ANALOG DEVICES AD603 Service Manual

Low Noise, 90 MHz
www.BDTIC.com/ADI

FEATURES

Linear-in-dB gain control Pin-programmable gain ranges
−11 dB to +31 dB with 90 MHz bandwidth 9 dB to 51 dB with 9 MHz bandwidth
Any intermediate range, for example −1 dB to +41 dB
with 30 MHz b
Bandwidth independent of variable gain
1.3 nV/√Hz input noise spectral density ±0.5 dB typical gain accuracy

APPLICATIONS

RF/IF AGC amplifiers Video gain controls A/D range extensions Signal measurements

GENERAL DESCRIPTION

The AD603 is a low noise, voltage-controlled amplifier for use in RF and IF AGC systems. It provides accurate, pin-selectable gains of −11 dB to +31 dB with a bandwidth of 90 MHz or +9 dB to 51+ dB with a bandwidth of 9 MHz. Any intermediate gain range may be arranged using one external resistor. The input referred noise spectral density is only 1.3 nV/√Hz, and power consumption is 125 mW at the recommended ±5 V supplies.
andwidth
Variable Gain Amplifier
AD603
The decibel gain is linear in dB, accurately calibrated, and stable
ver temperature and supply. The gain is controlled at a high
o impedance (50 MΩ), low bias (200 nA) differential input; the scaling is 25 mV/dB, requiring a gain control voltage of only 1 V to span the central 40 dB of the gain range. An overrange and underrange of 1 dB is provided whatever the selected range. The gain control response time is less than 1 μs for a 40 dB change.
The differential gain control interface allows the use of either
ferential or single-ended positive or negative control voltages.
dif Several of these amplifiers may be cascaded and their gain control gains offset to optimize the system SNR.
The AD603 can drive a load impedance as low as 100 Ω with lo
w distortion. For a 500 Ω load in shunt with 5 pF, the total harmonic distortion for a ±1 V sinusoidal output at 10 MHz is typically −60 dBc. The peak specified output is ±2.5 V minimum into a 500 Ω load.
The AD603 uses a patented proprietary circuit topology—the X-AM
P®. The X-AMP comprises a variable attenuator of 0 dB to −42.14 dB followed by a fixed-gain amplifier. Because of the attenuator, the amplifier never has to cope with large inputs and can use negative feedback to define its (fixed) gain and dynamic performance. The attenuator has an input resistance of 100 Ω, laser trimmed to ±3%, and comprises a 7-stage R-2R ladder network, resulting in an attenuation between tap points of
6.021 dB. A proprietary interpolation technique provides a continuous gain control function that is linear in dB.
The AD603 is specified for operation from −40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM

8
VPOS
6
VNEG
1
GPOS
2
GNEG
3
VINP
4
COMM
*NOMINAL VALUES.
Rev. H
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
SCALING
REFERENCE
V
G
GAIN-
CONTROL
INTERFACE
0dB –6.02dB –12.04dB –18.06dB –24.08dB –30.1dB –36.12dB –42.14dB
RRRRRRR
2R 2R 2R 2R 2R 2R R
R-2R LADDER NETWORK
PRECISION PASSIVE INPUT ATTENUATOR
FIXED-GAIN
AMPLIFIER
7
VOUT
AD603
Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved.
6.44kΩ*
694Ω*
20Ω*
5
FDBK
00539-001
AD603
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications....................................................................................... 1
General Description......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Absolute Maximum Ratings............................................................ 4
ESD Caution.................................................................................. 4
Pin Configurations and Function Descriptions ...........................5
Typical Performance Characteristics ............................................. 6
Theory of Operation ...................................................................... 11
Noise Performance .....................................................................11
The Gain Control Interface....................................................... 12

REVISION HISTORY

5/07—Rev. G to Rev. H
Changes to Layout...........................................................................14
Changes to Layout...........................................................................15
Changes to Layout...........................................................................16
Inserted Evaluation Board Section, and Figure 48 to
Figure 51 ...........................................................................................19
Inserted Figure 52 and Table 4.......................................................20
Changes to Ordering Guide...........................................................21
3/05—Rev. F to Rev. G
U
pdated Format.................................................................. Universal
Change to Features............................................................................1
Changes to General Description .....................................................1
Change to Figure 1 ............................................................................1
Changes to Specifications.................................................................3
New Figure 4 and Renumbering Subsequent Figures...................6
Change to Figure 10 ..........................................................................7
Change to Figure 23 ..........................................................................9
Change to Figure 29 ........................................................................12
Updated Outline Dimensions........................................................20
Programming the Fixed-Gain Amplifier Using
Pin Strapping............................................................................... 12
Using the AD603 in Cascade........................................................ 14
Sequential Mode (Optimal SNR)............................................. 14
Parallel Mode (Simplest Gain Control Interface) .................. 16
Low Gain Ripple Mode (Minimum Gain Error) ................... 16
Applications Information.............................................................. 17
A Low Noise AGC Amplifier.................................................... 17
Caution........................................................................................ 18
Evaluation Board ............................................................................ 19
Outline Dimensions .......................................................................21
Ordering Guide .......................................................................... 21
4/04—Rev. E to Rev. F
hanges to Specifications.................................................................2
C
Changes to Ordering Guide............................................................. 3
8/03—Rev. D to Rev E
pdated Format.................................................................. Universal
U
Changes to Specifications.................................................................2
Changes to TPCs 2, 3, 4....................................................................4
Changes to Sequential Mode (Optimal S/N Ratio) section.........9
Change to Figure 8..........................................................................10
Updated Outline Dimensions........................................................14
Rev. H | Page 2 of 24
AD603
www.BDTIC.com/ADI

SPECIFICATIONS

@ TA = 25°C, VS = ±5 V, –500 mV ≤ VG ≤ +500 mV, GNEG = 0 V, –10 dB to +30 dB gain range, RL = 500 Ω, and CL = 5 pF, unless otherwise noted.
Table 1.
Parameter Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Input Resistance Pin 3 to Pin 4 97 100 103 Ω Input Capacitance 2 pF Input Noise Spectral Density Noise Figure f = 10 MHz, gain = maximum, RS = 10 Ω 8.8 dB 1 dB Compression Point f = 10 MHz, gain = maximum, RS = 10 Ω −11 dBm Peak Input Voltage ±1.4 ±2 V
OUTPUT CHARACTERISTICS
−3 dB Bandwidth V Slew Rate RL ≥ 500 Ω 275 V/μs Peak Output
2
Output Impedance f ≤ 10 MHz 2 Ω Output Short-Circuit Current 50 mA Group Delay Change vs. Gain f = 3 MHz; full gain range ±2 ns Group Delay Change vs. Frequency VG = 0 V; f = 1 MHz to 10 MHz ±2 ns Differential Gain 0.2 % Differential Phase 0.2 Degree Total Harmonic Distortion f = 10 MHz, V Third-Order Intercept f = 40 MHz, gain = maximum, RS = 50 Ω 15 dBm
ACCURACY
Gain Accuracy, f = 100 kHz; Gain (dB) = (40 VG + 10) dB −500 mV ≤ VG ≤ +500 mV −1 ±0.5 +1 dB
T
to T
MIN
MAX
Gain, f = 10.7 MHz VG = -0.5 V −10.3 −9.0 −8.0 dB V V Output Offset Voltage
T
to T
MIN
MAX
Output Offset Variation vs. V
T
to T
MIN
MAX
GAIN CONTROL INTERFACE
Gain Scaling Factor 100 kHz 39.4 40 40.6 dB/V
T
to T
MIN
MAX
10.7 MHz 38.7 39.3 39.9 dB/V GNEG, GPOS Voltage Range Input Bias Current 200 nA Input Offset Current 10 nA Differential Input Resistance Pin 1 to Pin 2 50 MΩ Response Rate Full 40 dB gain change 80 dB/μs
POWER SUPPLY
Specified Operating Range ±4.75 ±6.3 V Quiescent Current 12.5 17 mA
T
to T
MIN
1
Typical open or short-circuited input; noise is lower when system is set to maximum gain and input is short-circuited. This figure includes the effects of both voltage
and current noise sources.
2
Using resistive loads of 500 Ω or greater or with the addition of a 1 kΩ pull-down resistor when driving lower loads.
3
The dc gain of the main amplifier in the AD603 is ×35.7; therefore, an input offset of 100 μV becomes a 3.57 mV output offset.
4
GNEG and GPOS, gain control, and voltage range are guaranteed to be within the range of −VS + 4.2 V to +VS − 3.4 V over the full temperature range of −40°C to +85°C.
MAX
1
Input short-circuited 1.3 nV/√Hz
= 100 mV rms 90 MHz
OUT
RL ≥ 500 Ω ±2.5 ±3.0 V
= 1 V rms −60 dBc
OUT
−1.5 +1.5 dB
= 0.0 V +9.5 +10.5 +11.5 dB
G
= 0.5 V +29.3 +30.3 +31.3 dB
3
G
VG = 0 V −20 +20 mV
−30 +30 mV
G
−500 mV ≤ VG ≤ +500 mV −20 +20 mV
−30 +30 mV
38 42 dB/V
4
−1.2 +2.0 V
20 mA
Rev. H | Page 3 of 24
AD603
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameter Rating
Supply Voltage ±V Internal Voltage VINP (Pin 3) ±2 V Continuous
±VS for 10 ms
GPOS, GNEG (Pin 1 and Pin2) ±V Internal Power Dissipation 400 mW Operating Temperature Range
AD603A −40°C to +85°C
AD603S −55°C to +125°C Storage Temperature Range −65°C to +150°C Lead Temperature (Soldering, 60 sec) 300°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
S
±7.5 V
S
Table 3. Thermal Characteristics
Package Type θ
8-Lead SOIC 155 33 °C/W 8-Lead CERDIP 140 15 °C/W
JA
θ
JC
Unit

ESD CAUTION

Rev. H | Page 4 of 24
AD603
www.BDTIC.com/ADI

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

1
GPOS
GNEG
VINP
COMM
AD603
2
3
TOP VIEW
(Not to Scale)
4
Figure 2. 8-Lead SOIC Pin Configuration
8
7
6
5
VPOS
VOUT
VNEG
FDBK
GPOS
GNEG
VINP
00539-002
COMM
Figure 3. 8-Lead CERDIP Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 GPOS Gain Control Input High (Positive Voltage Increases Gain). 2 GNEG Gain Control Input Low (Negative Voltage Increases Gain). 3 VINP 4 COMM 5 FDBK 6 VNEG 7 VOUT
Amplifier Input. Amplifier Ground. Connection to Feedback Network. Negative Supply Input. Amplifier Output.
8 VPOS Positive Supply Input.
1
AD603
2
TOP VIEW
3
(Not to Scale)
4
8
7
6
5
VPOS
VOUT
VNEG
FDBK
00539-003
Rev. H | Page 5 of 24
AD603
L
A
www.BDTIC.com/ADI

TYPICAL PERFORMANCE CHARACTERISTICS

@ TA = 25°C, VS = ±5 V, –500 mV ≤ VG ≤ +500 mV, GNEG = 0 V, –10 dB to +30 dB gain range, RL = 500 Ω, and CL = 5 pF, unless otherwise noted.
40
30
20
10
GAIN (dB)
0
–10
10.7MHz
Figure 4. Gain vs. V
100kHz
VG (V)
at 100 kHz and 10.7 MHz
G
2.5
2.0
1.5
1.0
0.5
0
GAIN ERROR (d B)
–0.5
–1.0
–1.5
45MHz
70MHz
10.7MHz
455kHz
70MHz
GAIN VOLTAGE (V)
Figure 5. Gain Error vs. Gain Control Voltage at 455 kHz,
10.
7 MHz, 45 MHz, 70 MHz
4
3
2
1
0
–1
–2
GAIN (dB)
–3
–4
–5
–6
100k 1M 10M 100M
GAIN
PHASE
FREQUENCY ( Hz)
Figure 6. Frequency and Phase Response vs. Gain
(Gain
= −10 dB, P
= −30 dBm)
IN
0.6–0.6 –0.4 –0.2 0 0.2 0.4
0.5–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4
225
180
135
90
45
0
–45
–90
–135
–180
–225
00539-004
00539-005
PHASE (Degrees)
00539-006
4
3
2
1
0
–1
–2
GAIN (dB)
–3
–4
–5
–6
100k 1M 10M 100M
GAIN
PHASE
FREQUENCY ( Hz)
Figure 7. Frequency and Phase Response vs. Gain
n = 10 dB, P
(Gai
4
3
2
1
0
–1
–2
GAIN (dB)
–3
–4
–5
–6
100k 1M 10M 100M
GAIN
PHASE
FREQUENCY ( Hz)
= −30 dBm)
IN
Figure 8. Frequency and Phase Response vs. Gain
(Gai
n = 30 dB, P
7.6
7.4
7.2
Y (ns)
7.0
6.8
GROUP DE
6.6
6.4
GAIN CONTRO L VOLTAGE (V)
= −30 dBm)
IN
Figure 9. Group Delay vs. Gain Control Voltage
0.6–0.6 –0.4 –0.2 0 0.2 0.4
225
180
135
90
45
0
–45
–90
–135
–180
–225
225
180
135
90
45
0
–45
–90
–135
–180
–225
PHASE (Degrees)
00539-007
PHASE (Degrees)
00539-008
00539-009
Rev. H | Page 6 of 24
AD603
G A
(
(
www.BDTIC.com/ADI
0.1µF
+5V
HP3326A
DUAL-
CHANNEL
SYNTHESIZER
100
0.1µF
3
AD603
4
–5V
8
6
DVC 8500
1
DATEL
5
2
10×
7
PROBE
511
Figure 10. Third-Order Intermodulation Distortion Test Setup
10dB/DIV
HP3585A
SPECTRUM
ANALYZER
00539-010
1.0
–1.2
–1.4
–1.6
–1.8
–2.0
–2.2
–2.4
–2.6
TIVE OUTPUT VOLTAGE (V)
–2.8
–3.0
NE
–3.2
–3.4
0 50 100 200 500 1000 2000
LOAD RESISTANCE (Ω)
Figure 13. Typical Output Voltage Swing vs. Load Resistance
(Nega
tive Output Swing Limits First)
102
100
)
00539-013
Figure 11. Third-Order Intermodulation Distortion at 455 kHz
0× Probe Used to HP3585A Spectrum Analyzer, Gain = 0 dB, P
(1
10dB/DIV
Figure 12. Third-Order Intermodulation Distortion at 10.7 MHz
(1
0× Probe Used to HP3585A Spectrum Analyzer, Gain = 0 dB, P
00539-011
= 0 dBm)
IN
00539-012
= 0 dBm)
IN
98
96
INPUT IMP EDANCE
94
FREQUENCY (Hz)
100M100k 1M 10M
00539-014
Figure 14. Input Impedance vs. Frequency (Gain = −10 dB)
102
100
)
98
96
INPUT IMP EDANCE
94
FREQUENCY (Hz)
100M100k 1M 10M
00539-015
Figure 15. Input Impedance vs. Frequency (Gain = 10 dB)
Rev. H | Page 7 of 24
AD603
(
V
V
V
V
V
V
www.BDTIC.com/ADI
3
102
100
)
98
96
INPUT IMP EDANCE
94
FREQUENCY (Hz)
Figure 16. Input Impedance vs. Frequency (Gain = 30 dB)
1V
100
90
10
0%
1V
200ns
Figure 17. Gain Control Channel Response Time
4.5
INPUT GND
100MV/DIV
1V
OUTPUT GND
1V/DIV
100M100k 1M 10M
00539-016
–2V
Figure 19. Output Stage Ove
rload Recovery Time
451ns–49ns 50ns
00539-019
(Input Is 500 ns Period, 50% Duty-Cycle Square Wave,
Output Is Captured Using Tektronix 11402 Digitizing Oscilloscope)
3.5
INPUT
500mV/DIV
GND
500m
OUTPUT
500mV/DIV
–1.5V
00539-017
GND
456ns–44ns 50ns
00539-020
Figure 20. Transient Response, G = 0 dB
(Input
Is 500 ns Period, 50% Duty-Cycle Square Wave,
Output Is Captured Using Tektronix 11402 Digitizing Oscilloscope)
3.5
INPUT GND
1V/DIV
500mV
–500mV
OUTPUT GND
500mV/DIV
451ns–49ns 50ns
00539-018
500m
–1.5V
Figure 18. Input Stage Overload Recovery Time
Is 500 ns Period, 50% Duty-Cycle Square Wave,
(Input
Output Is Captured Using Tektronix 11402 Digitizing Oscilloscope)
Output Is Captured Using Tektronix 11402 Digitizing Oscilloscope)
INPUT GND
100mV/DIV
OUTPUT GND
500mV/DIV
Figure 21. Transient Response, G = 20 dB
Is 500 ns Period, 50% Duty-Cycle Square Wave,
(Input
Rev. H | Page 8 of 24
456ns–44ns 50ns
00539-021
Loading...
+ 16 hidden pages