ANALOG DEVICES AD5233 Service Manual

Nonvolatile Memory, Quad

FEATURES

Nonvolatile memory stores wiper setting 4-channel independent programmable 64-position resolution Power-on refreshed with EEMEM settings EEMEM restore time: 140 μs typical Full monotonic operation 10 kΩ, 50 kΩ, and 100 kΩ terminal resistance Permanent memory write protection Wiper setting readback Predefined linear increment/decrement instructions Predefined ±6 dB/step log taper increment/decrement
instructions
SPI-compatible serial interface with readback function
2.7 V to 5.5 V single supply or ±2.5 V dual supply 11 bytes extra nonvolatile memory for user-defined data 100-year typical data retention, T

APPLICATIONS

Mechanical potentiometer replacement Instrumentation: gain, offset adjustment Programmable voltage-to-current conversion Programmable filters, delays, time constants Programmable power supply Sensor calibration
= 55°C
A
64-Position Digital Potentiometer
AD5233

FUNCTIONAL BLOCK DIAGRAM

CS
CLK
SDI
SDO
WP
RDY
O1
O2
PR
GND
DECODE
SDI SERIAL INTERFACE
SDO
EEMEM
CONTRO L
11 BYTES
USER EEMEM
DIGITAL OUTPUT BUFFER
2
DIGITAL 5
REGISTER
EEMEM5
ADDR
REGISTER
EEMEM1
REGISTER
EEMEM2
REGISTER
EEMEM3
REGISTER
EEMEM4
Figure 1.
RDAC1
RDAC2
RDAC3
RDAC4
AD5233
RDAC1
RDAC2
RDAC3
RDAC4
V
A1
W1
B1
A2
W2
B2
A3
W3
B3
A4
W4
B4
V
DD
SS
02794-001

GENERAL DESCRIPTION

The AD5233 is a quad-channel nonvolatile memory,1 digitally controlled potentiometer performs the same electronic adjustment function as a mechanical potentiometer with enhanced resolution, solid-state reliability, and remote controllability. The AD5233 has versatile program­ming using a serial peripheral interface (SPI) for 16 modes of operation and adjustment, including scratchpad programming, memory storing and restoring, increment/decrement, ±6 dB/step log taper adjustment, wiper setting readback, and extra EEMEM for user-defined information such as memory data for other components, look-up tables, or system identification information.
1
The terms nonvolatile memory and EEMEM are used interchangeably.
2
The terms digital potentiometer and RDAC are used interchangeably.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
2
with a 64-step resolution. The device
In the scratchpad programming mode, a specific setting can be programmed directly to the RDAC register, which sets the resistance between Terminal W to Terminal A and Terminal W to Terminal B. This setting can be stored into the EEMEM and is transferred automatically to the RDAC register during system power-on.
The EEMEM content can be restored dynamically or through external
PR
strobing. A WP function protects EEMEM contents.
To simplify the programming, independent or simultaneous increment or decrement commands can be used to move the RDAC wiper up or down, one step at a time. For logarithmic ±6 dB step changes in wiper settings, the left or right bit shift command can be used to double or halve the RDAC wiper setting.
The AD5233 is available in a thin 24-lead TSSOP package. The part is guaranteed to operate over the extended industrial temperature range of −40°C to +85°C.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2002–2008 Analog Devices, Inc. All rights reserved.
AD5233

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
Functional Block Diagram .............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Electrical Characteristics—10 kΩ, 50 kΩ, and 100 kΩ
Versions .......................................................................................... 3
Timing Characteristics ................................................................ 5
Absolute Maximum Ratings ............................................................ 7
ESD Caution .................................................................................. 7
Pin Configuration and Function Descriptions ............................. 8
Typical Performance Characteristics ............................................. 9
Test Circuits ..................................................................................... 13
Theory of Operation ...................................................................... 15
Scratchpad and EEMEM Programming .................................. 15
Basic Operation .......................................................................... 15
EEMEM Protection .................................................................... 16
Digital Input/Output Configuration ........................................ 16
Serial Data Interface ................................................................... 16
Daisy-Chain Operation ............................................................. 17
Terminal Voltage Operation Range ......................................... 17
Power-Up Sequence ................................................................... 17
Latched Digital Outputs ............................................................ 17
Advanced Control Modes ......................................................... 19

REVISION HISTORY

5/08—Rev. A to Rev. B
Changes to Features ........................................................................... 1
Changes to Table 1 ............................................................................. 3
Changes Figure 3 ............................................................................... 6
Changes to Absolute Maximum Ratings Section .......................... 7
Changes to Figure 17 and Figure 18 .............................................. 11
Changes to Programmable Oscillator Section ............................. 26
Changes to Ordering Guide ........................................................... 29
RDAC Structure.......................................................................... 20
Programming the Variable Resistor ......................................... 20
Programming the Potentiometer Divider ............................... 21
Programming Examples ............................................................ 21
Flash/EEMEM Reliability .......................................................... 22
Applications Information .............................................................. 23
Bipolar Operation from Dual Supplies.................................... 23
Gain Control Compensation .................................................... 23
High Voltage Operation ............................................................ 23
DAC .............................................................................................. 23
Bipolar Programmable Gain Amplifier ................................... 24
Programmable Low-Pass Filter ................................................ 24
Programmable State-Variable Filter ......................................... 25
Programmable Oscillator .......................................................... 26
Programmable Voltage Source with Boosted Output ........... 26
Programmable Current Source ................................................ 27
Programmable Bidirectional Current Source ......................... 27
Resistance Scaling ...................................................................... 27
Doubling the Resolution ........................................................... 28
Re s is t an c e To ler anc e , Dr if t, a n d Te m pe r atu re Mi s mat ch
Considerations ............................................................................ 28
RDAC Circuit Simulation Model ............................................. 28
Outline Dimensions ....................................................................... 29
Ordering Guide .......................................................................... 29
7/04—Rev. 0 to Rev. A
Format updated .................................................................. Universal
Changes to Features, General Description, and Block
Diagram .............................................................................................. 1
Changes to Specifications ................................................................. 3
Replaced Timing Diagrams .............................................................. 6
Changes to Absolute Maximum Ratings ........................................ 7
Changes to Pin Function Descriptions ........................................... 8
Replaced Figure 11 ............................................................................ 9
Added Test Circuit (Figure 36) ...................................................... 13
Changes to Theory of Operation ................................................... 14
Changes to Applications ................................................................. 22
Updated Outline Dimensions ........................................................ 28
Changes to Ordering Guide ........................................................... 28
3/02—Revision 0: Initial Version
Rev. B | Page 2 of 32
AD5233

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—10 kΩ, 50 kΩ, AND 100 kΩ VERSIONS

VDD = 3 V ± 10% or 5 V ± 10%, VSS = 0 V, VA = VDD, VB = 0 V, −40°C < TA < +85°C, unless otherwise noted.
Table 1.
Parameter Symbol Conditions Min Typ
DC CHARACTERISTICS,
1
Max Unit
RHEOSTAT MODE Resistor Differential Nonlinearity Resistor Integral Nonlinearity
2
2
R-INL R
R-DNL RWB, VA = NC, monotonic −0.5 ±0.1 +0.5 LSB
, VA = NC −0.5 ±0.1 +0.5 LSB
WB
Nominal Resistor Tolerance ∆RAB/RAB D = 0x3F −40 +20 % Resistance Temperature Coefficient (∆RWB/RWB)/∆T × 106 600 ppm/°C Wiper Resistance RW I
DC CHARACTERISTICS,
= 100 μA, code = half scale 15 100 Ω
W
POTENTIOMETER DIVIDER MODE Resolution N 6 Bits Differential Nonlinearity Integral Nonlinearity Voltage Divider Temperature
3
3
INL −0.5 +0.1 +0.5 LSB
DNL Monotonic −0.5 +0.1 +0.5 LSB
(∆V
)/∆T × 106 Code = half scale 15 ppm/°C
W/VW
Coefficient Full-Scale Error V Zero-Scale Error V
Code = full scale −1.5 0 % FS
WFSE
Code = zero scale 0 1.5 % FS
WZSE
RESISTOR TERMINALS
Terminal Voltage Range Capacitance A, Capacitance B
4
5
VA, VB, VW V CA, CB
f = 1 MHz, measured to GND,
VDD V
SS
35 pF
code = half scale
Capacitance W5 CW
f = 1 MHz, measured to GND,
35 pF
code = half scale
Common-Mode Leakage Current
5, 6
I
V
CM
= VDD/2 0.015 1 μA
W
DIGITAL INPUTS AND OUTPUTS
Input Logic High VIH With respect to GND, VDD = 5 V 2.4 V With respect to GND, VDD = 3 V 2.1 V
With respect to GND,
= 2.5 V, VSS = −2.5 V
V
DD
2.0 V
Input Logic Low VIL With respect to GND, VDD = 5 V 0.8 V With respect to GND, VDD = 3 V 0.6 V
Output Logic High (SDO, RDY) VOH
With respect to GND,
= 2.5 V, VSS = −2.5 V
V
DD
= 2.2 kΩ to 5 V
R
PULL-UP
0.5 V
4.9 V
(see Figure 35)
Output Logic Low VOL
= 1.6 mA, V
I
OL
LOGI C
= 5 V
0.4 V
(see Figure 35) Input Current IIL V Input Capacitance Output Current
5
C
5
I
4 pF
IL
, IO2
O1
= 0 V or VDD ±2.5 μA
IN
= 5 V, VSS = 0 V, TA = 25°C,
V
DD
50 mA
sourcing only
= 2.5 V, VSS = 0 V, TA = 25°C,
V
DD
7 mA
sourcing only
Rev. B | Page 3 of 32
AD5233
Parameter Symbol Conditions Min Typ
1
Max Unit
POWER SUPPLIES
Single-Supply Power Range VDD V
= 0 V 2.7 5.5 V
SS
Dual-Supply Power Range VDD/VSS ±2.5 ±2.75 V Positive Supply Current IDD V Negative Supply Current ISS
EEMEM Store Mode Current IDD (store)
I EEMEM Restore Mode Current
7
(store) VDD = 2.5 V, VSS = −2.5 V −40 mA
SS
IDD (restore)
= VDD or VIL = GND 3.5 10 μA
IH
= VDD or VIL = GND,
V
IH
= 2.5 V, VSS = −2.5 V
V
DD
= VDD or VIL = GND,
V
IH
= 0, ISS 0
V
SS
= VDD or VIL = GND,
V
IH
0.55 10 μA
40 mA
0.3 3 9 mA
VSS = GND, ISS 0 I Power Dissipation Power Supply Sensitivity
DYNAMIC CHARACTERISTICS
8
5
P
5, 9
(restore) VDD = 2.5 V, VSS = −2.5 V −0.3 −3 −9 mA
SS
P
V
DISS
∆VDD = 5 V ± 10% 0.002 0.01 %/%
SS
= VDD or VIL = GND 0.018 0.05 mW
IH
Bandwidth BW −3 dB, RAB = 10 kΩ/50 kΩ/100 kΩ 630/135/66 kHz Total Harmonic Distortion THDW
VW Settling Time tS
= 1 V rms, VB = 0 V, f = 1 kHz,
V
A
= 10 kΩ
R
AB
= 1 V rms, VB = 0 V, f = 1 kHz,
V
A
R
= 50 kΩ, 100 kΩ
AB
= VDD, VB = 0 V,
V
A
= 0.50% error band,
V
W
0.04 %
0.015 %
0.6/2.2/3.8 μs
Code 0x000 to Code 0x200
for R
= 10 kΩ/50 kΩ/100 kΩ
AB
Resistor Noise Voltage e Crosstalk (CW1/CW2) CT
R
N_WB
= 5 kΩ, f = 1 kHz 9
WB
= VDD, VB = 0 V, measure VW
V
A
−1
nV/√Hz
nV/sec with adjacent RDAC making the full-scale code change
Analog Crosstalk (CW1/CW2) CTA
= VA1 = +2.5 V,
V
DD
= VB1 = −2.5 V,
V
SS
measure V
with VW2 = 5 V p-p
W1
−86/−73/−68 dB
@ f = 10 kHz, Code 1 = 0x20, Code 2 = 0x3F, RAB = 10 kΩ/ 50 kΩ/100 kΩ
1
Typicals represent average readings at 25°C and VDD = 5 V.
2
Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper
positions. R-DNL measures the relative step change from ideal between successive tap positions. I RAB = 50 kΩ, and IW > 25 μA for the RAB = 100 kΩ version (see Figure 25).
3
INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output ADC. VA = VDD and VB = VSS. DNL specification limits of
−1 LSB minimum are guaranteed monotonic operating conditions (see Figure 26).
4
Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other. Dual-supply operation enables ground-
referenced bipolar signal adjustment.
5
Guaranteed by design and not subject to production test.
6
Common-mode leakage current is a measure of the dc leakage from Terminal B and Terminal W to a common-mode bias level of VDD/2.
7
EEMEM restore mode current is not continuous. Current is consumed while EEMEM locations are read and transferred to the RDAC register (see Figure 22). To
minimize power dissipation, a NOP instruction should be issued immediately after Instruction 1 (0x1).
8
Power dissipation is calculated by P
9
All dynamic characteristics use VDD = 2.5 V and VSS = −2.5 V.
= (IDD × VDD) + (ISS × VSS).
DISS
> 50 μA @ VDD = 2.7 V for the RAB = 10 kΩ version, IW > 50 μA for the
W
Rev. B | Page 4 of 32
AD5233

TIMING CHARACTERISTICS

VDD = 3 V to 5.5 V, VSS = 0 V, and −40°C < TA < +85°C, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ1 Max Unit
INTERFACE TIMING CHARACTERISTICS
Clock Cycle Time (t
) t1 20 ns
CYC
CS Setup Time CLK Shutdown Time to CS Rise Input Clock Pulse Width t4, t5 Clock level high or low 10 ns
Data Setup Time t6 From positive CLK transition 5 ns Data Hold Time t7 From positive CLK transition 5 ns CS to SDO-SPI Line Acquire CS to SDO-SPI Line Release CLK to SDO Propagation Delay4 t CLK to SDO Data Hold Time t11 R CS High Pulse Width5
CS High to CS High5 RDY Rise to CS Fall CS Rise to RDY Fall Time Read/Store to Nonvolatile EEMEM6 t
CS Rise to Clock Rise/Fall Setup Preset Pulse Width (Asynchronous) t Preset Response Time to Wiper Setting t Power-On EEMEM Restore Time t
FLASH/EE MEMORY RELIABILITY
Endurance7 100 Data Retention8 100
1
Typicals represent average readings at 25°C and VDD = 5 V.
2
Guaranteed by design and not subject to production test.
3
See the timing diagrams (Figure 2 and Figure 3) for the location of the measured values. All input control voltages are specified with tR = tF = 2.5 ns (10% to 90% of 3 V)
and timed from a voltage level of 1.5 V. Switching characteristics are measured using both VDD = 3 V and VDD = 5 V.
4
Propagation delay depends on the value of VDD, R
5
Valid for commands that do not activate the RDY pin.
6
The RDY pin is low only for Command 2, Command 3, Command 8, Command 9, Command 10, and the PR hardware pulse: CMD_8 > 1 ms; CMD_9, CMD_10 > 0.12 ms;
CMD_2, CMD_3 > 20 ms. Device operation at T
7
Endurance is qualified to 100,000 cycles per JEDEC Standard 22, Method A117, and measured at −40°C, +25°C, and +85°C; typical endurance at 25°C is 700,000 cycles.
8
Retention lifetime equivalent at junction temperature (TJ) = 55°C per JEDEC Standard 22, Method A117. Retention lifetime based on an activation energy of 0.6 eV
derates with junction temperature, as shown in Figure 45 in the Flash/EEMEM Reliability section.
2, 3
t
10 ns
2
t
1 t
3
t
40 ns
8
t
50 ns
9
R
10
t
12
t
4 t
13
t
0 ns
14
t
0.1 0.15 ms
15
16
= 2.2 kΩ, CL < 20 pF 50 ns
PULL-UP
= 2.2 kΩ, CL < 20 pF 0 ns
P
Applies to Instruction 0x2, Instruction 0x3,
10 ns
25 ms
and Instruction 0x9
t
10 ns
17
Not shown in timing diagram 50 ns
PRW
PRESP
RAB = 10 kΩ 140 μs
EEMEM1
pulsed low to refresh wiper positions
PR
70 μs
, and CL.
PULL-UP
= −40°C and VDD < 3 V extends the save time to 35 ms.
A
CYC
CYC
kCycles Yea r s
Rev. B | Page 5 of 32
AD5233
CPHA = 1
CS
t
12
t
t
5
B15
(MSB)
1
B15
B15
(MSB)
t
4
t
7
t
6
(LSB)
t
10
t
11
t
CLK
CPOL = 1
HIGH OR
LOW
SDI
t
SDO
t
14
RDY
*EXTRA BIT T HAT IS NOT DEFINED, BUT NORMALLY L SB OF CHARACTER PREVIOUSL Y TRANSMIT TED. THE CPOL = 1 MICROCONTRO LLER COM MAND ALIGNS T HE INCOMING DATA TO T HE POSIT IVE EDGE O F THE CLO CK.
2
8
B16*
t
3
B0
B0
B0
(LSB)
t
t
13
t
17
HIGH OR LOW
t
9
15
t
16
02794-002
Figure 2. CPHA = 1 Timing Diagram
CS
CLK
CPOL = 0
t
1
t
2
B15 B0
t
5
t
4
CPHA = 0
t
12
t
3
t
13
t
17
SDI
SDO
RDY
t
HIGH OR LOW
t
14
* NOT DEFINED, BUT NORMALL Y MSB OF CHARACTER PREVIOUSLY RECE IVED.
THE CPOL = 0 MICROCONT ROLLER CO MMAND ALIGNS THE INCOMI NG DATA TO THE POSI TIVE EDG E OF THE CLOCK.
t
8
B15
(MSB)
B15
(MSB OUT)
t
10
6
B0
(LSB)
t
11
B0
(LSB)
t
7
Figure 3. CPHA = 0 Timing Diagram
Rev. B | Page 6 of 32
HIGH OR LOW
t
9
*
t
15
t
16
02794-003
AD5233

ABSOLUTE MAXIMUM RATINGS

TA = 25°C, unless otherwise noted.
Table 3.
Parameter Rating
VDD to GND –0.3 V to +7 V VSS to GND +0.3 V to −7 V VDD to VSS 7 V VA, VB, VW to GND VSS − 0.3 V to VDD + 0.3 V IA, IB, IW
Pulsed1 ±20 mA
Continuous ±2 mA Digital Inputs and Output Voltage to GND −0.3 V to VDD + 0.3 V Operating Temperature Range2 −40°C to +85°C Maximum Junction Temperature (TJ max) 150°C Storage Temperature Range −65°C to +150°C Reflow Soldering
Peak Temperature 260°C
Time at Peak Temperature 20 sec to 40 sec Thermal Resistance Junction-to-Ambient, θ Package Power Dissipation (TJ max − TA)/θJA
1
Maximum terminal current is bounded by the maximum current handling of
the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.
2
Includes programming of nonvolatile memory.
3
Thermal Resistance (JEDEC 4-layer (2S2P) board).
3
50°C/W
JA
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. B | Page 7 of 32
AD5233

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

CLK
SDI
SDO
GND
V
W1
W2
O1
SS
A1
B1
A2
B2
1
2
3
4
AD5233
5
TOP VIEW
(Not to Scale)
6
7
8
9
10
11
12
24
O2
23
RDY
22
CS
21
PR
20
WP
19
V
DD
18
A4
17
W4
B4
16
15
A3
W3
14
B3
13
02794-005
Figure 4. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. Mnemonic Description
1 O1 Nonvolatile Digital Output 1. Address (O1) = 0x4, the data bit position is D0; defaults to Logic 1 initially. 2 CLK Serial Input Register Clock Pin. Shifts in one bit at a time on positive clock edges. 3 SDI Serial Data Input Pin. Shifts in one bit at a time on positive CLK edges. MSB loaded first. 4 SDO Serial Data Output Pin. Serves readback and daisy-chain functions.
Command 9 and Command 10 activate the SDO output for the readback function, delayed by 16 or 17 clock pulses, depending on the clock polarity before and after the data-word (see Figure 2, Figure 3, and Table 7).
In other commands, the SDO shifts out the previously loaded SDI bit pattern, delayed by 16 or 17 clock pulses, depending on the clock polarity (see Figure 2 and Figure 3). This previously shifted-out SDI can be used for daisy­chaining multiple devices.
Whenever SDO is used, a pull-up resistor in the range of 1 kΩ to 10 kΩ is needed. 5 GND Ground Pin, Logic Ground Reference. 6 VSS
Negative Supply. Connect to 0 V for single-supply applications. If V
is used in dual supply, it must be able to sink
SS
40 mA for 25 ms when storing data to EEMEM. 7 A1 Terminal A of RDAC1. 8 W1 Wiper Terminal of RDAC1, Address (RDAC1) = 0x0. 9 B1 Terminal B of RDAC1. 10 A2 Terminal A of RDAC2. 11 W2 Wiper Terminal of RDAC2, Address (RDAC2) = 0x1. 12 B2 Terminal B of RDAC2. 13 B3 Terminal B of RDAC3. 14 W3 Wiper Terminal of RDAC3, Address (RDAC3) = 0x2. 15 A3 Terminal A of RDAC3. 16 B4 Terminal B of RDAC4. 17 W4 Wiper Terminal of RDAC4, Address (RDAC4) = 0x3. 18 A4 Terminal A of RDAC4. 19 VDD Positive Power Supply Pin. 20
Optional Write Protect Pin. When active low, WP prevents any changes to the present contents, except PR strobe
WP
and Instruction 1 and Instruction 8, and refreshes the RDAC register from EEMEM. Execute a NOP instruction
high. Tie WP to VDD if not used.
21
before returning to WP
Optional Hardware Override Preset Pin. Refreshes the scratchpad register with current contents of the EEMEM
PR
register. Factory default loads midscale 0x20 until EEMEM is loaded with a new value by the user. PR is activated at
.
22
Serial Register Chip Select Active Low. Serial register operation takes place when CS returns to Logic 1.
CS
23 RDY
the Logic 1 transition. Tie PR
to VDD if not used.
Ready. Active-high open-drain output. Identifies completion of Software Instruction 2, Software Instruction 3,
Software Instruction 8, Software Instruction 9, Software Instruction 10, and Hardware Instruction PR 24 O2 Nonvolatile Digital Output 2. Address (O2) = 0x4, the data bit position is D1; defaults to Logic 1 initially.
Rev. B | Page 8 of 32
AD5233

TYPICAL PERFORMANCE CHARACTERISTICS

0.20
0.15
0.10
0.05
0
–0.05
INL ERROR (LSB)
–0.10
–0.15
–0.20
01632
CODE (Decimal)
TA =+25°C T
A
T
A
48
=–40°C =+85°C
64
02794-006
0.20
0.15
0.10
0.05
0
R-DNL (LSB)
–0.05
–0.10
–0.15
–0.20
01632
CODE (Decimal)
TA =+25°C T
=–40°C
A
T
=+85°C
A
VDD = 5V, VSS = 0V
48
64
Figure 5. INL Error vs. Code, TA = −40°C, +25°C, +85°C Overlay, RAB = 10 kΩ Figure 8. R-DNL vs. Code, TA = −40°C, +25°C, +85°C Overlay, RAB = 10 kΩ
DNL ERROR (LSB)
0.20
0.15
0.10
0.05
–0.05
–0.10
–0.15
–0.20
TA =+25°C T
=–40°C
A
T
=+85°C
A
0
0
16 32 64
CODE (Decimal)
48
02794-007
3000
2500
2000
1500
1000
500
RHEOSTAT MO DE TEMPCO (ppm/° C)
0
0
16 32 64
CODE (Decimal)
VDD = 5V, VSS = 0V T
= –40°C TO + 85°C
A
48
Figure 9. (∆RWB/RWB)/∆T × 106 Figure 6. DNL Error vs. Code, TA = −40°C, +25°C, +85°C Overlay, RAB = 10 kΩ
0.20
0.15
0.10
0.05
TA =+25°C T
=–40°C
A
T
=+85°C
A
VDD = 5V, VSS = 0V
300
200
VDD = 5.5V, VSS = 0V T
= –40°C TO +85°C
A
V
= 2V
A
V
= 0V
B
2794-009
2794-010
0
–0.05
R-INL ( LSB)
–0.10
–0.15
–0.20
01632
CODE (Decimal)
Figure 7. R-INL vs. Code, T
= −40°C, +25°C, +85°C Overlay, RAB = 10 kΩ
A
100
POTENTI OMETER MO DE TEMPCO (ppm/°C)
48
64
02794-008
0
01632
CODE (Decimal )
Figure 10. (∆VW/VW)/∆T × 106 vs. Code, R
48
= 10 kΩ
AB
64
02794-011
Rev. B | Page 9 of 32
AD5233
80
60
(Ω)
40
W
R
20
0
0
4
3
2
(µA)
DD
I
1
ISS @ VDD/VSS = 5V/0V
0
IDD @ VDD/VSS = 2.7V/0V
–1
–40 –20
0.30
0.25
0.20
0.15
(mA)
DD
I
0.10
0.05
VDD = 2.7V, VSS = 0V T
= 25°C
A
16 32 64
CODE (Decimal)
48
Figure 11. Wiper On Resistance vs. Code
IDD @ VDD/VSS = 5V/0V
ISS @ VDD/VSS = 2.7V/0V
0 20 40 60 100
TEMPERATURE (° C)
Figure 12. IDD vs. Temperature, RAB = 10 kΩ
VDD = 5V V
= 5V
SS
MIDSCALE
FULL SCALE
ZERO SCALE
3
VDD @ VSS = ±2.5V V
= 1V rms
A
D = MIDSCALE
0
f
= 66kHz
–3
–6
GAIN (dB)
–9
–12
1k 1M
02794-012
–3dB
f
= 600kHz, RAB = 10k
–3dB
f
= 132kHz, RAB = 50k
–3dB
10k 100k
FREQUENCY (Hz)
02794-015
Figure 14. −3 dB Bandwidth vs. Resistance (Using the Circuit
Shown in Figure 31)
0.05
0.04
0.03
0.02
THD + NOISE ( %)
0.01
0
80
02794-013
10
RAB = 50k
100 1k 10k
RAB = 10k
RAB = 100k
FREQUENCY (Hz)
V
DD/VSS
V
= 1V rms
A
= ±2.5V
100k
02794-016
Figure 15. Total Harmonic Distortion + Noise vs. Frequency
0
–6
–12
–18
–24
GAIN (dB)
–30
–36
CODE 0x20
0x10
0x08
0x04
0x02
0x01
0
024681012
CLOCK F REQUENCY (MHz)
Figure 13. IDD vs. Clock Frequency, RAB = 10 kΩ
Rev. B | Page 10 of 32
–42
100 10M
02794-014
1k 10k 100k
FREQUENCY (Hz)
1M
2794-017
Figure 16. Gain vs. Frequency vs. Code, RAB = 10 Ω ( Figure 31)
Loading...
+ 22 hidden pages