVAL Evaluation Board
1
Z = RoHS Compliant Part.
©2002–2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C02992-0-4/07(G)
1
1
1
1
1
1
−40°C to +85°C 8-Lead SOIC_N R-8
−40°C to +85°C 8-Lead SOIC_N 13" Reel R-8
−40°C to +85°C 8-Lead SOIC_N 7" Reel R-8
−40°C to +85°C 8-Lead MSOP RM-8 JGZ
−40°C to +85°C 8-Lead MSOP 13" Reel RM-8 JGZ
−40°C to +85°C 8-Lead MSOP 7" Reel RM-8 JGZ
Rev. G | Page 20 of 20
Loading...