Datasheet AD5292-EP Datasheet (ANALOG DEVICES)

1024-Position, Digital Potentiometer with
V
Maximum ±1% R-Tolerance Error and 20-TP Memory
Data Sheet

FEATURES

Single-channel, 1024-position resolution 20 kΩ nominal resistance Maximum ±1% nominal resistor tolerance error (resistor
performance mode) 20-times programmable wiper memory Rheostat mode temperature coefficient: 35 ppm/°C Voltage divider temperature coefficient: 5 ppm/°C +9 V to +33 V single-supply operation ±9 V to ±16.5 V dual-supply operation SPI-compatible serial interface Wiper setting readback Power-on refreshed from 20-TP memory

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC) Temperature range: −55°C to +125°C Controlled manufacturing baseline 1 assembly/test site 1 fabrication site Enhanced product change notification Qualification data available on request
V
LOGIC
SCLK
SYNC
DIN
SDO
RDY
AD5292-EP

FUNCTIONAL BLOCK DIAGRAM

REGISTER
OTP
MEMORY
BLOCK
EXT_CAP
RESET
AD5292-EP
RDAC
GND
DD
POWER-ON
RESET
SERIAL
INTERFACE
V
SS
DATA
Figure 1.
A
W
B
10095-001

APPLICATIONS

Mechanical potentiometer replacement Instrumentation: gain and offset adjustment Programmable voltage-to-current conversion Programmable filters, delays, and time constants Programmable power supply Low resolution DAC replacement Sensor calibration

GENERAL DESCRIPTION

The AD5292-EP is a single-channel, 1024-position digital potentiometer performance with nonvolatile memory (NVM) in a compact package. This device is capable of operating across a wide voltage range, supporting both dual supply operation at ±10.5 V to ±16.5 V and single-supply operation at +21 V to +33 V, while ensuring less than 1% end-to-end resistor tolerance error and offering 20­time programmable (20-TP) memory.
The guaranteed industry leading low resistor tolerance error feature simplifies open-loop applications as well as precision calibration and tolerance matching applications.
1
The terms digital potentiometer and RDAC are used interchangeably.
1
that combines industry leading variable resistor
The AD5292-EP device wiper settings are controllable through the SPI digital interface. Unlimited adjustments are allowed before programming the resistance value into the 20-TP memory. The AD5292-EP does not require any external voltage supply to facilitate fuse blow, and there are 20 opportunities for perma­nent programming. During 20-TP activation, a permanent blow fuse command freezes the wiper position (analogous to placing epoxy on a mechanical trimmer).
The AD5292-EP is available in a compact 14-lead TSSOP package. The part is guaranteed to operate over the extended industrial temperature range of −55°C to +125°C.
Additional application and technical information can be found in the AD5292 data sheet.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.
AD5292-EP Data Sheet

TABLE OF CONTENTS

Features.............................................................................................. 1
Enhanced Product Features ............................................................ 1
Applications....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Electrical Characteristics—AD5292-EP.................................... 3
Resistor Performance Mode Code Range ................................. 4

REVISION HISTORY

9/11—Revision 0: Initial Version
Interface Timing Specifications...................................................5
Absolute Maximum Ratings ............................................................7
Thermal Resistance.......................................................................7
ESD Caution...................................................................................7
Pin Configuration and Function Descriptions..............................8
Typical Performance Characteristics..............................................9
Test Circuits..................................................................................... 14
Outline Dimensions....................................................................... 15
Ordering Guide .......................................................................... 15
Rev. 0 | Page 2 of 16
Data Sheet AD5292-EP

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—AD5292-EP

VDD = 21 V to 33 V, VSS = 0 V; VDD = 10.5 V to 16.5 V, VSS = −10.5 V to −16.5 V; V
−55°C < T
< +125°C, unless otherwise noted.
A
Table 1.
Parameter Symbol Conditions Min Typ1 Max Unit
DC CHARACTERISTICS—RHEOSTAT MODE
Resolution N 10 Bits
Resistor Differential Nonlinearity2 R-DNL RWB, VA = NC −1 +1 LSB
Resistor Integral Nonlinearity2 R-INL R
R-INL R
Nominal Resistor Tolerance (R-Perf Mode)3 ∆RAB/RAB See Table 2 −1 ±0.5 +1 %
Nominal Resistor Tolerance (Normal
Mode)
4
±7 %
∆R
AB/RAB
Resistance Temperature Coefficient (∆RAB/RAB)/∆T × 106 Code = full scale; see Figure 14 35 ppm/°C
Wiper Resistance RW Code= zero scale 60 100 Ω
DC CHARACTERISTICS—POTENTIOMETER
DIVIDER MODE
Resolution N 10 Bits
Differential Nonlinearity5 DNL −1 +1 LSB
Integral Nonlinearity5 INL −2.5 +2.5 LSB
Voltage Divider Temperature Coefficient4 (∆VW/VW)/∆T × 106 Code = half scale; see Figure 17 5 ppm/°C
Full-Scale Error V
Zero-Scale Error V
Code = full scale −8 +1 LSB
WFSE
Code = zero scale 0 10 LSB
WZSE
RESISTOR TERMINALS
Terminal Voltage Range6 V
Capacitance A, Capacitance B4 C
Capacitance W4 C
Common-Mode Leakage Current4 I
, VB, VW V
A
, CB f = 1 MHz, measured to GND,
A
f = 1 MHz, measured to GND,
W
V
CM
DIGITAL INPUTS JEDEC compliant
Input Logic High
Input Logic Low4 V
4
VIH V
V
IL
Input Current IIL V
Input Capacitance4 C
5 pF
IL
DIGITAL OUTPUTS (SDO and RDY)
Output High Voltage4 V
Output Low Voltage4 V
R
OH
R
OL
Three-State Leakage Current −1 +1 μA
Output Capacitance4 C
5 pF
OL
POWER SUPPLIES
Single-Supply Power Range VDD V
Dual-Supply Power Range VDD/VSS ±9 ±16.5 V
Positive Supply Current IDD V
Negative Supply Current ISS V
Logic Supply Range V
Logic Supply Current I
OTP Store Current
OTP Read Current
4, 7
4, 8
Power Dissipation9 P
2.7 5.5 V
LOGIC
V
LOGIC
I
VIH = 5 V or VIL = GND 25 mA
LOGIC_PROG
I
LOGIC_FUSE_READ
DISS
VIH = 5 V or VIL = GND 25 mA
V
Power Supply Rejection Ratio PSRR ∆VDD/∆VSS = ±15 V ± 10% 0.103 %/%
=20 kΩ, |VDD − VSS| = 26 V to 33 V −2 +2 LSB
AB
=20 kΩ, |VDD − VSS| = 21 V to 26 V −3 +3 LSB
AB
code = half scale
code = half scale
= VB = VW −120 ±1 120 nA
A
= 2.7 V to 5.5 V 2.0 V
LOGIC
= 2.7 V to 5.5 V 0.8 V
LOGIC
= 0 V or V
IN
= 2.2 kΩ to V
PULL_UP
= 2.2 kΩ to V
PULL_UP
= 0 V 9 33 V
SS
= ±16.5 V 0.1 2 μA
DD/VSS
= ±16.5 V −2 −0.1 μA
DD/VSS
= 5 V, VIH = 5 V or VIL = GND 1 10 μA
LOGIC
= 5 V or VIL = GND 8 110 μW
IH
±1 μA
LOGIC
= 2.7 V to 5.5 V, VA = VDD, VB = VSS,
LOGIC
V
SS
V
DD
85 pF
65 pF
V
LOGIC
GND + 0.4 V
LOGIC
− 0.4 V
LOGIC
Rev. 0 | Page 3 of 16
AD5292-EP Data Sheet
Parameter Symbol Conditions Min Typ1 Max Unit
DYNAMIC CHARACTERISTICS
Bandwidth BW −3 dB 520 kHz Total Harmonic Distortion THDW V VW Settling Time tS V
Code = full-scale, normal mode 750 ns Code = full-scale, R-Perf mode 2.5 μs Code = half-scale, normal mode 2.5 μs Code = half-scale, R-Perf mode 5 μs Resistor Noise Density e
1
Typical values represent average readings at 25°C, VDD = 15 V, VSS = −15 V, and V
2
Resistor position nonlinearity error. R-INL is the deviation from an ideal value measured between RWB at Code 0x00B and Code 0x3FF or between RWA at Code 0x3F3
and Code 0x000. R-DNL measures the relative step change from ideal between successive tap positions. The specification is guaranteed in resistor performance mode, with a wiper current of 1 mA for VA < 12 V and 1.2 mA for VA ≥ 12 V.
3
Resistor performance mode. The terms resistor performance mode and R-Perf mode are used interchangeably.
4
Guaranteed by design and characterization, not subject to production test.
5
INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits
of ±1 LSB maximum are guaranteed monotonic operating conditions.
6
Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground-
referenced bipolar signal adjustment.
7
Different from operating current; supply current for fuse program lasts approximately 550 μs.
8
Different from operating current; supply current for fuse read lasts approximately 550 μs.
9
P
is calculated from (IDD × VDD) + (ISS × VSS) + (I
DISS
10
All dynamic characteristics use VDD = 15 V, VSS = −15 V, and V
5, 10
= 1 V rms, VB = 0 V, f = 1 kHz −93 dB
A
= 30 V, VB = 0 V, ±0.5 LSB error
A
band, initial code = zero scale, board capacitance = 170 pF
Code = half-scale, TA = 25°C, 0 kHz to
N_WB
10 nV/√Hz
200 kHz
= 5 V.
LOGIC
× V
LOGIC
).
= 5 V.
LOGIC
LOGIC

RESISTOR PERFORMANCE MODE CODE RANGE

Table 2.
Resistor Tolerance per Code
1% R-Tolerance
2% R-Tolerance
3% R-Tolerance
|VDD − VSS| = 30 V to 33 V |VDD − VSS| = 26 V to 30 V |VDD − VSS| = 22 V to 26 V |VDD − VSS| = 21 V to 22 V
R
R
WB
From 0x1EF to 0x3FF
From 0x0C3 to 0x3FF
From 0x073 to 0x3FF
R
WA
From 0x000 to 0x210
From 0x000 to 0x33C
From 0x000 to 0x38C
WB
From 0x1F4 to 0x3FF
From 0x0E6 to 0x3FF
From 0x087 to 0x3FF
R
−55°C < TA < +125°C
R
WA
From 0x000 to 0x20B
From 0x000 to 0x319
From 0x000 to 0x378
WB
From 0x1F4 to 0x3FF
From 0x131 to 0x3FF
From 0x0AF to 0x3FF
R
R
WA
From 0x000 to 0x20B
From 0x000 to 0x2CE
From 0x000 to 0x350
R
WB
WA
N/A N/A
From 0x131 to 0x3FF
From 0x0AF to 0x3FF
From 0x000 to 0x2CE
From 0x000 to 0x350
Rev. 0 | Page 4 of 16
Data Sheet AD5292-EP

INTERFACE TIMING SPECIFICATIONS

VDD/VSS = ±15 V, V
Table 3.
Parameter Limit1 Unit Description
2
t
20 ns min SCLK cycle time
1
t2 10 ns min SCLK high time t3 10 ns min SCLK low time t4 10 ns min
t5 5 ns min Data setup time t6 5 ns min Data hold time t7 1 ns min
t8 4003 ns min t9 14 ns min
4
t
1 ns min
10
4
t
40 ns max
11
4
t
2.4 μs max RDY low time, RDAC register write command execute time (R-Perf mode)
12
4
t
410 ns max RDY low time, RDAC register write command execute time (normal mode)
12
4
t
8 ms max RDY low time, memory program execute time
12
4
t
1.5 ms min Software/hardware reset
12
4
t
450 ns max RDY low time, RDAC register readback execute time
13
4
t
1.3 ms max RDY low time, memory readback execute time
13
4
t
450 ns max SCLK rising edge to SDO valid
14
t
20 ns min
RESET
5
t
POWER-UP
1
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.
2
Maximum SCLK frequency is 50 MHz.
3
Refer to t12 and t13 for RDAC register and memory commands operations.
4
R
= 2.2 kΩ to V
PULL_UP
5
Maximum time after V
= 2.7 V to 5.5 V, −55°C < TA < +125°C. All specifications T
LOGIC
to SCLK falling edge setup time
SYNC
SCLK falling edge to SYNC Minimum SYNC
rising edge to next SCLK fall ignore
SYNC
high time
RDY rising edge to SYNC
rising edge to RDY fall time
SYNC
Minimum RESET
pulse width (asynchronous)
2 ms max Power-on OTP restore time
, with a capacitance load of 168 pF.
LOGIC
is equal to 2.5 V.
LOGIC
DB9 (MSB) DB0 (LSB)
MIN
rising edge
falling edge
to T
, unless otherwise noted.
MAX
C0C1
C3
00
C2
CONTROL BI TS
D9
D7 D6 D5 D4 D3
D8
DATA BITS
D2 D1
D0
10095-003
Figure 2. Shift Register Content
Rev. 0 | Page 5 of 16
AD5292-EP Data Sheet

Timing Diagrams

t
SCLK
SYNC
DIN
4
t
8
X
t
2
t
3
XC3 C2
t
1
D7
D6
D2
t
7
t
9
t
5
t
6
D0D1
SDO
RDY
RESET
SCLK
SYNC
SDO
RDY
DIN
t
t
10
11
t
12
t
RESET
10095-004
Figure 3. Write Timing Diagram, CPOL = 0, CPHA = 1
t
9
X
XC3
D0
t
11
D0
t
13
X
X
X
C3
t
14
X
C3
D0D1
D0D1
10095-005
Figure 4. Read Timing Diagram, CPOL = 0, CPHA = 1
Rev. 0 | Page 6 of 16
Data Sheet AD5292-EP

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 4.
Parameter Rating
VDD to GND −0.3 V to +35 V VSS to GND +0.3 V to −25 V V
to GND −0.3 V to +7 V
LOGI C
VDD to VSS 35 V VA, VB, VW to GND VSS − 0.3 V, VDD + 0.3 V Digital Input and Output Voltage to GND −0.3 V to V
LOGI C
+ 0.3 V EXT_CAP Voltage to GND −0.3 V to +7 V IA, IB, IW
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is defined by JEDEC specification JESD-51 and the value is dependent on the test board and test environment.
Continuous ±3 mA Pulsed1
Frequency > 10 kHz ±3/d2 Frequency ≤ 10 kHz ±3/√d
2
Operating Temperature Range3 −55°C to +125°C Maximum Junction Temperature (TJ max) 150°C Storage Temperature Range −65°C to +150°C Reflow Soldering
Table 5. Thermal Resistance
Package Type θJA θ
14-Lead TSSOP 931 20 °C/W
1
JEDEC 2S2P test board, still air (0 m/sec to 1 m/sec air flow).

ESD CAUTION

Peak Temperature 260°C Time at Peak Temperature 20 sec to 40 sec
Package Power Dissipation (TJ max − TA)/θJA
1
Maximum terminal current is bounded by the maximum current handling of
the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.
2
Pulse duty factor.
3
Includes programming of OTP memory.
Unit
JC
Rev. 0 | Page 7 of 16
AD5292-EP Data Sheet

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

RESET
1
2
V
SS
3
A
AD5292-EP
W
4
TOP VIEW
(Not to Scale)
B
5
V
6
DD
EXT_CAP
7
Figure 5. Pin Configuration
Table 6. Pin Function Descriptions
Pin No. Mnemonic Description
1
Hardware Reset Pin. Refreshes the RDAC register with the contents of the 20-TP memory register. Factory
RESET
default loads midscale until the first 20-TP wiper memory location is programmed. RESET
2 VSS
logic high transition. Tie RESET Negative Supply. Connect to 0 V for single-supply applications. This pin should be decoupled with 0.1 μF
to V
if not used.
LOGI C
ceramic capacitors and 10 μF capacitors. 3 A Terminal A of RDAC. VSS ≤ VA ≤ VDD. 4 W Wiper Terminal of RDAC. VSS ≤ VW ≤ VDD. 5 B Terminal B of RDAC. VSS ≤ VB ≤ VDD. 6 VDD Positive Power Supply. This pin should be decoupled with 0.1 μF ceramic capacitors and 10 μF capacitors. 7 EXT_CAP External Capacitor. Connect a 1 μF capacitor to EXT_CAP. This capacitor must have a voltage rating of ≥7 V. 8 V
LOGI C
Logic Power Supply; 2.7 V to 5.5 V. This pin should be decoupled with 0.1 μF ceramic capacitors and 10 μF
capacitors. 9 GND Ground Pin, Logic Ground Reference. 10 DIN
Serial Data Input. The AD5292-EP has a 16-bit shift register. Data is clocked into the register on the falling edge
of the serial clock input. 11 SCLK
Serial Clock Input. Data is clocked into the shift register on the falling edge of the serial clock input. Data can be
transferred at rates up to 50 MHz. 12
Falling Edge Synchronization Signal. This is the frame synchronization signal for the input data. When SYNC
SYNC
goes low, it enables the shift register and data is transferred in on the falling edges of the following clocks. The
selected register is updated on the rising edge of SYNC following the 16th clock cycle. If SYNC is taken high
before the 16th clock cycle, the rising edge of SYNC acts as an interrupt, and the write sequence is ignored by
the DAC. 13 SDO
Serial Data Output. This open-drain output requires an external pull-up resistor. SDO can be used to clock data
from the shift register in daisy-chain mode or in readback mode. 14 RDY
Ready Pin. This active-high open-drain output identifies the completion of a write or read operation to or from
the RDAC register or memory.
14
RDY
13
SDO
12
SYNC
SCLK
11
10
DIN
9
GND
8
V
LOGIC
10095-006
is activated at the
Rev. 0 | Page 8 of 16
Data Sheet AD5292-EP

TYPICAL PERFORMANCE CHARACTERISTICS

1.0
0.8
0.6
0.4
0.2
0
INL (LSB)
–0.2
–0.4
–0.6
–0.8
–1.0
0 128 256 384 512 640 768 896 1023
CODE (Decimal)
Figure 6. R-INL in R-Perf Mode vs. Code
–40°C
+25°C
+105°C
10095-106
0.6
0.5
0.4
0.3
0.2
0.1
DNL (LSB)
0
–0.1
–0.2
–0.3
0 128 256 384 512 640 768 896 1023
–40°C
+25°C
CODE (Decimal)
+105°C
Figure 9. R-DNL in R-Perf Mode vs. Code
10095-007
1.5
1.0
0.5
0
INL (LSB)
–0.5
–1.0
–1.5
0 128 256 384 512 640 768 896 1023
–40°C
+25°C
CODE (Decimal)
+105°C
Figure 7. INL in R-Perf Mode vs. Code
1.0
0.8
0.6
0.4
0.2
INL (LSB)
0
–0.2
–0.4
–0.6
0 128 256 384 512 640 768 896 1023
–40°C
+25°C
CODE (Decimal)
+105°C
Figure 8. R-INL in Normal Mode vs. Code
0.6
0.5
0.4
0.3
0.2
DNL (LSB)
0.1
0
–0.1
–0.2
0 128 256 384 512 640 768 896 1023
10095-014
–40°C
+25°C
CODE (Decimal)
+105°C
10095-015
Figure 10. DNL in R-Perf Mode vs. Code
0.15
0.10
0.05
0
–0.05
DNL (LSB)
–0.10
–0.15
–0.20
0 128 256 384 512 640 768 896 1023
10095-010
–40°C
+25°C
CODE (Decimal)
+105°C
10095-011
Figure 11. R-DNL in Normal Mode vs. Code
Rev. 0 | Page 9 of 16
AD5292-EP Data Sheet
A
0.8
0.6
0.4
0.2
–40°C
+25°C
+105°C
0.10
0.05
–40°C
+25°C
+105°C
0
0
INL (LSB)
–0.2
–0.4
–0.6
–0.8
0 128 256 384 512 640 768 896 1023
CODE (Decimal)
Figure 12. INL in Normal Mode vs. Code
450
400
350
300
250
200
150
100
SUPPLY CURRENT (nA)
50
0
–50
–40–30–20–100 102030405060708090100
Figure 13. Supply Current (I
TEMPERATURE (° C)
, ISS, I
DD
VDD/VSS = ±15V V
I
LOGIC
) vs. Temperature
LOGIC
LOGIC
I
SS
= +5V
I
DD
–0.05
DNL (LSB)
–0.10
–0.15
–0.20
0 128 256 384 512 640 768 896 1023
10095-018
CODE (Decimal)
10095-019
Figure 15. DNL in Normal Mode vs. Code
0.20
0.18
0.16
(mA)
0.14
LOGIC
0.12
0.10
0.08
0.06
SUPPLY CURRENT I
0.04
0.02
0
10095-022
0 0.5 1.0 1.5 2. 0 2. 5 3.0 3.5 4.0 4.5 5. 0
Figure 16. Supply Current I
DIGITAL INPUT VOLTAGE (V)
vs. Digital Input Voltage
LOGIC
VDD = ±15V
10095-031
700
600
500
400
300
T MODE TEMPCO (ppm/°C)
200
100
RHEOST
0
0 256 512 768 1023
CODE (Decimal)
Figure 14. Rheostat Mode Tempco ΔR
VDD = 30V V
/ΔT vs. Code
WB
700
= 0V
SS
10095-024
600
500
400
300
200
100
POTENTI OMETER MO DE TEMPCO (ppm/° C)
0
0 256 512 768 1023
CODE (Decimal)
Figure 17. Potentiometer Mode Tempco ΔR
VDD = 30V
= 0V
V
SS
/ΔT vs. Code
WB
10095-023
Rev. 0 | Page 10 of 16
Data Sheet AD5292-EP
0
0x200
–5
–10
0x100
–15
0x080
–20
0x040
–25
0x020
GAIN (dB)
–30
0x010
–35
0x008
–40
0x004
–45
0x002 0x001
–50
FREQUENC Y (Hz)
Figure 18. 20 kΩ Gain vs. Frequency vs. Code
0
VDD/VSS = ±15V CODE = HALF SCALE
–15
= 1V rms
V
IN
NOISE BW = 22kHz
–30
–45
–60
THD + N (dB)
–75
–90
–105
–120
100 1k 10k 100k
FREQUENCY (Hz)
Figure 19. THD + Noise vs. Frequency
1M100k10k1k10010
10095-025
10095-027
0
–10
–20
–30
–40
PSRR (dB)
–50
–60
–70
100 1k 10k
FREQUENCY (Hz)
100k 1M
Figure 21. Power Supply Rejection Ratio vs. Frequency
0
–20
–40
–60
–80
THD + N (dB)
–100
–120
–140
0.001 0.01 0.1 1 10
AMPLIT UDE (V rms)
VDD/VSS = ±15V, CODE = HALF SCALE
f
= 1kHz
IN
NOISE BW = 22kHz
Figure 22. THD + Noise vs. Amplitude
10095-026
10095-220
1,000,000
900,000
800,000
700,000
600,000
500,000
400,000
BANDWIDTH (Hz)
300,000
200,000
100,000
0
CODE (Decimal)
Figure 20. Bandwidth vs. Code vs. Net Capacitance
0pF 75pF 150pF 250pF
5120 128 2566432168
10095-222
Rev. 0 | Page 11 of 16
(mA)
DD
SUPPLY CURRENT I
35
30
25
20
15
10
5
0
–5
–0.4 1.21.00.80.60.40.20–0. 2
Figure 23. I
TIME (ms)
Waveform While Blowing/Reading Fuse
DD
10095-034
AD5292-EP Data Sheet
A
T
T
T
35
VWB, CODE: F ULL SCALE, NORMAL MODE
30
25
20
15
VO LTAG E (V )
10
SYNC
5
0
–5
–2
–1
VWB, CODE: F ULL SCAL E, R-PERF MODE
012345678
TIME (µs)
VDD/VSS = 30V/0V
= 5V
V
LOGIC
= V
V
A
DD
VB = V
SS
VWB, CODE: HALF-SCAL E, NORMAL MODE
V
, CODE: HAL F-SCALE ,
WB
R-PERF MODE
9
1011121314
Figure 24. Large-Signal Settling Time from Code Zero Scale
15
10095-033
40
32
24
16
8
0
AGE (μV)
–8
VOL
–16
–24
–32
40
–0.5 0 5 10 15 20 25 30 35 40 45
TIME (µs)
VDD/VSS = ±15V V
= V
A
DD
VB= V
SS
CODE = HALF CO DE
Figure 27. Digital Feedthrough
10095-032
8
7
6
(mA)
5
WB_MAX
4
L I
3
2
THEORETIC
1
0
0 256 512 768 1023
CODE (Decimal)
VDD/VSS = 30V/0V V
= V
A
DD
VB = V
SS
Figure 25. Theoretical Maximum Current vs. Code
1.2
1.0
0.8
0.6
0.4
0.2
0
VOLTAGE (V)
–0.2
–0.4
–0.6
–0.8
–2 0 2 4 6 8 10 12 14 16
TIME (µs)
VDD/VSS = ±15V V
LOGIC
V
= V
A
VB = V
Figure 26. Maximum Transition Glitch
= +5V
DD SS
6
5
4
3
AGE (V)
2
VOL
1
0
–1
10095-029
Figure 28. V
8
6
3
AGE (V)
2
VOL
0
–2
10095-035
–1.0
–0.4
EXT_CAP
–2.0
–0.8
Figure 29. V
0.2
0.8
1.4
2.0
2.6
3.2
3.8
4.4
TIME (ms)
Waveform While Reading Fuse Or Calibration
0.4
1.6
2.8
4.0
5.2
6.4
7.6
8.8
TIME (ms)
Waveform While Writing Fuse
EXT_CAP
5.0
10.0
11.2
VDD/VSS = ±15V V
LOGIC
5.6
6.2
6.8
VDD/VSS = ±15V V
LOGIC
12.4
13.6
= +5V
7.4
= +5V
14.8
8.0
8.6
10095-036
16.0
17.2
10095-037
Rev. 0 | Page 12 of 16
Data Sheet AD5292-EP
300
VDD/VSS= ±15V
250
200
80
70
60
50
VA = V
DD
VB = V
SS
TEMPERATURE = 25°C
150
100
NUMBER OF CO DES
50
0
–40–30–20–100 102030405060708090100
TEMPERATURE (° C)
Figure 30. Code Range > 1% R-Tolerance Error vs. Temperature
40
30
NUMBER OF CO DES
20
10
0
10095-056
21 26 30 33
VO LTAG E V
DD/VSS
10095-219
Figure 31. Code Range > 1% R-Tolerance Error vs. Voltage
Rev. 0 | Page 13 of 16
AD5292-EP Data Sheet
V
V
V

TEST CIRCUITS

Figure 32 to Figure 37 define the test conditions used in the Specifications section.
NC
DUT
A
W
B
NC = NO CONNE CT
Figure 32. Resistor Position Nonlinearity Error
(Rheostat Operation; R-INL, R-DNL)
DUT
A
V+
W
B
Figure 33. Potentiometer Divider Nonlinearity Error
(INL, DNL)
I
W
V
MS
+ = V
1LSB = V+/2
V
A
V
A
DD
V+
~
10095-041
W
B
V
MS
V+ = V
± 10%
DD
PSRR (dB) = 20 log
V
PSS (%/%) =
V
MS
DD
V
MS
V
DD
% %
10095-044
Figure 35. Power Supply Sensitivity (PSS, PSRR)
+15
OP42
–15V
V
OUT
10095-047
DD
N
MS
10095-042
OFFSET
GND
V
IN
DUT
2.5V
A
W
B
Figure 36. Gain vs. Frequency
+15V
NC
15V
GND
DUT
A
B
A = NC
W
CODE = 0x00
I
WB
V
SS
TO V
Figure 34. Wiper Resistance
0.1V
RWB=
I
WB
R
WB
RW =
+
DD
2
0.1V
10095-043
V
DD
DUT
V
SS
NC
GND
+15V
A
B
W
–15V
GND
I
CM
GND
GND
NC = NO CONNECT
+15V
–15V
10095-048
Figure 37. Common-Mode Leakage Current
Rev. 0 | Page 14 of 16
AD5292-EP Data Sheet

OUTLINE DIMENSIONS

5.10
5.00
4.90
4.50
4.40
4.30
PIN 1
1.05
1.00
0.80
0.15
0.05
COPLANARITY
0.10
14
1
0.65 BSC
0.30
0.19
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
8
6.40 BSC
7
1.20
0.20
MAX
SEATING PLANE
0.09
8° 0°
0.75
0.60
0.45
061908-A
Figure 38. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters

ORDERING GUIDE

Model RAB (kΩ) Resolution Memory Temperature Range Package Description Package Option
AD5292SRU-20-EP 20 1024 20-TP −55°C to +125°C 14-Lead TSSOP RU-14
Rev. 0 | Page 15 of 16
AD5292-EP Data Sheet
NOTES
©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D10095-0-9/11(0)
Rev. 0 | Page 16 of 16
Loading...