AMD Advanced Micro Devices AM79C940VCW, AM79C940VC, AM79C940KCW, AM79C940KC, AM79C940JC Datasheet

Publication#16235 Rev. C Amendment/0 Issue Date: June 1994
Advanced
Micro
Devices
Am79C940
Media Access Controller for Ethernet (MACETM)
FINAL
DISTINCTIVE CHARACTERISTICS
Integrated Controller with 10BASE-T
transceiver and AUI port
Supports IEEE 802.3/ANSI 8802-3 and Ethernet
standards
84-pin PLCC and 100-pin PQFP Packages
80-pin Thin Quad Flat Pack (TQFP) package
available for space critical applications such as PCMCIA
Modular architecture allows easy tuning to
specific applications
High speed, 16-bit synchronous host system
interface with 2 or 3 cycles/transfer
Individual transmit (136 byte) and receive (128
byte) FlFOs provide increase of system latency and support the following features:
– Automatic retransmission with no FIFO reload
– Automatic receive stripping and transmit padding (individually programmable)
– Automatic runt packet rejection – Automatic deletion of collision frames – Automatic retransmission with no FIFO
reload
Direct slave access to all on board
configuration/status registers and transmit/ receive FlFOs
Direct FIFO read/write access for simple
interface to DMA controllers or l/O processors
Arbitrary byte alignment and little/big endian
memory interface supported
Internal/external loopback capabilities
External Address Detection Interface (EADI)
for external hardware address filtering in bridge/router applications
JTAG Boundary Scan (IEEE 1149.1 ) test
access port interface for board level production test
Integrated Manchester Encoder/Decoder
Digital Attachment Interface (DAI) allows
by-passing of differential Attachment Unit Interface (AUI)
Supports the following types of network
interface:
– AUI to external 10BASE2, 10BASE5 or 10BASE-F MAU
– DAI port to external 10BASE2, 10BASE5, 10BASE-T, 10BASE-F MAU
– General Purpose Serial Interface (GPSI) to external encoding/decoding scheme
– Internal 10BASE-T transceiver with automatic selection of 10BASE-T or AUI port
Sleep mode allows reduced power consump-
tion for critical battery powered applications
1 MHz – 25 MHz system clock speed
GENERAL DESCRIPTION
The Media Access Controller for Ethernet (MACE) chip is a CMOS VLSI device designed to provide flexibility in customized LAN design. The MACE device is specifi­cally designed to address applications where multiple I/O peripherals are present, and a centralized or system specific DMA is required. The high speed, 16-bit syn­chronous system interface is optimized for an external DMA or I/O processor system, and is similar to many ex­isting peripheral devices, such as SCSI and serial link controllers.
The MACE device is a slave register based peripheral. All transfers to and from the system are performed using simple memory or I/O read and write commands. In con­junction with a user defined DMA engine, the MACE chip provides an IEEE 802.3 interface tailored to a
specific application. Its superior modular architecture and versatile system interface allow the MACE device to be configured as a stand-alone device or as a connec­tivity cell incorporated into a larger, integrated system.
The MACE device provides a complete Ethernet node solution with an integrated 10BASE-T transceiver, and supports up to 25-MHz system clocks. The MACE de­vice embodies the Media Access Control (MAC) and Physical Signaling (PLS) sub-layers of the IEEE 802.3 standard, and provides an IEEE defined Attachment Unit Interface (AUI) for coupling to an external Medium Attachment Unit (MAU). The MACE device is compliant with 10BASE2, 10BASE5, 10BASE-T, and 10BASE-F transceivers.
AMD
2 Am79C940
Additional features also enhance over-all system design. The individual transmit and receive FIFOs optimize system overhead, providing substantial latency during packet transmission and reception, and minimizing intervention during normal network error recovery. The integrated Manchester encoder/decoder eliminates the need for an external Serial Interface Adapter (SIA) in the node system. If support for an external encoding/decoding scheme is desired, the General Purpose Serial Interface (GPSI) allows direct access to/from the MAC. In addition, the Digital Attach­ment Interface (DAI), which is a simplified electrical attachment specification, allows implementation of MAUs that do not require DC isolation between the MAU and DTE. The DAI port can also be used to indicate transmit, receive, or collision status by connecting LEDs to the port. The MACE device also provides an External Address Detection Interface (EADI) to allow external
hardware address filtering in internetworking applications.
The Am79C940 MACE chip is offered in a Plastic Lead­less Chip Carrier (84-pin PLCC), a Plastic Quad Flat Package (100-pin PQFP), and a Thin Quad Flat Pack­age (TQFP 80-pin). There are several small functional and physical differences between the 80-pin TQFP and the 84-pin PLCC and 100-pin PQFP configurations.
Because of the smaller number of pins in the TQFP con­figuration versus the PLCC configuration, four pins are not bonded out. Though the die is identical in all three package configurations, the removal of these four pins does cause some functionality differences between the TQFP and the PLCC and PQFP configurations. De­pending on the application, the removal of these pins will or will not have an effect.
BLOCK DIAGRAM
DBUS 15-0
ADD 4-0
R/W
CS FDS DTV
EOF
RDTREQ
TDTREQ
BE 1–0
INTR
SCLK
EDSEL
TC
SLEEP
RESET
16235C-1
XTAL1
FIFO
Control
EADI Port
Bus
Interface
Unit
802.3 MAC Core
ENCODER/
DECODER
(PLS)
XMT FIFO
RCV FIFO
Command
& Status
Registers
JTAG
PORT CNTRL
TCK
TDI
TMS
TDO
XTAL2
EADI
Port
Control
AUI Port
10BASE-T
MAU
DAI
Port
GPSI
Port
DXCVR CLSN
SRDCLK SRD SF/BD
EAM/R
DO± DI± CI±
TXD± TXP± RXD±
LNKST RXPOL
TXDAT±
TXEN
RXDAT RXCRS
STDCLK TXDAT+ TXEN
SRDCLK RXDAT RXCRS CLSN
AUI
10BASE-T
DAI Port
GPSI
Notes:
1. Only one of the network ports AUI, 10BASE-T, DAI port or GPSI can be active at any time. Some shared signals are active regardless of which network port is active, and some are reconfigured.
2. The EADI port is active at all times.
AMD
3Am79C940
RELATED PRODUCTS
Part No. Description
Am7996 IEEE 802.3/Ethernet/Cheapernet Transceiver Am79C90 CMOS Local Area Network Controller for Ethernet (C-LANCE) Am79C98 Twisted Pair Ethernet Transceiver (TPEX) Am79C100 Twisted Pair Ethernet Transceiver Plus (TPEX+) Am79C981 Integrated Multiport Repeater Plus (IMR+) Am79C987 Hardware Implemented Management Information Base (HIMIB) Am79C900 Integrated Local Area Communications Controller (ILACC)
Am79C961 PCnet-ISA
+
Single-Chip Ethernet Controller for ISA (with Microsoft Plug n’ Play Support) Am79C965 PCnet-32 Single-Chip 32-Bit Ethernet Controller Am79C970 PCnet-PCI Single-Chip Ethernet Controller (for PCI bus) Am79C974 PCnet-SCSI Combination Ethernet and SCSI Controller for PCI Systems
AMD
4 Am79C940
TABLE OF CONTENTS
DISTINCTIVE CHARACTERISTICS 1-64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GENERAL DESCRIPTION 1-64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BLOCK DIAGRAM 1-65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RELATED PRODUCTS 1-66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CONNECTION DIAGRAMS 1-70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PLCC 1-70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PQR 1-71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PQT 1-72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ORDERING 1-73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PIN/PACKAGE SUMMARY 1-74. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PIN DESCRIPTION 1-82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Network Interfaces 1-82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Attachment Unit Interface (AUI) 1-82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Attachment Interface (DAI) 1-82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T Interface 1-85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Purpose Serial Interface (GPSI) 1-85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Address Detection Interface (EADI) 1-86. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Host System Interface 1-88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IEEE 1149.1 Test Access Port (TAP) Interface 1-89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Interface 1-89. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply 1-90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FUNCTIONAL DESCRIPTION 1-92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Network Interfaces 1-92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Interface 1-92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DETAILED FUNCTIONS 1-93. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Level Description 1-93. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bus Interface Unit (BIU) 1-93. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BIU to FIFO Data Path 1-93. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BIU to Control and Status Register Data Path 1-94. . . . . . . . . . . . . . . . . . . . . . . . .
FIFO Sub-System 1-94. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Media Access Control (MAC) 1-96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Manchester Encoder/Decoder (MENDEC) 1-100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Attachment Unit Interface (AUI) 1-103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Attachment Interface (DAI) 1-103. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T Interface 1-104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Twisted Pair Transmit Function 1-104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Twisted Pair Receive Function 1-104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Link Test Function 1-105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Polarity Detection and Reversal 1-105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Twisted Pair Interface Status 1-106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Collision Detect Function 1-106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signal Quality Error (SQE) Test (Heartbeat) Function 1-106. . . . . . . . . . . . . . . . . .
Jabber Function 1-106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AMD
5Am79C940
External Address Detection Interface (EADI) 1-107. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Purpose Serial Interface (GPSI) 1-108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IEEE 1149.1 Test Access Port Interface 1-108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slave Access Operation 1-109. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Read Access 1-109. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Write Access 1-110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Initialization 1-110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reinitialization 1-110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit Operation 1-110. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit FIFO Write 1-111. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit Function Programming 1-111. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Automatic Pad Generation 1-112. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit FCS Generation 1-113. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit Status Information 1-113. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit Exception Conditions 1-113. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Operation 1-115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive FIFO Read 1-115. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Function Programming 1-116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Automatic Pad Stripping 1-116. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive FCS Checking 1-117. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Status Information 1-117. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Exception Conditions 1-117. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loopback Operation 1-118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
USER ACCESSIBLE REGISTERS 1-120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive FIFO (RCVFIFO) 1-120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit FIFO (XMTFIFO) 1-120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit Frame Control (XMTFC) 1-120. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit Frame Status (XMTFS) 1-121. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit Retry Count (XMTRC) 1-122. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Frame Control (RCVFC) 1-122. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Frame Status (RCVFS) 1-123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RFS0—Receive Message Byte Count (RCVCNT) 1-123. . . . . . . . . . . . . . . . . . . . . . . . .
RFS1—Receive Status (RCVSTS) 1-123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RFS2—Runt Packet Count (RNTPC) 1-124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RFS3—Receive Collision Count (RCVCC) 1-124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO Frame Count (FIFOFC) 1-124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Register (IR) 1-124. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interrupt Mask Register (IMR) 1-126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Poll Register (PR) 1-126. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BIU Configuration Control (BIUCC) 1-127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FIFO Configuration Control (FIFOCC) 1-127. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAC Configuration Control (MACCC) 1-129. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PLS Configuration Control (PLSCC) 1-130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PHY Configuration Control (PHYCC) 1-130. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chip Identification Register (CHIPID [15–00]) 1-131. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Address Configuration (IAC) 1-131. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Logical Address Filter (LADRF [63–00]) 1-132. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AMD
6 Am79C940
Physical Address (PADR [47–00]) 1-134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Missed Packet Count (MPC) 1-134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Runt Packet Count (RNTPC) 1-134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Collision Count (RCVCC) 1-135. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
User Test Register (UTR) 1-135. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reserved Test Register 1 (RTR1) 1-136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reserved Test Register 2 (RTR2) 1-136. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Register Table Summary 1-137. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Register Bit Summary 1-138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16-Bit Registers 1-138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8-Bit Registers 1-138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Frame Status 1-138. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmer’s Register Model 1-139. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SYSTEM APPLICATIONS 1-142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HOST SYSTEM EXAMPLES 1-142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Motherboard DMA Controller 1-142. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Interface-Motherboard DMA Example 1-143. . . . . . . . . . . . . . . . . . . . . . . .
PC/AT Ethernet Adapter Card 1-144. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Interface-Simple PC/AT Ethernet Hypercard Example 1-145. . . . . . . . . . .
NETWORK INTERFACES 1-145. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Address Detection Interface (EADI) 1-145. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Attachment Unit Interface (AUI) 1-146. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T Interface 1-147. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T and 10BASE2 Configuration of Am79C940 1-148. . . . . . . . . . . . . . . . . . . . .
10BASE-T and AUI Implementation of Am79C940 1-149. . . . . . . . . . . . . . . . . . . . . . . .
MACE Device Compatible AUI Isolation Transformers 1-150. . . . . . . . . . . . . . . . . . . . .
MACE Device Compatible 10BASE-T Media Interface Modules 1-150. . . . . . . . . . . . . .
ABSOLUTE MAXIMUM RATINGS 1-152. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OPERATING RANGES 1-152. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC CHARACTERISTICS 1-152. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC CHARACTERISTICS 1-155. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BIU Output Valid Delay vs. Load Chart 1-159. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
KEY TO SWITCHING WAVEFORMS 1-159. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SWITCHING TEST CIRCUITS 1-160. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC WAVEFORMS 1-161. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
APPENDIX A 1-179. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LOGICAL ADDRESS FILTERING FOR ETHERNET 1-179. . . . . . . . . . . . . . . . . . . . . . . . . .
MAPPING OF LOGICAL ADDRESS TO FILTER MASK 1-180. . . . . . . . . . . . . . . . . . . . . . .
APPENDIX B 1-181. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BSDL DESCRIPTION OF Am79C940 MACE JTAG STRUCTURE 1-181. . . . . . . . . . . . . . .
AMD
7Am79C940
CONNECTION DIAGRAMS PL 084
PLCC Package
16235C-2
1
2
3
81
82
83
84
6
7
8
9
4
5
80
76
77
78
79
75 12 13 14 15 16 17 18
19 20 21
23 24
25
26
27 28 29 30 31
73 72 71 70 69 68 67
66 65 64 63 62
61
60
59 58 57
56
55 54
43
42
41
40
47
46
45
44
37
36
35
34
39
38
33
48
52
51
50
49
10
22
11
32
53
74
SRDCLK
EAM/R
SRD
SF/BD
RESET
SLEEP
DV
DD
INTR
TC
DBUS0
DV
SS
 DBUS1 DBUS2 DBUS3 DBUS4
DV
SS
 DBUS5 DBUS6 DBUS7 DBUS8 DBUS9
XTAL2 AV
SS
 XTAL1 AV
DD
 TXD+ TXP+ TXD- TXP- AV
DD
 RXD+ RXD- DV
DD
 TDI DV
SS
 TCK TMS TDO
LNKST RXPOL CS
R/W
RXCRS
RXDAT
CLSN
TXEN/TXEN
STDCLK
DV
SS
TXDAT-
TXDAT+
DV
SS
EDSEL
DXCVR
DV
DD
AV
DD
CI+
CI-
DI+
DI-
AV
DD
DO+
DO-
AV
SS
DBUS10
DBUS11
DBUS12
DBUS13
DV
DD
DBUS14
DBUS15
DV
SS
EOF
DTV
FDS
BE0
BE1
SCLK
TDTREQ
RDTREQ
ADD0
ADD1
ADD2
ADD3
ADD4
Am79C940
MACE
MACE
Am79C940JC
AMD
8 Am79C940
CONNECTION DIAGRAMS PQR 100
PQFP Package
RXCRS
RXDAT
CLSN
TXEN/TXEN
STDCLK
DVSSTXDAT-
TXDAT+
DVSSEDSEL
DXCVR
DVDDAVDDCI+
CI-
DI+
DI-
AVDDDO+
DO-
28 29 30
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27
1 2 3
99
98
100
31323334353637383940414243444546474849
50
9796959493929190898887868584828183
TCK TMS
TDO
LNKST RXPOL CS
R/W NC NC NC NC
AV
SS
NC NC
NC XTAL2 AV
SS
XTAL1 AV
DD
TXD+ TXP+ TXD­TXP­AV
DD
RXD+ RXD­DV
DD
TDI DV
SS
NC
77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59
58 57 56 55 54 53 52 51
80 79 78
NC NC NC NC
SRDCLK
EAM/R
SRD
SF/BD
RESET
SLEEP
DV
DD
INTR
TC
DBUS0
DV
SS
DBUS1 DBUS2 DBUS3 DBUS4
DV
SS
DBUS5 DBUS6 DBUS7 DBUS8 DBUS9
NC NC NC
DBUS10
NC
DBUS11
DBUS12
DBUS13
DV
DD
DBUS14
DBUS15
DV
SS
EOF
DTV
FDS
BE0
BE1
SCLK
TDTREQ
RDTREQ
ADD0
ADD1
ADD2
ADD3
ADD4
MACE
Am79C940KC
16235C-3
MACE
Am79C940KC
AMD
9Am79C940
CONNECTION DIAGRAMS PQT 080 TQFP Package
16235C-4
Note: Four pin functions available on the PLCC and PQFP packages are not available with the TQFP package. (See page 27 “Pin Functions not available with the 80-pin TQFP Package”).
1 2 3 4 5
6 7
8 9 10 11 12 13 14 15 16 17 18 19 20
60 59 58 57 56
55 54
53 52 51 50 49 48 47 46 45 44 43 42 41
80 79 78 77 76 757473 72 71 7069 68 676665 64 63 62 61
21 22 23 24 25 262728 29 30 3132 33 343536 37 38 39 40
SRDCLK
EAM/R
SF/BD
RESET
SLEEP
DVDD
INTR
TC
DBUS0
DVSS DBUS1 DBUS2 DBUS3 DBUS4
DVSS DBUS5 DBUS6 DBUS7 DBUS8 DBUS9
XTAL2 AVSS XTAL1 AVDD TXD+ TXP+ TXD­TXP­AVDD RXD+ RXD­DVDD TDI DVSS TCK TMS TD0
LNKST CS
R/W
DBUS10
DBUS11
DBUS12
DBUS13
DVDD
DBUS14
DBUS15
DVSS
EOF
FDS
BE0
BE1
SCLK
TDTREQ
RDTREQ
ADD0
ADD1
ADD2
ADD3
ADD4
RXCRS
RXDAT
CLSN
TXEN/TXEN
STDCLK
DVSS
TXDAT+
DVSS
EDSEL
DXCVR
DVDD
AVDD
CI+
CI-
DI+
DI-
AVDD
DO+
DO-
AVSS
MACE
Am79C940VC
AMD
10 Am79C940
ORDERING INFORMATION Standard Products
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of:
AM79C940
JC, KC,
Valid Combinations
Valid Combinations
The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.
AM79C940
OPTIONAL PROCESSING
Blank = Standard Processing
TEMPERATURE RANGE
C = Commercial (0
° to +70°C)
PACKAGE TYPE (per Prod. Nomenclature/16-038) J = 84-Pin Plastic Leaded Chip Carrier (PL 084) K = 100-Pin Plastic Quad Flat Pack (PQR100) V = 80-Pin Thin Quad Flat Package (PQT080)
SPEED
Not Applicable
DEVICE NUMBER/DESCRIPTION (include revision letter)
Am79C940 Media Access Controller for Ethernet
VC
ALTERNATE PACKAGING OPTION
/W = Trimmed and Formed in a Tray
KC/W, VC,
/W
VC/W
AMD
11Am79C940
PIN/PACKAGE SUMMARY
PLCC Pin # Pin Name Pin Function
1 DXCVR Disable Transceiver 2 EDSEL Edge Select
3DV
SS
Digital Ground 4 TXDAT+ Transmit Data + 5 TXDAT– Transmit Data –
6DV
SS
Digital Ground 7 STDCLK Serial Transmit Data Clock 8 TXEN/TXEN Transmit Enable 9 CLSN Collision
10 RXDAT Receive Data 11 RXCRS Receive Carrier Sense 12 SRDCLK Serial Receive Data Clock 13 EAM/R External Address Match/Reject 14 SRD Serial Receive Data 15 SF/BD Start Frame/Byte Delimiter 16 RESET Reset 17 SLEEP Sleep Mode
18 DV
DD
Digital Power
19 INTR Interrupt 20 TC Timing Control 21 DBUS0 Data Bus0
22 DV
SS
Digital Ground
23 DBUS1 Data Bus1 24 DBUS2 Data Bus2 25 DBUS3 Data Bus3 26 DBUS4 Data Bus4
27 DV
SS
Digital Ground
28 DBUS5 Data Bus5 29 DBUS6 Data Bus6 30 DBUS7 Data Bus7 31 DBUS8 Data Bus8 32 DBUS9 Data Bus9 33 DBUS10 Data Bus10 34 DBUS11 Data Bus11 35 DBUS12 Data Bus12 36 DBUS13 Data Bus13
37 DV
DD
Digital Power
38 DBUS14 Data Bus14 39 DBUS15 Data Bus15
40 DV
SS
Digital Ground
41 EOF End Of Frame 42 DTV Data Transfer Valid
AMD
12 Am79C940
PIN/PACKAGE SUMMARY (continued)
PLCC Pin # Pin Name Pin Function
43 FDS FIFO Data Strobe 44 BE0 Byte Enable0 45 BE1 Byte Enable1 46 SCLK System Clock 47 TDTREQ Transmit Data Transfer Request 48 RDTREQ Receive Data Transfer Request 49 ADD0 Address0 50 ADD1 Address1 51 ADD2 Address2 52 ADD3 Address3 53 ADD4 Address4 54 R/W Read/Write 55 CS Chip Select 56 RXPOL Receive Polarity 57 LNKST Link Status 58 TDO Test Data Out 59 TMS Test Mode Select 60 TCK Test Clock
61 DV
SS
Digital Ground
62 TDI Test Data Input 63 DV
DD
Digital Power
64 RXD– Receive Data– 65 RXD+ Receive Data+
66 AV
DD
Analog Power
67 TXP– Transmit Pre-distortion 68 TXD– Transmit Data– 69 TXP+ Transmit Pre–distortion+ 70 TXD+ Transmit Data+
71 AV
DD
Analog Power
72 XTAL1 Crystal Input 73 AV
SS
Analog Ground
74 XTAL2 Crystal Output 75 AV
SS
Analog Ground
76 DO– Data Out– 77 DO+ Data Out+
78 AV
DD
Analog Power
79 DI– Data In– 80 DI+ Data In+ 81 CI– Control In– 82 CI+ Control In+
83 AV
DD
Analog Power
84 DV
DD
Digital Power
AMD
13Am79C940
PIN/PACKAGE SUMMARY (continued)
PQFP Pin # Pin Name Pin Function
1 NC No Connect 2 NC No Connect 3 NC No Connect 4 NC No Connect 5 SRDCLK Serial Receive Data Clock 6 EAM/R External Address Match/Reject 7 SRD Serial Receive Data 8 SF/BD Start Frame/Byte Delimiter 9 RESET Reset
10 SLEEP Sleep Mode 11 DVDD Digital Power 12 INTR Interrupt 13 TC Timing Control 14 DBUS0 Data Bus0
15 DV
SS
Digital Ground
16 DBUS1 Data Bus1 17 DBUS2 Data Bus2 18 DBUS3 Data Bus3 19 DBUS4 Data Bus4
20 DV
SS
Digital Ground
21 DBUS5 Data Bus5 22 DBUS6 Data Bus6 23 DBUS7 Data Bus7 24 DBUS8 Data Bus8 25 DBUS9 Data Bus9 26 NC No Connect 27 NC No Connect 28 NC No Connect 29 DBUS10 Data Bus10 30 NC No Connect 31 DBUS11 Data Bus11 32 DBUS12 Data Bus12 33 DBUS13 Data Bus13
34 DV
DD
Digital Power
35 DBUS14 Data Bus14 36 DBUS15 Data Bus15
37 DV
SS
Digital Ground
38 EOF End Of Frame 39 DTV Data Transfer Valid 40 FDS FIFO Data Strobe 41 BE0 Byte Enable0 42 BE1 Byte Enable1
AMD
14 Am79C940
PIN/PACKAGE SUMMARY (continued)
PQFP Pin # Pin Name Pin Function
43 SCLK System Clock 44 TDTREQ Transmit Data Transfer Request 45 RDTREQ Receive Data Transfer Request 46 ADD0 Address0 47 ADD1 Address1 48 ADD2 Address2 49 ADD3 Address3 50 ADD4 Address4 51 NC No Connect 52 NC No Connect 53 NC No Connect 54 NC No Connect 55 R/W Read/Write 56 CS Chip Select 57 RXPOL Receive Polarity 58 LNKST Link Status 59 TDO Test Data Out 60 TMS Test Mode Select 61 TCK Test Clock
62 DV
SS
Digital Ground
63 TDI Test Data Input 64 DV
DD
Digital Power
65 RXD– Receive Data– 66 RXD+ Receive Data+
67 AV
DD
Analog Power
68 TXP– Transmit Pre-distortion– 69 TXD– Transmit Data– 70 TXP+ Transmit Pre-distortion+ 71 TXD+ Transmit Data+
72 AV
DD
Analog Power
73 XTAL1 Crystal Input 74 AV
SS
Analog Ground
75 XTAL2 Crystal Output 76 NC No Connect 77 NC No Connect 78 NC No Connect
79 AV
SS
Analog Ground
80 NC No Connect 81 DO– Data Out– 82 DO+ Data Out+
83 AV
DD
Analog Power
84 DI– Data In– 85 DI+ Data In+
AMD
15Am79C940
PIN/PACKAGE SUMMARY (continued)
PQFP Pin # Pin Name Pin Function
86 CI– Control In– 87 CI+ Control In+
88 AV
DD
Analog Power
89 DV
DD
Digital Power
90 DXCVR Disable Transceiver 91 EDSEL Edge Select
92 DV
SS
Digital Ground
93 TXDAT+ Transmit Data + 94 TXDAT– Transmit Data –
95 DV
SS
Digital Ground
96 STDCLK Serial Transmit Data Clock 97 TXEN/TXEN Transmit Enable 98 CLSN Collision 99 RXDAT Receive Data
100 RXCRS Receive Carrier Sense
AMD
16 Am79C940
PIN/PACKAGE SUMMARY (continued)
TQFP TQFP
Pin Number Pin Name Pin Function Pin Number Pin Name Pin Function
1 SRDCLK Serial Receive Data Clock 41 R/W Read/Write 2 EAM/R External Address Match/Reject 42 CS Chip/Select 3 SF/BD Start Frame/Byte Delimiter 43 LNKST Link Status 4 RESET Reset 44 TDO Test Data Out 5 SLEEP Sleep Mode 45 TMS Test Mode Select 6 DVDD Digital Power 46 TCK Test Clock 7 INTR Interrupt 47 DVSS Digital Ground 8 TC Timing Control 48 TDI Test Data Input 9 DBUS0 Data Bus0 49 DVDD Digital Power 10 DVSS Digital Ground 50 RXD– Receive Data– 11 DBUS1 Data Bus1 51 RXD+ Receive Data+ 12 DBUS2 Data Bus2 52 AVDD Analog Power 13 DBUS3 Data Bus3 53 TXP– Transmit Pre-distortion– 14 DBUS4 Data Bus4 54 TXD– Transmit Data– 15 DVSS Digital Ground 55 TXP+ Transmit Pre-distortion+ 16 DBUS5 Data Bus5 56 TXD+ Transmit Data+ 17 DBUS6 Data Bus6 57 AVDD Analog Power 18 DBUS7 Data Bus7 58 XTAL1 Crystal Output 19 DBUS8 Data Bus8 59 AVSS Analog Ground 20 DBUS9 Data Bus9 60 XTAL2 Crystal Output 21 DBUS10 Data Bus10 61 AVSS Analog Ground 22 DBUS11 Data Bus11 62 DO– Data Out– 23 DBUS12 Data Bus12 63 DO+ Data Out+ 24 DBUS13 Data Bus13 64 AVDD Analog Power 25 DVDD Digital Power 65 DI– Data In– 26 DBUS14 Data Bus14 66 DI+ Data Out+ 27 DBUS15 Data Bus15 67 CI– Control In– 28 DVSS Digital Ground 68 CI+ Control In+ 29 EOF End of Frame 69 AVDD Analog Power 30 FDS FIFO Data Strobe 70 DVDD Digital Power 31 BE0 Byte Enable0 71 DXCVR Disable Transceiver 32 BE1 Byte Enable1 72 EDSEL Edge Select 33 SCLK System Clock 73 DVSS Digital Ground 34 TDTREQ Transmit Data Transfer Request 74 TXDAT+ Transmit Data+ 35 RDTREQ Receive Data Transfer Request 75 DVSS Digital Ground 36 ADD0 Address0 76 STDCLK Serial Transmit Data Clock 37 ADD1 Address1 77 TXEN/TXEN Transmit Enable 38 ADD2 Address2 78 CLSN Collision 39 ADD3 Address3 79 RXDAT Receive Data 40 ADD4 Address4 80 RXCRS Receive Carrier Sense
AMD
17Am79C940
PIN SUMMARY
Pin Name Pin Function Type Active Comment Attachment Unit Interface (AUI)
DO+/DO– Data Out O Pseudo-ECL DI+/DI– Data In I Pseudo-ECL CI+/CI– Control In I Pseudo-ECL RXCRS Receive Carrier Sense I/O High TTL output. Input in DAI, GPSI port TXEN Transmit Enable O High TTL. TXEN in DAI port CLSN Collision I/O High TTL output. Input in GPSI DXCVR Disable Transceiver O Low TTL low STDCLK Serial Transmit Data Clock I/O Output. Input in GPSI SRDCLK Serial Receive Data Clock I/O Output. Input in GPSI
Digital Attachment Interface (DAI)
TXDAT+ Transmit Data + O High TTL. See also GPSI TXDAT– Transmit Data – O Low TTL TXEN Transmit Enable O Low TTL. See TXEN in GPSI RXDAT Receive Data I TTL. See also GPSI RXCRS Receive Carrier Sense I/O High TTL input. Output in AUI CLSN Collision I/O High TTL output. Input in GPSI DXCVR Disable Transceiver O High TTL high STDCLK Serial Transmit Data Clock I/O Output. Input in GPSI SRDCLK Serial Receive Data Clock I/O Output. Input in GPSI
10BASE–T Interface
TXD+/TXD– Transmit Data O TXP+/TXP– Transmit Pre-distortion O RXD+/RXD– Receive Data I
LNKST Link Status O Low Open Drain RXPOL Receive Polarity O Low Open Drain
TXEN Transmit Enable O High TTL. TXEN in DAI port RXCRS Receive Carrier Sense I/O High TTL output. Input in DAI, GPSI port CLSN Collision I/O High TTL output. Input in GPSI DXCVR Disable Transceiver O High TTL high STDCLK Serial Transmit Data Clock I/O Output. Input in GPSI SRDCLK Serial Receive Data Clock I/O Output. Input in GPSI
General Purpose Serial Interface (GPSI)
STDCLK Serial Transmit Data Clock I/O Input TXDAT+ Transmit Data + O High TTL. See also DAI port TXEN Transmit Enable O High TTL. TXEN in DAI port SRDCLK Serial Receive Data Clock I/O Input. See also EADI port RXDAT Receive Data I TTL. See also DAI port RXCRS Receive Carrier Sense I/O High TTL input. Output in AUI CLSN Collision I/O High TTL input DXCVR Disable Transceiver O Low TTL low
AMD
18 Am79C940
PIN SUMMARY (continued)
Pin Name Pin Function Type Active Comment External Address Detection Interface (EADI)
SF/BD Start Frame/Byte Delimiter O High SRD Serial Receive Data O High EAM/R External Address Match/Reject I Low SRDCLK Serial Receive Data Clock I/O Output except in GPSI
Host System Interface
DBUS15–0 Data Bus I/O High ADD4–0 Address I High R/W Read/Write I High/Low
RDTREQ Receive Data Transfer Request O Low TDTREQ Transmit Data Transfer Request O Low DTV Data Transfer Valid O Low Tristate EOF End Of Frame I/O Low BE0 Byte Enable 0 I Low BE1 Byte Enable 1 I Low CS Chip Select I Low FDS FIFO Data Strobe I Low INTR Interrupt O Low Open Drain
EDSEL Edge Select I High TC Timing Control I Low Internal pull-up SCLK System Clock I High RESET Reset I Low
IEEE 1149.1 Test Access Port (TAP) Interface
TCK Test Clock I Internal pull-up TMS Test Mode Select I Internal pull-up TDI Test Data Input I Internal pull-up TDO Test Data Out O
General Interface
XTAL1 Crystal Input I CMOS XTAL2 Crystal Output O CMOS SLEEP Sleep Mode I Low TTL
DV
DD
Digital Power (4 pins) P
DV
SS
Digital Ground (6 pins) P
AV
DD
Analog Power (4 pins) P
AV
SS
Analog Ground (2 pins) P
AMD
19Am79C940
PIN DESCRIPTION Network Interfaces
The MACE device has five potential network interfaces. Only one of the interfaces that provides physical net­work attachment can be used (active) at any time. Se­lection between the AUI, 10BASE-T, DAI or GPSI ports is provided by programming the PHY Configuration Control register. The EADI port is effectively active at all times. Some signals, primarily used for status reporting, are active for more than one single interface (the CLSN pin for instance). Under each of the descriptions for the network interfaces, the primary signals which are unique to that interface are described. Where signals are active for multiple interfaces, they are described once under the interface most appropriate.
Attachment Unit Interface (AUI) CI+/CI
Control In
(Input)
A differential input pair, signalling the MACE device that a collision has been detected on the network media, in­dicated by the CI± inputs being exercised with 10 MHz pattern of sufficient amplitude and duration. Operates at pseudo-ECL levels.
DI+/DI
Data In
(Input)
A differential input pair to the MACE device for receiving Manchester encoded data from the network. Operates at pseudo-ECL levels.
DO+/DO
Data Out
(Output)
A differential output pair from the MACE device for transmitting Manchester encoded data to the network. Operates at pseudo-ECL levels.
Digital Attachment Interface (DAI) TXDAT+/TXDAT–
Transmit Data
(Output)
When the DAI port is selected, TXDAT± are configured as a complementary pair for Manchester encoded data output from the MACE device, used to transmit data to a local external network transceiver. During valid trans­mission (indicated by TXEN low), a logical
1
is indicated by the TXDAT+ pin being in the high state and TXDAT– in the low state; and a logical
0
is indicated by the TXDAT+ pin being in the low state and TXDAT– in the high state. During idle (TXEN high), TXDAT+ will be in the high state, and TXDAT– in the low state. When the GPSI port is selected, TXDAT+ will provide NRZ data output from the MAC core, and TXDAT– will be held in the LOW state. Operates at TTL levels. The operations of TXDAT+ and TXDAT– are defined in the following tables:
TXDAT+ Configuration
PORTSEL
SLEEP [1–0] ENPLSIO Interface Description Pin Function
0 XX X Sleep Mode High Impedance 1 00 1 AUI High Impedance (Note 2) 1 01 1 10BASE-T High Impedance (Note 2) 1 10 1 DAI Port TXDAT+ Output 1 11 1 GPSI TXDAT+ Output 1 XX 0 Status Disabled High Impedance (Note 2)
TXDAT– Configuration
PORTSEL
SLEEP [1–0] ENPLSIO Interface Description Pin Function
0 XX X Sleep Mode High Impedance 1 00 1 AUI High Impedance 1 01 1 10BASE-T High Impedance 1 10 1 DAI Port TXDAT– Output 1 11 1 GPSI LOW 1 XX 0 Status Disabled High Impedance
Notes:
1. PORTSEL [1–0] and ENPLSIO are located in the PLS Configuration Control register (REG ADDR 14).
2. This pin should be externally terminated, if unused, to reduce power consumption.
AMD
20 Am79C940
TXEN/TXEN
Transmit Enable
(Output)
When the AUI port is selected (PORTSEL [1–0] = 00), an output indicating that the AUI DO± differential output has valid Manchester encoded data is presented. When the 10BASE-T port is selected (PORTSEL [1–0] = 01), indicates that Manchester data is being output on the TXD±/TXP± complementary outputs. When the DAI port is selected (PORTSEL [1–0] = 10), indicates that Manchester data is being output on the DAI port TXDAT± complementary outputs. When the GPSI port is selected (PORTSEL [1–0] =11), indicates that NRZ data is being output from the MAC core of the MACE de­vice, to an external Manchester encoder/decoder, on the TXDAT+ output. Active low when the DAI port is se­lected, active high when the AUI, 10 BASE-T or GPSI is selected. Operates at TTL levels.
RXDAT
Receive Data
(Input)
When the DAI port is selected (PORTSEL [1–0] = 10), the Manchester encoded data input to the integrated clock recovery and Manchester decoder of the MACE device, from an external network transceiver. When the GPSI port is selected (PORTSEL [1–0] =11), the NRZ
decoded data input to the MAC core of the MACE de­vice, from an external Manchester encoder/decoder. Operates at TTL levels.
RXCRS
Receive Carrier Sense
(Input/Output)
When the AUI port is selected (PORTSEL [1–0] = 00), an output indicating that the DI± input pair is receiving valid Manchester encoded data from the external trans­ceiver which meets the signal amplitude and pulse width requirements. When the 10BASE-T port is selected (PORTSEL [1–0] = 01), an output indicating that the RXD± input pair is receiving valid Manchester encoded data from the twisted pair cable which meets the signal amplitude and pulse width requirements. RXCRS will be asserted high for the entire duration of the receive mes­sage. When the DAI port is selected (PORTSEL [1–0] =
10), an input signaling the MACE device that a receive carrier condition has been detected on the network, and valid Manchester encoded data is being presented to the MACE device on the RXDAT line. When the GPSI port is selected (PORTSEL [1–0] = 11), an input signall­ing the internal MAC core that valid NRZ data is being presented on the RXDAT input. Operates at TTL levels.
TXEN/TXEN Configuration
PORTSEL
SLEEP [1–0] ENPLSIO Interface Description Pin Function
0 XX X Sleep Mode High Impedance 1 00 1 AUI TXEN Output 1 01 1 10BASE-T TXEN Output 1 10 1 DAI Port TXEN Output 1 11 1 GPSI TXEN Output 1 XX 0 Status Disabled High Impedance (Note 3)
Notes:
1. PORTSEL [1–0] and ENPLSIO are located in the PLS Configuration Control register (REG ADDR 14).
2. When the GPSI port is selected, TXEN should have an external pull-down attached (e.g. 3.3k
) to ensure the output is held
inactivebefore ENPLSIO is set.
3. This pin should be externally terminated, if unused, to reduce power consumption.
RXDAT Configuration
PORTSEL
SLEEP [1–0] ENPLSIO Interface Description Pin Function
0 XX X Sleep Mode High Impedance 1 00 1 AUI High Impedance (Note 2) 1 01 1 10BASE-T High Impedance (Note 2) 1 10 1 DAI Port RXDAT Input 1 11 1 GPSI RXDAT Input 1 XX 0 Status Disabled High Impedance (Note 2)
Notes:
1. PORTSEL [1–0] and ENPLSIO are located in the PLS Configuration Control register (REG ADDR 14).
2. This pin should be externally terminated, if unused, to reduce power consumption.
AMD
21Am79C940
RXCRS Configuration
PORTSEL
SLEEP [1–0] ENPLSIO Interface Description Pin Function
0 XX X Sleep Mode High Impedance 1 00 1 AUI RXCRS Output 1 01 1 10BASE-T RXCRS Output 1 10 1 DAI Port RXCRS Input 1 11 1 GPSI RXCRS Input 1 XX 0 Status Disabled High Impedance (Note 2)
Notes:
1. PORTSEL [1–0] and ENPLSIO are located in the PLS Configuration Control register (REG ADDR 14).
2. This pin should be externally terminated, if unused, to reduce power consumption.
DXCVR
Disable Transceiver
(Output)
An output from the MACE device to indicate the network port in use, as programmed by the ASEL bit or the PORTSEL [1–0] bits. The output is provided to allow power down of an external DC-to-DC converter, typi­cally used to provide the voltage requirements for an ex­ternal 10BASE2 transceiver.
When the Auto Select (ASEL) feature is enabled, the state of the PORTSEL [1–0] bits is overridden, and the network interface will be selected by the MACE device, dependent only on the status of the 10BASE-T link. If the
link is active (LNKST pin driven LOW) the 10BASE-T port will be used as the active network interface. If the link is inactive (LNKST pin pulled HIGH) the AUI port will be used as the active network interface. Auto Select will continue to operate even when the SLEEP pin is as­serted if the RWAKE bit has been set. The AWAKE bit does not allow the Auto Select function, and only the re­ceive section of 10BASE-T port will be active (DXCVR = HIGH).
Active (HIGH) when either the 10BASE-T or DAI port is selected. Inactive (LOW) when the AUI or GPSI port is selected.
DXCVR Configuration—SLEEP Operation
SLEEP RWAKE AWAKE ASEL LNKST PORTSEL Interface Pin
Pin Bit Bit Bit Pin [1–0] Bits Description Function
0 0 0 X High XX Sleep High
Impedance Mode Impedance
0 1 0 0 High 00 AUI with EADI port LOW
Impedance
0 1 0 0 High 01 10BASE-T with EADI port HIGH
Impedance
0 1 0 0 High 10 Invalid HIGH
Impedance
0 1 0 0 High 11 Invalid LOW
Impedance
0 1 0 1 High 0X AUI with EADI port LOW
Impedance
0 1 0 1 High 0X 10BASE-T with EADI port HIGH
Impedance 0 1 1 1 HIGH 0X AUI with EADI port LOW 0 1 1 1 LOW 0X 10BASE-T with EADI port HIGH 0 0 1 X X 0X 10BASE-T HIGH
Note: RWAKE and ASEL are located in the PHY Configuration Control register (REG ADDR 15). PORTSEL [1–0] and ENPLSIO are located in the PLS Configuration Control register (REG ADDR 14). All bits must be programmed prior to the assertion of the
SLEEP
pin.
AMD
22 Am79C940
DXCVR Configuration—Normal Operation
SLEEP ASEL LNKST PORTSEL ENPLSIO Interface Pin
Pin Bit Pin [1–0] Bits Bit Description Function
1 X X XX X SIA Test Mode High
Impedance
1 0 X 00 X AUI LOW 1 0 X 01 X 10BASE-T HIGH 1 0 X 10 X DAI Port HIGH 1 0 X 11 X GPSI LOW 1 1 HIGH 0X X AUI LOW 1 1 LOW 0X X 10BASE-T HIGH
Note: RWAKE and ASEL are located in the PHY Configuration Control register (REG ADDR 15). PORTSEL [1–0] and ENPLSIO are located in the PLS Configuration Control register (REG ADDR 14).
10BASE-T Interface TXD+, TXD–
Transmit Data
(Output)
10BASE-T port differential drivers.
TXP+, TXP–
Transmit Pre-Distortion
(Output)
Transmit wave form differential driver for pre-distortion.
RXD+, RXD–
Receive Data
(Input)
10BASE-T port differential receiver. These pins should be externally terminated to reduce power consumption if the 10BASE-T interface is not used.
LNKST
Link Status
(OutputOpen Drain)
This pin is driven LOW if the link is identified as func­tional. If the link is determined to be nonfunctional, due to missing idle link pulses or data packets, then this pin is not driven (requires external pull-up). In the LOW out­put state, the pin is capable of sinking a maximum of 12 mA and can be used to drive an LED.
This feature can be disabled by setting the Disable Link Test (DLNKTST) bit in the PHY Configuration Control register. In this case the internal Link Test Receive func­tion is disabled, the LNKST pin will be driven LOW, and the Transmit and Receive functions will remain active regardless of arriving idle link pulses and data. The in­ternal 10BASE-T MAU will continue to generate idle link pulses irrespective of the status of the DLNKTST bit.
RXPOL
Receive Polarity
(Output, Open Drain)
The twisted pair receiver is capable of detecting a re­ceive signal with reversed polarity (wiring error). The RXPOL pin is normally in the LOW state, indicating cor­rect polarity of the received signal. If the receiver detects a received packet with reversed polarity, then this pin is not driven (requires external pull–up) and the polarity of subsequent packets are inverted. In the LOW output state, this pin is capable of sinking a maximum of 12mA and can be used to drive an LED.
The polarity correction feature can be disabled by set­ting the Disable Auto Polarity Correction (DAPC) bit in the PHY Configuration Control register. In this case, the Receive Polarity correction circuit is disabled and the in­ternal receive signal remains non-inverted, irrespective of the received signal. Note that RXPOL will continue to reflect the polarity detected by the receiver.
General Purpose Serial Interface (GPSI) STDCLK
Serial Transmit Data Clock
(Input/Output)
When either the AUI, 10BASE-T or DAI port is selected, STDCLK is an output operating at one half the crystal or XTAL1 frequency. STDCLK is the encoding clock for Manchester data transferred to the output of either the AUI DO± pair, the 10BASE-T TXD±/TXP± pairs, or the DAI port TXDAT± pair. When using the GPSI port, STDCLK is an input at the network data rate, provided by the external Manchester encode/decoder, to strobe out the NRZ data presented on the TXDAT+ output.
AMD
23Am79C940
STDCLK Configuration
PORTSEL
SLEEP [1–0] ENPLSIO Interface Description Pin Function
0 XX X Sleep Mode High Impedance 1 00 1 AUI STDCLK Output 1 01 1 10BASE-T STDCLK Output 1 10 1 DAI Port STDCLK Output 1 11 1 GPSI STDCLK Input 1 XX 0 Status Disabled High Impedance (Note 2)
Notes:
1. PORTSEL [1–0] and ENPLSIO are located in the PLS Configuration Control register (REG ADDR 14).
2. This pin should be externally terminated, if unused, to reduce power consumption.
CLSN
Collision
(Input/Output)
An external indication that a collision condition has been detected by the (internal or external) Medium Attach­ment Unit (MAU), and that signals from two or more nodes are present on the network. When the AUI port is selected (PORTSEL [1–0] = 00), CLSN will be activated when the CI± input pair is receiving a collision indication from the external transceiver. CLSN will be asserted high for the entire duration of the collision detection, but will not be asserted during the SQE Test message fol­lowing a transmit message on the AUI. When the 10BASE-T port is selected (PORTSEL [1–0] = 01), CLSN will be asserted high when simultaneous transmit and receive activity is detected (logically detected when TXD±/TXP± and RXD± are both active). When the DAI port is selected (PORTSEL [1–0] = 10), CLSN will be as­serted high when simultaneous transmit and receive ac­tivity is detected (logically detected when RXCRS and TXEN are both active). When the GPSI port is selected (PORTSEL [1–0] = 11), an input from the external Manchester encoder/decoder signaling the MACE de­vice that a collision condition has been detected on the network, and any receive frame in progress should be aborted.
External Address Detection Interface (EADI )
SF/BD
Start Frame/Byte Delimiter
(Output)
The external indication that a start of frame delimiter has been received. The serial bit stream will follow on the Serial Receive Data pin (SRD), commencing with the destination address field. SF/BD will go high for 4 bit times (400 ns) after detecting the second 1 in the SFD of a received frame. SF/BD will subsequently toggle every 400 ns (1.25 MHz frequency) with the rising edge indi­cating the start (first bit) in each subsequent byte of the received serial bit stream. SF/BD will be inactive during frame transmission.
SRD
Serial Receive Data
(Output)
SRD is the decoded NRZ data from the network. It is available for external address detection. Note that when the 10BASE-T port is selected, transition on SRD will only occur during receive activity. When the AUI or DAI port is selected, transition on SRD will occur during both transmit and receive activity.
CLSN Configuration
PORTSEL
SLEEP [1–0] ENPLSIO Interface Description Pin Function
0 XX X Sleep Mode High Impedance 1 00 1 AUI CLSN Output 1 01 1 10BASE-T CLSN Output 1 10 1 DAI Port CLSN Output 1 11 1 GPSI CLSN Input 1 XX 0 Status Disabled High Impedance (Note 2)
Notes:
1. PORTSEL [1–0] and ENPLSIO are located in the PLS Configuration Control register (REG ADDR 14).
2. This pin should be externally terminated, if unused, to reduce power consumption.
AMD
24 Am79C940
EAM/R
External Address Match/Reject
(Input)
The incoming frame will be received dependent on the receive operational mode of the MACE device, and the polarity of the EAM/R pin. The EAM/R pin function is programmed by use of the M/R bit in the Receive Frame Control register. If the bit is set, the pin is configured as
EAM. If the bit is reset, the pin is configured as EAR. EAM/R can be asserted during packet reception to ac-
cept or reject packets based on an external address comparison.
SRDCLK
Serial Receive Data Clock
(Input/Output)
The Serial Receive Data (SRD) output is synchronous to SRDCLK running at the 10MHz receive data clock fre­quency. The pin is configured as an input, only when the GPSI port is selected. Note that when the 10BASE-T port is selected, transition on SRDCLK will only occur during receive activity. When the AUI or DAI port is se­lected, transition on SRDCLK will occur during both transmit and receive activity.
SRD Configuration
PORTSEL
SLEEP [1–0] ENPLSIO Interface Description Pin Function
0 XX X Sleep Mode High Impedance 1 00 1 AUI SRD Output 1 01 1 10BASE-T SRD Output 1 10 1 DAI Port SRD Output 1 11 1 GPSI SRD Output 1 XX 0 Status Disabled High Impedance
Note: PORTSEL [1–0] and ENPLSIO are located in the PLS Configuration Control register (REG ADDR 14).
SRDCLK Configuration
PORTSEL
SLEEP [1–0] ENPLSIO Interface Description Pin Function
0 XX X Sleep Mode High Impedance 1 00 1 AUI SRDCLK Output 1 01 1 10BASE-T SRDCLK Output 1 10 1 DAI Port SRDCLK Output 1 11 1 GPSI SRDCLK Input 1 XX 0 Status Disabled High Impedance (Note 2)
Notes:
1. PORTSEL [1–0] and ENPLSIO are located in the PLS Configuration Control register (REG ADDR 14).
2. This pin should be externally terminated, if unused, to reduce power consumption.
AMD
25Am79C940
HOST SYSTEM INTERFACE DBUS15–0
Data Bus (
Input/Output/3-state)
DBUS contains read and write data to and from internal registers and the Transmit and Receive FIFOs.
ADD4–0
Address Bus
(Input)
ADD is used to access the internal registers and FIFOs to be read or written.
R/W
Read/Write
(Input)
Indicates the direction of data flow during the MACE de­vice register, Transmit FIFO, or Receive FIFO accesses.
RDTREQ
Receive Data Transfer Request
(Output)
Receive Data Transfer Request indicates that there is data in the Receive FIFO to be read. When RDTREQ is asserted there will be a minimum of 16 bytes to be read except at the completion of the frame, in which case EOF will be asserted. RDTREQ can be programmed to request receive data transfer when 16, 32 or 64 bytes are available in the Receive FIFO, by programming the Receive FIFO Watermark (RCVFW bits) in the FIFO Configuration Control register. The first assertion of RDTREQ will not occur until at least 64 bytes have been received, and the frame has been verified as non runt. Runt packets will normally be deleted from the Receive FIFO with no external activity on RDTREQ. When Runt Packet Accept is enabled (RPA bit) in the User Test Register, RDTREQ will be asserted when the runt pack- et completes, and the entire frame resides in the Receive FIFO. RDTREQ will be asserted only when En­able Receive (ENRCV) is set in the MAC Configuration Control register.
The RCVFW can be overridden by enabling the Low La­tency Receive function (setting LLRCV bit) in the Re­ceive Frame Control register, which allows RDTREQ to be asserted after only 12 bytes have been received. Note that use of this function exposes the system inter­face to premature termination of the receive frame, due to network events such as collisions or runt packets. It is the responsibility of the system designer to provide ade­quate recovery mechanisms for these conditions.
TDTREQ
Transmit Data Transfer Request
(Output)
Transmit Data Transfer Request indicates there is room in the Transmit FIFO for more data. TDTREQ is as­serted when there are a minimum of 16 empty bytes in the Transmit FIFO. TDTREQ can be programmed to re­quest transmit data transfer when 16, 32 or 64 bytes are available in the Transmit FIFO, by programming the Transmit FIFO Watermark (XMTFW bits) in the FIFO Configuration Control register. TDTREQ will be
asserted only when Enable Transmit (ENXMT) is set in the MAC Configuration Control register.
FDS
FIFO Data Select
(Input)
FIFO Data Select allows direct access to the transmit or Receive FIFO without use of the ADD address bus. FDS must be activated in conjunction with R/W. When the MACE device samples R/W as high and FDS low, a read cycle from the Receive FIFO will be initiated. When the MACE chip samples R/W and FDS low, a write cycle to the Transmit FIFO will be initiated. The CS line should be inactive (high) when FIFO access is requested using the FDS pin. If the MACE device samples both CS and FDS as active simultaneously, no cycle will be exe­cuted, and DTV will remain inactive.
DTV
Data Transfer Valid
(Output/3-state)
When asserted, indicates that the read or write opera­tion has completed successfully. The absence of DTV at the termination of a host access cycle on the MACE de­vice indicates that the data transfer was unsuccessful. DTV need not be used if the system interface can guar­antee that the latency to TDTREQ and RDTREQ asser­tion and de-assertion will not cause the Transmit FIFO to be over-written or the Receive FIFO to be over-read. In this case, the latching or strobing of read or write data can be synchronized to the SCLK input rather than to the DTV output.
EOF
End Of Frame
(Input/Output/3–state)
End Of Frame will be asserted by the MACE device when the last byte/word of frame data is read from the Receive FIFO, indicating the completion of the frame data field for the receive message. End Of Frame must be asserted low to the MACE device when the last byte/ word of the frame is written into the Transmit FIFO.
BE1–0
Byte Enable
(Input)
Used to indicate the active portion of the data transfer to or from the internal FIFOs. For word (16-bit) transfers, both BE0 and BE1 should be activated by the external host/controller. Single byte transfers are performed by identifying the active data bus byte and activating only one of the two signals. The function of the BE1–0 pins is programmed using the BSWP bit (BIU Configuration Control register, bit 6). BE1–0 are not required for ac­cesses to MACE device registers.
CS
Chip Select
(Input)
Used to access the MACE device FIFOs and internal registers locations using the ADD address bus. The FIFOs may alternatively be directly accessed without supplying the FIFO address, by using the FDS and R/W pins.
AMD
26 Am79C940
INTR
Interrupt
(Output, Open Drain)
An attention signal indicating that one or more of the fol­lowing status flags are set: XMTINT, RCVINT, MPCO, RPCO, RCVCCO, CERR, BABL or JAB. Each interrupt source can be individually masked. No interrupt condi­tion can take place in the MACE device immediately af­ter a hardware or software reset.
RESET
Reset
(Input)
Reset clears the internal logic. Reset can be asynchro­nous to SCLK, but must be asserted for a minimum duration of 15 SCLK cycles.
SCLK
System Clock
(Input)
The system clock input controls the operational fre­quency of the slave interface to the MACE device and the internal processing of frames. SCLK is unrelated to the 20 MHz clock frequency required for the
802.3/Ethernet interface. The SCLK frequency range is 1 MHz–25 MHz.
EDSEL
System Clock Edge Select
(Input)
EDSEL is a static input that allows System Clock (SCLK) edge selection. If EDSEL is tied high, the bus in­terface unit will assume falling edge timing. If EDSEL is tied low, the bus interface unit will assume rising edge timing, which will effectively invert the SCLK as it enters the MACE device, i.e., the address, control lines (CS, R/W, FDS, etc) and data are all latched on the rising edge of SCLK, and data out is driven off the rising edge of SCLK.
TC
Timing Control
(Input)
The Timing Control input conditions the minimum num­ber of System Clocks (SCLK) cycles taken to read or write the internal registers and FIFOs. TC can be used as a wait state generator, to allow additional time for data to be presented by the host during a write cycle, or allow additional time for the data to be latched during a read cycle. TC has an internal (SLEEP disabled) pull up.
Timing Control
Number of
TC Clocks
12 03
IEEE 1149.1 TEST ACCESS PORT (TAP) INTERFACE
TCK
Test Clock
(Input)
The clock input for the boundary scan test mode operation. TCK can operate up to 10 MHz. TCK has an internal (not SLEEP disabled) pull up.
TMS
Test Mode Select
(Input)
A serial input bit stream used to define the specific boundary scan test to be executed. TMS has an internal (not SLEEP disabled) pull up.
TDI
Test Data Input
(Input)
The test data input path to the MACE device. TDI has an internal (not SLEEP disabled) pull up.
TDO
Test Data Out
(Output)
The test data output path from the MACE device.
GENERAL INTERFACE XTAL1
Crystal Connection
(Input)
The internal clock generator uses a 20 MHz crystal that is attached to pins XTAL1 and XTAL2. Internally, the 20 MHz crystal frequency is divided by two which deter­mines the network data rate. Alternatively, an external 20 MHz CMOS-compatible clock signal can be used to drive this pin. The MACE device supports the use of 50 pF crystals to generate a 20 MHz frequency which is compatible with the IEEE 802.3 network frequency tolerance and jitter specifications.
XTAL2
Crystal Connection
(Output)
The internal clock generator uses a 20 MHz crystal that is attached to pins XTAL1 and XTAL2. If an external clock generator is used on XTAL1, then XTAL2 should be left unconnected.
SLEEP
Sleep Mode
(Input)
The optimal power savings made is extracted by assert­ing the SLEEP pin with both the Auto Wake (AWAKE bit) and Remote Wake (RWAKE bit) functions disabled. In this “deep sleep” mode, all outputs will be forced into their inactive or high impedance state, and all inputs will be ignored except for the SLEEP, RESET, SCLK, TCK,
AMD
27Am79C940
TMS, and TDI pins. SCLK must run for 5 cycles after the assertion of SLEEP. During the “Deep Sleep”, the SCLK input can be optionally suspended for maximum power savings. Upon exiting “Deep Sleep”, the hardware RESET pin must be asserted and the SCLK restored. The system must delay the setting of the bits in the MAC configuration Control Register of the internal analog circuits by 1 ns to allow for stabilization.
If the AWAKE bit is set prior to the activation of SLEEP, the 10BASE-T receiver and the LNKST output pin re­main operational.
If the RWAKE bit is set prior to SLEEP being asserted, the Manchester encoder/decoder, AUI and 10BASE-T cells remain operational, as do the SRD, SRDCLK and SF/BD outputs.
The input on XTAL1 must remain active for the AWAKE or RWAKE features to operate. After exit from the Auto Wake or Remote Wake modes, activation of hardware RESET is not required when SLEEP is reasserted.
On deassertion of SLEEP, the MACE device will go through an internally generated hardware reset se­quence, requiring re-initialization of MACE registers.
Power Supply DV
DD
Digital Power
There are four Digital V
DD
pins.
DV
SS
Digital Ground
There are six Digital V
SS
pins.
AV
DD
Analog Power
There are four analog VDD pins. Special attention should be paid to the printed circuit board layout to avoid excessive noise on the supply to the PLL in the Manchester encoder/decoder (pins 66 and 83 in PLCC, pins 67 and 88 in PQFP). These supply lines should be kept separate from the DV
DD
lines as far back to the
power supply as is practically possible.
AV
SS
Analog Ground
There are two analog VSS pins. Special attention should be paid to the printed circuit board layout to avoid excessive noise on the PLL supply in Manchester en­coder/decoder (pin 73 in PLCC, pin 74 in PQFP). These supply lines should be kept separate from the DV
SS
lines
as far back to the power supply as is practically possible.
PIN FUNCTIONS NOT AVAILABLE WITH THE 80-PIN TQFP PACKAGE
In the 84-pin PLCC configuration,
ALL
the pins are used while in the 100-pin PQFP version, 16 pins are specified as No Connects. Moving to the 80-pin TQFP configura­tion requires the removal of 4 pins. Since Ethernet con­trollers with integrated 10BASE-T have analog portions which are very sensitive to noise, power and ground pins are not deleted. The MACE device does have several sets of media interfaces which typically go un­used in most designs, however. Pins from some of these interfaces are deleted instead. Removed are the following:
TXDAT– (previously used for the DAI interface)
SRD (previously used for the EADI interface)
DTV (previously used for the host interface)
RXPOL (previously used as a receive frame
polarity LED driver)
Note that pins from four separate interfaces are re­moved rather than removing all the pins from a single in­terface. Each of these pins comes from one of the four sides of the device. This is done to maintain symmetry, thus avoiding bond out problems.
In general, the most critical of the four removed pins are TXDAT– and SRD. Depending on the application, either the DAI or the EADI interface may be important. In most designs, however, this will not be the case.
PINS REMOVED AND THEIR EFFECTS TXDAT–
The removal of TXDAT– means that the DAI interface is no longer usable. The DAI interface was designed to be used with media types that do not require DC isolation between the MAU and the DTE. Media which do not require DC isolation can be implemented more simply using the DAI interface, rather than the AUI interface. In most designs this is not a problem because most media requires DC isolation (10BASE-T, 10BASE2, 10BASE5) and will use the AUI port. About the only me­dia which does not require DC isolation is 10BASE-F.
SRD
The SRD pin is an output pin used by the MACE device to transfer a receive data stream to external address detection logic. It is part of the EADI interface. This pin is used to help interface the MACE device to an external CAM device. Use of an external CAM is typically re­quired when an application will operate in promiscuous mode and will need perfect filtering (i.e., the internal hash filter will not suffice). Example applications for this
AMD
28 Am79C940
sort of operation are bridges and routers. Lack of perfect filtering in these applications forces the CPU to be more involved in filtering and thus either slows the forwarding rates achieved or forces the use of a more powerful CPU.
DTV
The DTV pin is part of the host interface to the MACE device. It is used to indicate that a read or write cycle to the MACE device was successful. If DTV is not asserted at the end of a cycle, the data transfer was not success­ful. Basically, this will happen on a write to a full transmit FIFO or a read from an empty receive FIFO. In general,
there are ways to ensure that a transfer is always valid and so this pin is not required in many designs. For in­stance, the TDTREQ and RDTREQ pins can be used to monitor the state of the FIFOs to ensure that data trans­fer only occurs at the correct times.
RXPOL
RXPOL is typically used to drive an LED indicating the polarity of receive frames. This function is not neces­sary for correct operation of the Ethernet and serves strictly as a status indication to a user. The status of the receive polarity is still available through the PHYCC register.
AMD
29Am79C940
FUNCTIONAL DESCRIPTION
The Media Access Controller for Ethernet (MACE) chip embodies the Media Access Control (MAC) and Physi­cal Signaling (PLS) sub-layers of the 802.3 Standard. The MACE device provides the IEEE defined Attach­ment Unit Interface (AUI) for coupling to remote Media Attachment Units (MAUs) or on-board transceivers. The MACE device also provides a Digital Attachment In­terface (DAI), by-passing the differential AUI interface.
The system interface provides a fundamental data con­duit to and from an 802.3 network. The MACE device in conjunction with a user defined DMA engine, provides an 802.3 interface tailored to a specific application.
In addition, the MACE device can be combined with similarly architected peripheral devices and a multi­channel DMA controller, thereby providing the system with access to multiple peripheral devices with a single master interface to memory.
Network Interfaces
The MACE device can be connected to an 802.3 net­work using any one of the AUI, 10 BASE-T, DAI and GPSI network interfaces. The Attachment Unit Inter­face (AUI) provides an IEEE compliant differential inter­face to a remote MAU or an on-board transceiver. An integrated 10BASE-T MAU provides a direct interface for twisted pair Ethernet networks. The DAI port can connect to local transceiver devices for 10BASE2, 10BASE-T or 10BASE-F connections. A General Pur­pose Serial Interface (GPSI) is supported, which effec­tively bypasses the integrated Manchester encoder/decoder, and allows direct access to/from the integral 802.3 Media Access Controller (MAC) to pro­vide support for external encoding/decoding schemes. The interface in use is determined by the PORTSEL [1–0] bits in the PLS Configuration Control register.
The EADI port does not provide network connectivity, but allows an optional external circuit to assist in receive packet accept/reject.
System Interface
The MACE device is a slave register based peripheral. All transfers to and from the device, including data, are performed using simple memory or I/O read and write commands. Access to all registers, including the Trans­mit and Receive FIFOs, are performed with identical read or write timing. All information on the system inter­face is synchronous to the system clock (SCLK), which allows simple external logic to be designed to interro­gate the device status and control the network data flow.
The Receive and Transmit FIFOs can be read or written by driving the appropriate address lines and asserting CS and R/W. An alternative FIFO access mechanism al- lows the use of the FDS and the R/W lines, ignoring the address lines (ADD
4–0). The state of the R/W line in
conjunction with the FDS input determines whether the
Receive FIFO is read (R/W high) or the Transmit FIFO written (R/W low). The MACE device system interface permits interleaved transmit and receive bus transfers, allowing the Transmit FIFO to be filled (
primed
) while a frame is being received from the network and/or read from the Receive FIFO.
In receive operation, the MACE device asserts Receive Data Transfer Request (RDTREQ) when the FIFO con­tains adequate data. For the first indication of a new re­ceive frame, 64 bytes must be received, assuming normal operation. Once the initial 64 byte threshold has been reached, RDTREQ assertion and de-assertion is dependent on the programming of the Receive FIFO Watermark (RCVFW bits in the BIU Configuration Con­trol register). The RDTREQ can be programmed to acti­vate when there are 16, 32 or 64 bytes of data available in the Receive FIFO. Enable Receive (ENRCV bit in MAC Configuration Control register) must be set to as­sert RDTREQ. If the Runt Packet Accept feature is in­voked (RPA bit in User Test Register), RDTREQ will be asserted for receive frames of less than 64 bytes on the basis of internal and/or external address match only. When RPA is set, RDTREQ will be asserted when the entire frame has been received or when the initial 64 byte threshold has been exceeded. See the FIFO Sub­Systems section for further details.
Note that the Receive FIFO may not contain 64 data bytes at the time RDTREQ is asserted, if the automatic pad stripping feature has been enabled (ASTRP RCV bit in the Receive Frame Control register) and a mini­mum length packet with pad is received. The MACE de­vice will check for the minimum received length from the network, strip the pad characters, and pass only the data frame through the Receive FIFO.
If the Low Latency Receive feature is enabled (LLRCV bit set in Receive Frame Control Register), RDTREQ will be asserted once a low watermark threshold has been reached (12 bytes plus some additional synchroni­zation time). Note that the system interface will there­fore be exposed to potential disruption of the receive frame due to a network condition (see the FIFO Sub­System description for additional details).
In transmit operation, the MACE device asserts Trans­mit Data Transfer Request (TDTREQ) dependent on the programming of the Transmit FIFO Watermark (XMTFW bits in the BIU Configuration Control register). TDTREQ will be permanently asserted when the Trans­mit FIFO is empty. The TDTREQ can be programmed to activate when there are 16, 32 or 64 bytes of space available in the Transmit FIFO. Enable Transmit (ENXMT bit in MAC Configuration Control register) must be set to assert TDTREQ. Write cycles to the Transmit FIFO will not return DTV if ENXMT is disabled, and no data will be written. The MACE device will com­mence the preamble sequence once the Transmit Start Point (XMTSP bits in BIU Configuration Control regis­ter) threshold is reached in the Transmit FIFO.
AMD
30 Am79C940
The Transmit FIFO data will not be overwritten until at least 512 data bits have been transmitted onto the net­work. If a collision occurs within the slot time (512 bit time) window, the MACE device will generate a jam se­quence (a 32-bit all zeroes pattern) before ceasing the transmission. The Transmit FIFO will be reset to point at the start of the transmit data field, and the message will be retried after the random back-off interval has expired.
DETAILED FUNCTIONS Block Level Description
The following sections describe the major sub-blocks of and the external interfaces to the MACE device.
Bus Interface Unit (BIU)
The BIU performs the interface between the host or sys­tem bus and the Transmit and Receive FIFOs, as well as all chip control and status registers. The BIU can be con­figured to accept data presented in either little-endian or big endian format, minimizing the external logic required to access the MACE device internal FIFOs and regis­ters. In addition, the BIU directly supports 8-bit transfers and incorporates features to simplify interfacing to 32-bit systems using external latches.
Externally, the FIFOs appear as two independent regis­ters located at individual addresses. The remainder of the internal registers occupy 30 additional consecutive addresses, and appear as 8-bits wide.
BIU to FIFO Data Path
The BIU operates assuming that the 16-bit data path to/ from the internal FIFOs is configured as two independ­ent byte paths, activated by the Byte Enable signals BE0 and BE1.
BE0 and BE1 are only used during accesses to the 16-bit wide Transmit and Receive FIFOs. After hard­ware or software reset, the BSWP bit will be cleared. FIFO accesses to the MACE device will operate assum­ing an Intel 80x86 type memory convention (most sig­nificant byte of a word stored in the higher addressed byte). Word data transfers to/from the FIFOs over the DBUS
15–0 lines will have the least significant byte lo-
cated on DBUS
7–0 (activated by BE0) and the most sig-
nificant byte located on DBUS
15–8 (activated by BE1).
FIFO data can be read or written using either byte and/or word operations.
If byte operation is required, read/write transfers can be performed on either the upper or lower data bus by as­serting the appropriate byte enable. For instance with BSWP = 0, reading from or writing to DBUS
15–8 is ac-
complished by asserting BE1, and allows the data stream to be read from or written to the appropriate
FIFO in byte order (byte 0, byte 1,....byte n). It is equally
valid to read or write the data stream using DBUS
7–0
and by asserting BE0. For BSWP = 1, reading from or writing to DBUS15–8 is accomplished by asserting BE0, and allows the byte stream to be transferred in byte order.
When word operations are required, BSWP ensures that the byte ordering of the target memory is compatible with the 802.3 requirement to send/receive the data stream in byte ascending order. With BSWP = 0, the data transferred to/from the FIFO assumes that byte n will be on DBUS
7–0 (activated by BE0) and byte n+1 will
be on DBUS
15–8 (activated by BE1). With BSWP = 1,
the data transferred to/from the FIFO assumes that byte n will be presented on DBUS
15–8 (activated by BE0),
and byte n+1 will be on DBUS
7–0 (activated by BE1).
There are some additional special cases to the above generalized rules, which are as follows:
(a) When performing byte read operations, both halves
of the data bus are driven with identical data, effec­tively allowing the user to arbitrarily read from either the upper or lower data bus, when only one of the byte enables is activated.
(b) When byte write operations are performed, the
Transmit FIFO latency is affected. See the FIFO Sub-System section for additional details.
(c) If a word read is performed on the last data byte of a
receive frame (EOF is asserted), and the message contained an odd number of bytes but the host re­quested a word operation by asserting both BE0 and BE1, then the MACE device will present one valid and one non-valid byte on the data bus. The placement of valid data for the data byte is depend­ent on the target memory architecture. Regardless of BSWP, the single valid byte will be read from the BE0 memory bank. If BSWP = 0, BE0 corresponds to DBUS7–0; if BSWP = 1, BE0 corresponds to DBUS15–8.
(d) If a byte read is performed when the last data byte is
read for a receive frame (when the MACE device activates the EOF signal), then the same byte will be presented on both the upper and lower byte of the data bus, regardless of which byte enable was activated (as is the case for all byte read opera­tions).
(e) When writing the last byte in a transmit message to
the Transmit FIFO, the portion of the data bus that the last byte is transferred over is irrelevant, provid­ing the appropriate byte enable is used. For BSWP = 0, data can be presented on DBUS
7–0 us-
ing BE0 or DBUS15–8 using BE1. For BSWP = 1, data can be presented on DBUS7–0 using BE1 or DBUS15–8 using BE0.
Loading...
+ 92 hidden pages