AMD Am79C874 Service Manual

DATA SHEET

Am79C874

NetPHY™-1LP Low Power 10/100-TX/FX Ethernet Transceiver

DISTINCTIVE CHARACTERISTICS

10/100BASE-TX Ethernet PHY device with 100BASE-FX fiber optic support
Typical power consumption of 0.3 W
Sends/receives data reliably over cable lengths
greater than 130 meters
MII mode supports 100BASE-X and 10BASE-T
7-Wire (General Purpose Serial Interface (GPSI))
mode supports 10BASE-T
Three PowerWise™ management modes (from 300 mW typical)
Power down: only management responds
Typical power = 3 mW
Unplugged: no cable, no receive clock
Typical power = 100 mW
Idle wire: no wire signal, no receiver power
Typical power = 285 mW; MAC saves over 100 mW

GENERAL DESCRIPTION

The Am79C874 NetPHY-1LP device provides the physical (PHY) layer and transceiver functions for one 10/100 Mbps Ethernet port. It delivers the dual benefits of CMOS low power consumption and small package size. Operating at 3.3 V, it consumes only 0.3 W. Three power management modes provide options for even lower power consumption levels. The small 12x12 mm 80-pin PQL package conserves valuable board space on adapter cards, switch uplinks, and embedded Ether­net applications.
The NetPHY-1LP 10/100 Mbps Ethernet PHY device is IEEE 802.3 compliant. It can receive and transmit data reliably at over 130 meters. It includes on-chip input fil­tering and output waveshaping for unshielded twisted pair operation without requiring external filters or chokes. The NetPHY-1LP device can use 1:1 isolation transformers or 1.25:1 isolation transformers. 1.25:1 isolation transformers provide 20% lower transmit power consumption. A PECL interface is available for 100BASE-FX applications.
Interface to the Media Access Controller (MAC) layer is established via the standard Media Independent Inter­face (MII), a 5-bit symbol interface, or a 7-wire (GPSI)
Supports 1:1 or 1.25:1 transmit transformer
— Using a 1.25:1 ratio saves 20% transmit
power consumption
— No external filters or chokes required
Waveshaping – no external filter required
Full and half-duplex operation with full-featured
Auto-Negotiation function
LED indicators: Link, TX activity, RX activity, Collision, 10 Mbps, 100 Mbps, Full or Half Duplex
MDIO/MDC operates up to 25 MHz
Automatic Polarity Detection
Built-in loopback and test modes
Single 3.3-V power supply with 5-V I/O tolerance
12 mm x 12 mm 80-pin TQFP package
Support for industrial temperature
(-40°C to +85°C)
interface. Auto-Negotiation determines the network speed and full or half-duplex operation. Automatic po­larity correction is performed during Auto-Negotiation and during 10BASE-T signal reception.
Multiple LED pins are provided for front panel status feedback. One option is to use two bi-color LEDs to show when the device is in 100BASE-TX or 10BASE-T mode (by illuminating), Half or Full Duplex (by the color), and when data is being received (by blinking). Individual LEDs can indicate link detection, collision detection, and data being transmitted.
The NetPHY-1LP device needs only one external 25­MHz oscillator or crystal because it uses a dual-speed clock synthesizer to generate all other required clock domains. The receiver has an adaptive equalizer/DC restoration circuit for accurate clock/data recovery from the 100BASE-TX signal.
The NetPHY-1LP device is available in the commercial (0°C to +70°C) or industrial (-40°C to +85°C) tempera­ture ranges. The industrial temperature range is well suited to environments, such as enclosures with re­stricted air flow or outdoor equipment.
Always check www.amd.com for the latest information.
Publication# 22235 Rev: K Issue Date: May 2005

BLOCK DIAGRAM

DATA SHEET
MAC
MII Data Interface
MDC/MDIO
Interface
MII Serial Management Interface and Registers
PHYAD[4:0]
PCS
Framer
Carrier Detect
4B/5B
Clock Recovery
Link Monitor
Signal Detect
10BASE-T
100BASE-X
Control/Status
PLL Clk Generator
Test LED Control
XTL+
XTL- CLK
PMA
25 MHz
20 MHz
TEST LED
Drivers
TP_PMD
MLT-3
BLW
Stream Cipher
10TX
10RX
25 MHz
100TX
100RX
RX FLP
Auto-
Negotiation
Mux
TX+
TX-
RX+
RX-
Transformer
22236G-1
2 Am79C874 22235K

CONNECTION DIAGRAM

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
PCSBP
ISODEF
ISO
TGND1
REFCLK
CLK25
BURN_IN
RST PWRDN PLLVCC
PLLGND
OGND1
OVDD1
PHYAD[4]/10RXD-
PHYAD[3]/10RXD+
PHYAD[2]/10TXD++
PHYAD[1]/10TXD+
PHYAD[0]/10TXD-
GPIO[0]/10TXD--/7Wire
GPIO[1]/TP125
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
TVCC2
TVCC1
DATA SHEET
TX-
TX+
TGND2
XTL+
XTL-
REFVCC
IBREF
REFGND
FXT-
FXT+
Am79C874
NetPHY-1LP
TEST2
TEST1/FXR+
TEST0/FXR-
EQGND
RX+
RX-
TEST3/SDI+
RPTR
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
EQVCC ADPVCC LEDDPX/LEDTXB LEDSPD[1]/LEDTXA/CLK25EN ANEGA TECH_SEL[0] TECH_SEL[1] TECH_SEL[2] CRVVCC CRVGND OGND2 OVDD2 LEDLNK/LED_10LNK/LED_PCSBP_SD LEDTX/LEDBTB LEDRX/LEDSEL LEDCOL/SCRAM_EN LEDSPD[0]/LEDBTA/FX_SEL INTR CRS/10CRS COL/10COL
MDC
MDIO
RXD[3]
RXD[2]
VDD1
RXD[1]
DGND1
RXD[0]/10RXD
RX_DV
TX_ER/TXD[4]
RX_ER/RXD[4]
RX_CLK/10RXCLK
TX_CLK/10TXCLK/PCSBP_CLK
VDD2
TXD[1]
DGND2
TXD[0]/10TXD
TX_EN/10TXEN
TXD[2]
TXD[3]
22236G-2
22235K Am79C874 3
DATA SHEET

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.
AM79C874
V
C/I/D/F
ALTERNATE PACKAGING OPTION
Not Applicable
TEMPERATURE RANGE
C = Commercial (0°C to +70°C) I = Industrial (-40°C to +85°C) D = Lead-free commercial (0°C to +70°C) F = Lead-free industrial (-40°C to +85°C)
PACKAGE TYPE
V = 80-Pin Thin Plastic Quad Flat Pack (PQT 80)
SPEED OPTION
Not Applicable
DEVICE NUMBER/DESCRIPTION
Am79C874 NetPHY-1LP Low Power 10/100-TX/FX Ethernet Transceiver
Valid Combinations
AM79C874 VC
AM79C874 VI
AM79C874 VD
AM79C874 VF
Valid Combinations
Valid Combinations list configurations planned to be sup­ported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.
4 Am79C874 22235K
DATA SHEET

RELATED AMD PRODUCTS

Table 1. Related AMD Products
Part No. Description
Integrated Controllers
Am79C973B/ Am79C975B
Am79C976 PCnet-PRO™ 10/100 Mbps PCI Ethernet PCI Controller
Am79C978A PCnet-Home™ Single-Chip 1/10 Mbps PCI Home Networking Controller
Physical Layer Devices (Single-Port)
Am79C901A HomePHY™ Single-Chip 1/10 Mbps Home Networking PHY
Physical Layer Devices (Multi-Port)
Am79C875 NetPHY™-4LP Low Power Quad10/100-TX/FX Ethernet Transceiver
PCnet-FAS T III Single-Chip 10/100 Mbps PCI Ethernet Controller with Integrated PHY
22235K Am79C874 5
DATA SHEET

TABLE OF CONTENTS

DISTINCTIVE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
CONNECTION DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Standard Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
RELATED AMD PRODUCTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
PIN DESIGNATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Media Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
MII/7-Wire (GPSI) Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Miscellaneous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
LED Port Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Power and Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
MII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
7-Wire (GPSI) Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
5B Symbol Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
100BASE-X Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Transmit Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Receive Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
4B/5B Encoder/Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Scrambler/Descrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Link Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
MLT-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Adaptive Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Baseline Wander Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Clock/Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
PLL Clock Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Clock and Crystal Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
10BASE-T Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Twisted Pair Transmit Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Twisted Pair Receive Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Twisted Pair Interface Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Collision Detect Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Jabber Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Reverse Polarity Detection and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Auto-Negotiation and Miscellaneous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Auto-Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Far-End Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
SQE (Heartbeat) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Loopback Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
LED Port Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Power Savings Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Selectable Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Power Down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Unplugged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Idle Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
PHY CONTROL AND MANAGEMENT BLOCK (PCM BLOCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
. . . . .29
6 Am79C874 22235K
DATA SHEET
Register Administration for 100BASE-X PHY Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Description of the Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Bad Management Frame Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
REGISTER DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Serial Management Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Reserved Registers (Registers 8-15, 20, 22, 25-31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Commercial (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Industrial (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
DC CHARACTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
SWITCHING WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Key to Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
SWITCHING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
System Clock Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
MLT-3 Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
MII Management Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
MII Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
GPSI Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
PHYSICAL DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
PQT80 (measured in millimeters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
ERRATA FOR REVISION [B.7] SILICON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Revision [B.7] Errata Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Errata for NetPHY-1LP [B.7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
B7 Errata 1- Advanced LED Mode Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
B7 Errata 2 - Auto-Negotiation ACK Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
B7 Errata 3 - Missing or Distorted /T/R/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
REVISION SUMMARY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
22235K Am79C874 7

LIST OF FIGURES

Figure 1. FXT± and FXR± Termination for 100BASE-FX . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Figure 2. MLT-3 Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Figure 3. TX± and RX± Termination for 100BASE-TX and 10BASE-T . . . . . . . . . . . . . . . . . . .22
Figure 4. 10BASE-T Transmit /Receive Data Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 5. Standard LED Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 6. Advanced LED Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Figure 7. PHY Management Read and Write Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Figure 8. MLT-3 Receive Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Figure 9. MLT-3 and 10BASE-T Test Load with 1:1 Transformer Ratio . . . . . . . . . . . . . . . . . .45
Figure 10. MLT-3 and 10BASE-T Test Load with 1.25:1 Transformer Ratio . . . . . . . . . . . . . . .45
Figure 11. Near-End 100BASE-TX Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Figure 12. 10BASE-T Waveform With 1:1 Transformer Ratio . . . . . . . . . . . . . . . . . . . . . . . . . .46
Figure 13. PECL Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Figure 14. Clock Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 15. MLT-3 Test Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 16. Management Bus Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Figure 17. Management Bus Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Figure 18. 100 Mbps MII Transmit Start of Packet Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Figure 19. 100 Mbps Transmit End of Packet Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Figure 20. 100 Mbps MII Receive Start of Packet Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Figure 21. 100 Mbps MII Receive End of Packet Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Figure 22. 10 Mbps MII Transmit Start of Packet Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Figure 23. 10 Mbps MII Transmit End of Packet Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Figure 24. 10 Mbps MII Receive Start of Packet Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Figure 25. 10 Mbps MII Receive End of Packet Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Figure 26. GPSI Receive Timing - Start of Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Figure 27. GPSI Receive Timing - End of Reception (Last Bit = 0) . . . . . . . . . . . . . . . . . . . . . .55
Figure 28. GPSI Receive Timing - End of Reception (Last Bit = 1) . . . . . . . . . . . . . . . . . . . . . .56
Figure 29. GPSI Collision Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Figure 30. GPSI Transmit Timing - Start of Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 31. GPSI Transmit 10TXCLK and 10TXD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 32. Test Load for 10RXD, 10CRS, 10RXCLK, 10TXCLK and 10COL . . . . . . . . . . . . . .57
DATA SHEET
8 Am79C874 22235K
DATA SHEET

LIST OF TABLES

Table 1. Related AMD Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Table 2. Pin Designations Listed by Pin Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Table 3. Pin Description Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Table 4. MII Pins that Relate to 10 Mbps 7-Wire (GPSI) mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 5. Code-Group Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Table 6. Speed and Duplex Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Table 7. Standard LED Mode and Advanced LED Mode Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Table 8. Duplex LED Status Configuration in Advanced LED Mode1 . . . . . . . . . . . . . . . . . . . . . . .27
Table 9. Activity LED Configuration in Advanced LED Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 10. Clause 22 Management Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 11. PHY Address Setting Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 12. Supported Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 13. Serial Management Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 14. MII Management Control Register (Register 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 15. MII Management Status Register (Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 16. PHY Identifier 1 Register (Register 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 17. PHY Identifier 2 Register (Register 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 18. Auto-Negotiation Advertisement Register (Register 4) . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 19. Auto-Negotiation Link Partner Ability Register in Base Page Format (Register 5) . . . . . .35
Table 20. Auto-Negotiation LInk Partner Ability Register in Next Page Format (Register 5) . . . . . .35
Table 21. Auto-Negotiation Expansion Register (Register 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 22. Auto-Negotiation Next Page Advertisement Register (Register 7) . . . . . . . . . . . . . . . . . .36
Table 23. Miscellaneous Features Register (Register 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 24. Interrupt Control/Status Register (Register 17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Table 25. Diagnostic Register (Register 18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Table 26. Power/Loopback Register (Register 19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 27. Mode Control Register (Register 21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Table 28. Disconnect Counter (Register 23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 29. Receive Error Counter Register (Register 24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 30. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Table 31. System Clock Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Table 32. MLT-3 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Table 33. MII Management Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 34. 100 Mbps MII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Table 35. 100 Mbps MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Table 36. 10 Mbps MII Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Table 37. 10 Mbps MII Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Table 38. 10 Mbps GPSI Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Table 39. 10 Mbps GPSI Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Table 40. 10 Mbps GPSI Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Table 41. 10 Mbps GPSI Collision Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Table 42. 10 Mbps GPSI Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Table 43. GPSI Transmit 10TXCLK and 10TXD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Table 44. Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
22235K Am79C874 9
DATA SHEET

PIN DESIGNATIONS

Table 2. Pin Designations Listed by Pin Number
Pin No. Pin Name
1 PCSBP 21 MDIO 41 COL/10COL 61 RPTR
2 ISODEF 22 MDC 42 CRS/10CRS 62 TEST3/SDI+
3 ISO 23 RXD[3] 43 INTR 63 RX-
4 TGND1 24 RXD[2] 44
5REFCLK 25RXD[1] 45
6 CLK25 26 RXD[0]/10RXD 46 LEDRX
7 BURN_IN 27 VDD1 47 LEDTX
8RST
9 PWRDN 29 RX_DV 49 OVDD2 69 FXT+
10 PLLVCC 30 RX_CLK/10RXCLK 50 OGND2 70 FXT-
11 PLLGND 31 RX_ER/RXD[4] 51 CRVGND 71 REFGND
12 OGND1 32 TX_ER/TXD[4] 52 CRVVCC 72 IBREF
13 OVDD1 33
14 PHYAD[4]/10RXD- 34 TX_EN/10TXEN 54 TECH_SEL[1] 74 XTL-
15 PHYAD[3]/10RXD+ 35 DGND2 55 TECH_SEL[0] 75 XTL+
16 PHYAD[2]/10TXD++ 36 VDD2 56 ANEGA 76 TGND2
17 PHYAD[1]/10TXD+ 37 TXD[0]/10TXD 57
18 PHYAD[0]/10TXD- 38 TXD[1] 58 LEDDPX/LEDTXB 78 TX-
G P I O [ 0 ] / 1 0 T X D - - /
19
7Wire
20 GPIO[1]/TP125 40 TXD[3] 60 EQVCC 80 TVCC2
Pin
No. Pin Name
28 DGND1 48
TX_CLK/10TXCLK/ PCSBP_CLK
39 TXD[2] 59 ADPVCC 79 TVCC1
Pin No. Pin Name Pin No. Pin Name
LEDSPD[0] LEDBTA/FX_SEL
LEDCOL/ SCRAM_EN
LEDLNK LED_10LNK/ LED_PCSBP_SD
53 TECH_SEL[2] 73 REFVCC
LEDSPD[1] LEDTXA/CLK25EN
/
/LEDSEL 66 TEST0/FXR-
/LEDBTB 67 TEST1/FXR+
/
/
64 RX+
65 EQGND
68 TEST2
77 TX+
10 Am79C874 22235K
DATA SHEET

PIN DESCRIPTIONS

The following table describes terms used in the pin de­scriptions.
Table 3. Pin Description Terminology
Term Description
Input Digital input to the PHY
Analog Input Analog input to the PHY
Output Digital output from the PHY
Analog Output Analog output from the PHY
High Impedance Tri-state capable output from the PHY
Pull-Up
Pull-Down
PHY has internal pull-up resistor. NC=HIGH
PHY has internal pull-down resistor. NC=LOW

Media Connections

TX± Transmitter Outputs Analog Output
The TX± pins are the differential transmit output pair. The TX± pins transmit 10BASE-T or MLT-3 signals de­pending on the state of the link of the port. If the TX± pins are not used, they can be left unconnected.
RX± Receiver Input Analog Input
The RX± pins are the differential receive input pair. The RX± pins can receive 10BASE-T or MLT-3 signals de­pending on the state of the link of the port. If the RX± pins are not used, they can be connected to each other with standard resistor termination.
FXT± FX Transmit Analog Output
These pins are not connected in 10/100BASE-TX mode.
When FX_SEL come the PECL level transmit output for 100BASE-FX.
TEST0/FXR­Test Output/FX Receive -Analog Output/Input
When BURN_IN (Pin 7) is pulled high, this pin serves as a test mode output monitor pin.
When FX_SEL a PECL level negative receive input for 100BASE-FX.
This pin can be left unconnected when the device is op­erating in 100BASE-TX or 10BASE-T mode.
TEST1/FXR+ Test Output/FX Receive +Analog Output/Input
When BURN_IN (Pin 7) is pulled high, this pin serves as a test mode output monitor pin.
(Pin 44) is pulled low, these pins be-
(Pin 44) is pulled low, this pin becomes
When FX_SEL
(Pin 44) is pulled low, this pin becomes
a PECL level positive receive input for 100BASE-FX.
This pin can be left unconnected when the device is op­erating in 100BASE-TX or 10BASE-T mode.
TEST3/SDI+ FX Transceiver Signal Detect Analog Output/Input
When BURN_IN (Pin 7) is pulled high, this pin serves as a test mode output monitor pin.
This pin is not connected in 10/100BASE-TX mode.
When FX_SEL
(Pin 44) is pulled low, this pin becomes the Signal Detect input from the Fiber-Optic trans­ceiver. When the signal quality is good, the SDI+ pin should be driven high.

MII/7-Wire (GPSI) Signals

RXD[3:0] MII Receive Data Output, High Impedance
The data is synchronous with RX_CLK when RX_DV is active. When the 7-wire 10BASE-T interface operation is enabled (GPIO[0]= HIGH), RXD[0] will serve as the 10 MHz serial data output.
RX_DV Receive Data Valid Output, High Impedance
RX_DV is asserted when the NetPHY-1LP device is presenting recovered nibbles on RXD[3:0]. This in­cludes the preamble through the last nibble of the data stream on RXD[3:0]. In 100BASE-X mode, the /J/K/ is considered part of the preamble; thus RX_DV is as­serted when /J/K/ is detected. In 10BASE-T mode, RX_DV is asserted (and data is presented on RXD[3:0]) when the device detects valid preamble bits. RX_DV is synchronized to RX_CLK.
RX_CLK/10RXCLK Receive Clock Output, High Impedance
A continuous clock (which is active while LINK is estab­lished) provides the timing reference for RX_DV, RX_ER, and RXD[3:0] signals. It is 25 MHz in 100BASE-TX/FX and 2.5 MHz in 10BASE-T. To further reduce power consumption of the overall system, the device provides an optional mode enabled through MII Register 16, bit 0 in which RX_CLK is held inactive (low) when no data is received. If RX_CLK is needed when LINK is not established, the NetPHY-1LP must be placed into digital loopback or force the link via reg­ister 21, bits 13 or 14.
When 7-wire 10BASE-T mode is enabled, this pin will provide a 10 MHz clock. RX_CLK is high impedance when the ISO pin is enabled
RX_ER/RXD[4] Receive Error Output, High Impedance
When RX_ER is active high, it indicates an error has been detected during frame reception.
22235K Am79C874 11
DATA SHEET
This pin becomes the highest-order bit of the receive 5­bit code group in PCS bypass (PCSBP=HIGH) mode. This output is ignored in 10BASE-T operation.
TX_ER/TXD[4] Transmit Error Input
When TX_ER is asserted, it will cause the 4B/5B en­coding process to substitute the transmit error code­group /H/ for the encoded data word.
This pin becomes the higher-order bit of the transmit 5­bit code group in PCS bypass (PCSBP=HIGH) mode. This input is ignored in the 10BASE-T operation.
TX_CLK/10TXCLK/PCSBPCLK Transmit Clock Output, High Impedance
A free-running clock which provides timing reference for TX_EN, TX_ER, and TXD[3:0] signals. It is 25 MHz in 100BASE-TX/FX and 2.5 MHz in 10BASE-T.
When 7-wire GPSI mode is enabled, this pin will pro­vide a 10 MHz transmit clock for 10BASE-T operation. When the cable is unplugged, the 10TXCLK ceases operation.
When working in PCSBP mode, this pin will provide a 25 MHz clock for 100BASE-TX operation, and 20 MHZ clock for 10BASE-T operation. TX_CLK is high imped­ance when the ISO pin is enabled.
TX_EN/10TXEN Transmit Enable Input
The TX_EN pin is asserted by the MAC to indicate that data is present on TXD[3:0].
When 7-wire 10BASE-T mode is enabled, this pin is the transmit enable signal.
TXD[3:1] Transmit Data Input
The MAC will source TXD[3:1] to the PHY. The data will be synchronous with TX_CLK when TX_EN is as­serted. The PHY will clock in the data based on the ris­ing edge of TX_CLK.
TXD[0]/10TXD Transmit Data[0]/10 Mbps Transmit Data Input
The MAC will source TXD[0] to the PHY. The data will be synchronous with TX_CLK when TX_EN is as­serted. The PHY will clock in the data based on the ris­ing edge TX_CLK.
When 7-wire 10BASE-T mode is enabled, this pin will transmit serial data.
COL/10COL Collision Output, High Impedance
COL is asserted high when a collision is detected on the media. COL is also used for the SQE test function in 10BASE-T mode.
10COL is asserted high when a collision is detected during 7-wire interface mode.
CRS/10CRS Carrier Sense Output, High Impedance
CRS is asserted high when twisted pair media is non­idle. This signal is used for both 10BASE-T and 100BASE-X. In full duplex mode, CRS responds only to RX activity. In half duplex mode, CRS responds to both RX and TX activity.
10CRS is used as the carrier sense output for the 7-wire interface mode.

Miscellaneous Functions

PCSBP PCS Bypass Input, Pull-Down
The 100BASE-TX PCS as well as scrambler/descram­bler will be bypassed when PCSBP is pulled high via a 1-4.7 kΩ resistor. TX_ER will become TXD[4] and RX_ER will become RXD[4].
In 10 Mbps PCS bypass mode, the MII signals are not valid. The signals that interface to the MAC (i.e., DECPC 21143) are located on pins 14 to 19. The sig­nals are defined as follows:
— 10RXD± are the differential receive outputs to
the MAC.
— 10TXD± are the differential transmit inputs from
the MAC.
— 10TXD++/10TXD-- are the differential pre-
emphasis transmit outputs from the MAC.
When left unconnected, the device operates in MII or GPSI mode.
ISODEF Isolate Default Input, Pull-Down
This pin is used when multiple PHYs are connected to a single MAC. When it is pulled high via a 1-4.7 kΩ re­sistor, the MII interface will be high impedance. The status of this pin will be latched into MII Register 0, bit 10 after reset.
When this pin is left unconnected, the default condition of the MII output pins are not in the high impedance state.
ISO Isolate Input, Pull-Down
The MII output pins will become high impedance when ISO is pulled high via a 1-4.7 kΩ resistor. However, the MII input pins will still respond to data. This allows mul­tiple PHYs to be attached to the same MII interface. The same isolate condition can also be achieved by as­serting MII Register 0, bit 10. In repeater mode, ISO will not tri-state the CRS pin.
When this pin is left unconnected, the MII output pins are not in the high impedance state.
12 Am79C874 22235K
DATA SHEET
REFCLK Clock Input Input, Pull-Down
This pin connects to a 25-MHz + with a 40% to 60% duty cycle. When a crystal input is used, this pin should be pulled low via a 1 kΩ resistor.
XTL± Crystal Inputs Analog Input
These pins should be connected to a 25-MHz crystal. The crystal should be parallel resonant and have a fre­quency stability of + of +
50 ppm. REFCLK (Pin 5) should be pulled low
when the crystal is used as a clock source.
These pins may be left unconnected when REFCLK is used as a clock source.
CLK25 25 MHz Clock Output
When the CLK25EN provides a continuous 25 MHz clock to the MAC.
BURN_IN Test Enable Input, Pull-Down
When pulled high via a 1-4.7 kΩ resistor, this pin forces the NetPHY-1LP device into Burn-in mode for reliability assurance control. When left unconnected the device operates normally.
TEST2 Test Output Analog Output
When BURN_IN (pin 7) is pulled high, this pin serves as a test mode output monitor pin. TEST2 can be left unconnected when the device is operating.
RST Reset Input, Pull-Up
A LOW input forces the NetPHY-1LP device to a known reset state. The chip can also be reset through internal power-on-reset or MII Register 0, bit 15.
PWRDN Power Down Input, Pull-Down
If this pin is pulled high via a 1-4.7 kΩ resistor on the rising edge of reset, the device will power down the an­alog modules and reset the digital circuits. However, the device will still respond to MDC/MDIO data. The same power-down state can also be achieved through the MII Register 0, bit 11. However, the device will re­spond activity on the PWRDN pin even when bit 11 is not set.
When left unconnected, the device operates normally.
This pin can be pulled down anytime during normal op­eration to enter Power Down mode.
PHYAD[4:0] PHY Address Input/Output, Pull-Up
These pins allow 32 configurable PHY addresses. The PHYAD will also determine the scramble seed, which
100 ppm and a frequency tolerance
pin is pulled low, the CLK25 pin
50 ppm clock source
helps to reduce EMI when there are multiple ports switching at the same time (repeater/switch applica­tions). Each pin should either be pulled low via a 1 kΩ
4.7 kΩ resistor (set bit to zero) or left unconnected (set bit to 1) in order to achieve the desired PHY ad­dress. New address changes take effect after a reset has been issued, or at power up.
In PCS bypass mode, PHYAD[4:0] and GPIO[1:0] serves as 10BASE-T serial input and output.
Note: In GPSI mode, the PHYAD pins must be set to addresses other than 00h.
GPIO[0]/10TXD--/7Wire General Purpose I/O 0 Input/Output, Pull-Up
If this pin is pulled low via a 1-4.7 kΩ resistor, on the ris­ing edge of reset, the device will operate in 10BASE-T 7-wire (GPSI) mode. If this pin is left unconnected dur­ing the rising edge of reset, the device will operate in standard MII mode.
After the reset operation has completed, this pin can function as an input or an output (dependent on the value of GPIO[0] DIR (MII Register 16, bit 6). If MII Register 16, bit 6 is set HIGH, GPIO[0] is an input. The input value on the GPIO[0] pin will be reflected in MII Register 16, bit 7 – GPIO[0] Data. If MII Register 16, bit 6 is set LOW, GPIO[0] is an output. The value of MII Register 16, bit 7 will be reflected on the GPIO[0] output pin.
GPIO[1]/TP125 General Purpose I/O 1 Input/Output, Pull-Down
If this pin is pulled high via a 1-4.7 kΩ resistor, on the rising edge of reset, the device will be enabled for use with a 1.25:1 transmit ratio transformer. If this pin is left unconnected during the rising edge of reset, the device will be enabled for use with a 1:1 transmit ratio transformer.
After the reset operation has completed, this pin can function as an input or an output (dependent on the value of GPIO[1] DIR – MII Register 16, bit 8). If MII Register 16, bit 8 is set HIGH, GPIO[1] is an input. The input value on the GPIO[1] pin will be reflected in MII Register 16, bit 9 – GPIO[1] Data. If MII Register 16, bit 8 is set LOW, GPIO[1] is an output. The value of MII Register 16, bit 9 will be reflected on the GPIO[1] output pin.
MDIO Management Data Input/Output Pull-Down
This pin is a bidirectional data interface used by the MAC to access management registers within the Net­PHY-1LP device. This pin has an internal pull-down, therefore, it requires a 1.5 kΩ pull-up resistor as speci­fied in IEEE 802.3 when interfaced with a MAC. This pin can be left unconnected when management is not used.
22235K Am79C874 13
DATA SHEET
MDC Management Data Clock Input
This clock is sourced by the MAC and is used to synchronize MDIO data. When management is not used, this pin should be tied to ground.
INTR Interrupt Output, High Impedance
This pin is used to signal an interrupt to the MAC. The pin will be forced high or low (normally high imped­ance) to signal an interrupt depending upon the value of the INTR_LEVL bit, MII Register 16, bit 14. The events which trigger an interrupt can be programmed via the Interrupt Control Register (Register 17).
TECH_SEL[2:0] Technology Select Input, Pull-Up
The Technology Select pins, in conjunction with the ANEGA pin, set the speed and duplex configurations for the device on the rising edge of reset. These capa­bilities are reflected in MII Register 1 and MII Register
4. Table 6 lists the possible configurations for the de­vice. If the input is listed as LOW, the pin should be pulled to ground via a 1-4.7 kΩ resistor on the rising edge of reset. If the input is listed as HIGH, the pin can be left unconnected.
Note: By using resistors to hard wire the TECH_SEL[2:0] pins and the ANEGA pin, using the MDC/MDIO management interface pins becomes op­tional. The device’s speed, duplex, and auto-negotia­tion capabilities are set via hardware. If the management interface is used, the registers cannot be set to a higher capability than the hard-wired setting. The highest capabilities are Full Duplex, 100 Mbps, and Auto-Negotiation enabled.
ANEGA Auto-Negotiation Ability Input, Pull-Up
When this pin is pulled to ground via a 1-4.7 kΩ resis­tor, on the rising edge of reset, Auto-Negotiation is dis­abled. When this pin is left unconnected, on the rising edge of reset, Auto-Negotiation is enabled. Note that this pin acts in conjunction with Tech_Sel[2:0] on the rising edge of reset. Refer to Table 3 to determine the desired configuration for the device.
In 100BASE-FX mode, ANEGA should be pulled to ground.
Note: By using resistors to hard wire the TECH_SEL[2:0] pins and the ANEGA pin, using the MDC/MDIO management interface pins becomes op­tional. The device’s speed, duplex, and auto-negotia­tion capabilities are set via hardware. If the management interface is used, the registers cannot be set to a higher capability than the hard-wired setting. The highest capabilities are Full Duplex, 100 Mbps, and Auto-Negotiation enabled.
RPTR Repeater Mode Input
This pin should be tied to ground via a 1-4.7 kΩ resistor if repeater mode is to be disabled. When this pin is pulled high via a 1-4.7 kΩ resistor, repeater mode will be enabled. Repeater mode can also enabled via MII Register 16, bit 15. In this mode, the port is set to Half Duplex and SQE is not performed.

LED Port Pins

LEDRX/LED_SEL Receive LED/LED Configuration Select
Input/Output, Pull-Up
When this pin is pulled low via a 1 kΩ resistor, on the rising edge of reset, the advanced LED configuration is enabled. If there is no pull-down resistor present, on the rising edge of reset, the standard LED configuration is enabled.
After the rising edge of reset this pin controls the Re­ceive LED. This pin toggles between high and low when data is received. When the device is operating in the standard LED mode, refer to Figure 5 in the LED Port Configuration section. When the device is operat­ing in the advanced LED mode, refer to Table 9 and Figure 6 in the LED Port Configuration section.
LEDCOL Collision LED/Scrambler Enable
When this pin is pulled low via a 1-kΩ resistor, on the rising edge of reset, the scrambler/descrambler is dis­abled. If no pull-down resistor is present, on the rising edge of reset, the scrambler/descrambler is enabled.
After the rising edge of reset this pin controls the Colli­sion LED. This pin toggles between high and low when there is a collision in half-duplex operation. In full­duplex operation this pin is inactive. When the device is operating in the standard LED mode, refer to Figure 5 in the LED Port Configuration section. When the de­vice is operating in the advanced LED mode, see Fig­ure 6.
LEDLNK Link LED/7-Wire Link LED/PCSBP Signal Detect
When a link is established in 100BASE-X or 10BASE-T mode, this pin will assume a logic low level.
When a link is established in 7-Wire mode, this pin will assume a logic high level.
When in PCS Bypass mode, this pin assumes a logic high level indicating Signal Detect.
Refer to Figure 4 in the LED Port Configuration section if the device is operating in the standard LED mode. See Figure 5 if the device is operating in the advanced LED mode.
/SCRAM_EN
Input/Output, Pull-Up
/LED_10LNK/LED_PCSBP_SD
Output
14 Am79C874 22235K
DATA SHEET
Note: If 7-Wire mode is chosen the polarity of the LED should be reversed and the cathode of the LED should be tied to ground.
LEDSPD[0] 100 Mbps Speed LED/Advanced LED/Fiber Select
When this pin is pulled low via a 1 kΩ resistor, on the rising edge of reset, the device will be enabled for 100BASE-FX operation. When no pull-down resistor is present, on the rising edge of reset, the device will be enabled for 100BASE-TX or 10BASE-T operation.
When the standard LED configuration is enabled (see LEDRX 100 Mbps speed LED. A logic low level indicates 100 Mbps operation. A logic high level indicates 10 Mbps operation. Refer to Figure 5 in the LED Port Configura- tion section to determine the correct polarity of the LED.
When the advanced LED configuration is enabled, this pin works in conjunction with LEDTX Refer to Table 7 and Figure 6 in the LED Port Configu- ration section to determine the correct polarity of the bi­directional LED.
LEDTX Transmit LED/Advanced LED Output
When the standard LED configuration is enabled (see LEDRX transmit LED. This pin toggles between high and low when data is transmitted. Refer to Figure 5 in the LED Port Configuration section to determine the correct po­larity of the LED.
When the advanced LED configuration is enabled, this pin works in conjunction with LEDSPD[0] FX_SEL LED Port Configuration section to determine the cor­rect polarity of the bi-directional LED.
LEDSPD[1] 10 Mbps Speed LED/Advanced LED/25 MHz Clock
Enable Input/Output, Pull-Up
When this pin is pulled low via a 1 kΩ resistor, on the rising edge of reset, the device will output a 25 MHz clock on CLK25 (pin 6). When no pull-down resistor is present, on the rising edge of reset, CLK25 is inactive.
When the standard LED configuration is enabled (see LEDRX 10 Mbps speed LED. A logic low level indicates 10 Mbps operation. A logic high level indicates 100 Mbps operation. Refer to Figure 5 in the LED Port Configura- tion section to determine the correct polarity of the LED.
When the advanced LED configuration is enabled, this pin works in conjunction with LEDDPX
58). Refer to Table 8 and Figure 6 in the LED Port Con-
/LEDBTA/FX_SEL
Input/Output, Pull-Up
/LEDSEL pin description), this pin serves as the
/LEDBTB (pin 47).
/LEDBTB
/LEDSEL pin description), this pin serves as the
/LEDBTA/
(pin 44). Refer to Table 7 and Figure 6 in the
/LEDTXA/CLK25EN
/LEDSEL pin description), this pin serves as the
/LEDTXB (pin
figuration section to determine the correct polarity of the bi-directional LED.
LEDDPX Duplex LED/Advanced LED Output
When the standard LED configuration is enabled (see LEDRX duplex LED. A logic low level indicates full duplex op­eration. A logic high level indicates half duplex opera­tion. See Figure 5 in the LED Port Configuration section to determine the correct polarity of the LED.
When the advanced LED configuration is enabled, this pin works in conjunction with LEDSPD[1] CLK25EN LED Port Configuration section to determine the cor­rect polarity of the bi-directional LED.
/LEDTXB
/LEDSEL description), this pin serves as the
LEDTXA/
(pin 57). Refer to Table 8 and Figure 6 in the

Bias

IBREF Reference Bias Resistor Analog
This pin must be tied to an external 10.0 kΩ (1%) resis­tor which should be connected to ground. The 1% re­sistor provides the bandgap reference voltage.
Note: This signal trace should be short and not close to other signals.

Power and Ground

PLLVCC, OVDD1, OVDD2, VDD1, VDD2, CRVVCC, ADPVCC, EQVCC, REFVCC, TVCC1, TVCC2 Power Pins Power
These pins are 3.3 V power for sections of the NetPHY-1LP device as follows:
PLLVCC is power for the PLL; OVDD1 and OVDD2 are power for the I/O; VDD1 and VDD2 are power for the digital logic; CRVVCC is power for clock recovery; AD­PVCC and EQVCC are power for the equalizer; REFVCC is power for the bandgap reference; and TVCC1 and TVCC2 are power for the transmit driver.
PLLGND, OGND1, OGND2, DGND1, DGND2, CRVGND, EQGND, REFGND, TGND1, TGND2 Ground Pins Power
These pins are ground for the power pins as follows:
PLLGND is ground for PLLVCC; OGND is ground for OVDD; DGND is ground for VDD; CRVGND is ground for CRVVCC and ADPVCC; EQGND is ground for EQVCC; REFGND is ground for REFVCC; and TGND is ground for TVCC.
Note: Bypass capacitors of 0.1 μF between the power and ground pins are recommended. The four areas where the capacitors must be very close to the pins (within 3 mm) are the PLL (pins 10 and 11), Clock Re­covery (pins 51 and 52), Equalizer (pins 60 and 65), and Bandgap Reference (pins 71 and 73) areas. The other bypass capacitors should be placed as close to the pins as possible.
22235K Am79C874 15
DATA SHEET

FUNCTIONAL DESCRIPTION

The NetPHY-1LP device integrates the 100BASE-X PCS, PMA, and PMD functions and the 10BASE-T Manchester ENDEC and transceiver functions in a sin­gle chip for Ethernet 10 Mbps and 100 Mbps opera­tions. It performs 4B/5B, MLT3, NRZI, and Manchester encoding and decoding, clock and data recovery, stream cipher scrambling/descrambling, adaptive equalization, line transmission, carrier sense and link integrity monitor, Auto-Negotiation, and MII manage­ment functions. It provides an IEEE 802.3u compatible Media Independent Interface (MII) to communicate with an Ethernet Media Access Controller (MAC). Se­lection of 10 Mbps or 100 Mbps operation is based on settings of internal Serial Management Interface regis­ters or determined by the on-chip Auto-Negotiation logic. The device can be set to operate either in full-du­plex mode or half-duplex mode for either 10 Mbps or 100 Mbps.
The NetPHY-1LP device communicates with a re­peater, switch, or MAC device through either the Media Independent Interface (MII) or the 10 Mbps 7-wire (GPSI) interface.
The NetPHY-1LP device consists of the following func­tional blocks:
MII Mode
7-Wire (GPSI) Mode
PCS Bypass (5B Symbol) Mode
100BASE-X Block including:
— Transmit Process
— Receive Process
— 4B/5B Encoder and Decoder
— Scrambler and Descrambler
— Link Monitor
—MLT-3
— Adaptive Equalizer
— Baseline Wander Compensation
— Clock/Data Recovery
— PLL Clock Synthesizer
10BASE-T Block including:
— Transmit Process
— Receive Process
— Interface Status
— Collision Detect
— Jabber
— Reverse Polarity Detection and Correction
Auto-Negotiation and miscellaneous functions in­cluding:
— Auto-Negotiation
— Parallel Detection
— Far-End Fault
— SQE (Heartbeat)
— Loopback Operation
— Reset
LED Port Configuration
Power Savings Mechanisms including:
— Selectable Transformer
— Power Down
— Unplugged
— Idle Wire
PHY Control and Management

Modes of Operation

The MII/GPSI/5B Symbol interface provides the data path connection between the NetPHY-1LP transceiver and the Media Access Controller (MAC), repeater, or switch. The MDC and MDIO pins are responsible for communication between the NetPHY-1LP transceiver and the station management entity (STA). The MDC and MDIO pins can be used in any mode of operation.
MII Mode
The purpose of the MII mode is to provide a simple, easy to implement connection between the MAC Rec­onciliation layer and the PHY. The MII is designed to make the differences between various media transpar­ent to the MAC sublayer.
The MII consists of a nibble wide receive data bus, a nibble wide transmit data bus, and control signals to fa­cilitate data transfers between the PHY and the Recon­ciliation layer.
TXD (transmit data) is a nibble (4 bits) of data that are driven by the reconciliation sublayer synchro­nously with respect to TX_CLK. For each TX_CLK period which TX_EN is asserted, TXD[3:0] are ac­cepted for transmission by the PHY.
TX_CLK (transmit clock) output to the MAC recon­ciliation sublayer is a continuous clock that provides the timing reference for the transfer of the TX_EN, TXD, and TX_ER signals.
TX_EN (transmit enable) input from the MAC recon­ciliation sublayer to indicate nibbles are being presented on the MII for transmission on the physi­cal medium. TX_ER (transmit coding error) transi­tions synchronously with respect to TX_CLK. If TX_ER is asserted for one or more clock periods, and TX_EN is asserted, the PHY will emit one or more symbols that are not part of the valid data de­limiter set somewhere in the frame being transmit­ted.
16 Am79C874 22235K
DATA SHEET
RXD (receive data) is a nibble (4 bits) of data that is sampled by the reconciliation sublayer synchro­nously with respect to RX_CLK. For each RX_CLK period which RX_DV is asserted, RXD[3:0] are transferred from the PHY to the MAC reconciliation sublayer.
RX_CLK (receive clock) output to the MAC reconcil­iation sublayer is a continuous clock (during LINK only) that provides the timing reference for the transfer of the RX_DV, RXD, and RX_ER signals.
RX_DV (receive data valid) input from the PHY to indicate the PHY is presenting recovered and de­coded nibbles to the MAC reconciliation sublayer. To interpret a receive frame correctly by the recon­ciliation sublayer, RX_DV must encompass the frame starting no later than the Start-of-Frame de­limiter and excluding any End-Stream delimiter.
RX_ER (receive error) transitions synchronously with respect to RX_CLK. RX_ER will be asserted for 1 or more clock periods to indicate to the recon­ciliation sublayer that an error was detected some­where in the frame being received by the PHY.
CRS (carrier sense) is asserted by the PHY when either the transmit or receive medium is non-idle and deasserted by the PHY when the transmit and receive medium are idle.
7-Wire (GPSI) Mode
7-Wire (GPSI) mode uses the existing MII pins, but data is transferred only on TXD[0] and RXD[0]. This mode is used in a General Purpose Serial Interface (GPSI) configuration for 10BASE-T. If the GPIO[0] pin is LOW at the rising edge of reset, then GPSI mode is selected. For this configuration, TX_CLK runs at 10 MHz. When the cable is unplugged, 10TXCLK ceases operation. Note that 7-wire mode does not define the use of Auto-Negotiation or MDC/MDIO.
The MII pins that relate to 7-wire (GPSI) mode are shown in the following table. The unused input pins in this mode should be tied to ground through a 1 kΩ re­sistor. The RPTR pin must be connected to GND.
Table 4. MII Pins that Relate to 10 Mbps 7-Wire
(GPSI) mode
MII Pin Name 7-Wire (GPSI)
TX_CLK/10TXCLK Transmit Clock
TXD[0]/10TXD Transmit Serial Data Stream
TXD[3:1] Not used
TX_EN/10TXEN Transmit Enable
TX_ER Not used
RX_CLK/10RXCLK Receive Clock
RXD[0] /10RXD Receive Serial Data Stream
RXD[3:1] Not used
COL/10COL Collision Detect
Table 4. MII Pins that Relate to 10 Mbps 7-Wire
(GPSI) mode (continued)
MII Pin Name 7-Wire (GPSI)
RX_ER Not used
CRS/10CRS Carrier Sense Detect
Note: CRS ends one and one-half bit times after the last data bit. The effect is one or two dribbling bits on every packet. All MACs truncate packets to eliminate the dribbling bits. The only noticeable effect is that all CRC errors are recorded as framing errors.
Use the TECH_SEL[2:0] to select the desired 10BASE­T operation.
5B Symbol Mode
The purpose of the 5B Symbol mode is to provide a way for the MAC to do the 4B/5B encoding/decoding and scrambling/descrambling in 100 Mbps operation.
In 10 Mbps operation, the MII signals are not used. In­stead, the NetPHY-1LP device operates as a 10BASE-T transceiver, providing received data to the MAC over a serial differential pair (see PCSBP pin). The MAC uses two serial differential pairs to provide transmit data to the NetPHY-1LP device, where the two differential pairs are combined in the NetPHY-1LP de­vice to compensate for inter-symbol interference on the twisted pair medium.

100BASE-X Block

The functions performed by the device include encod­ing of MII 4-bit data (4B/5B), decoding of received code groups (5B/4B), generating carrier sense and collision detect indications, serialization of code groups for transmission, de-serialization of serial data upon re­ception, mapping of transmit, receive, carrier sense, and collision at the MII interface, and recovery of clock from the incoming data stream. It offers stream cipher scrambling and descrambling capability for 100BASE­TX applications.
In the transmit data path for 100 Mbps, the NetPHY-1LP transceiver receives 4-bit (nibble) wide data across the MII at 25 million nibbles per second. For 100BASE-TX applications, it encodes and scram­bles the data, serializes it, and transmits an MLT-3 data stream to the media via an isolation transformer. For 100BASE-FX applications, it encodes and serializes the data and transmits a Pseudo-ECL (PECL) data stream to the fiber optic transmitter. See Figure 1.
In the receive data path for 100 Mbps, the NetPHY-1LP transceiver receives an MLT-3 data stream from the network. For 100BASE-TX, it then recovers the clock from the data stream, de-serializes the data stream, and descrambles/decodes the data stream (5B/4B) be­fore presenting it at the MII interface.
22235K Am79C874 17
Am79C874
NetPHY-1LP
TEST1/FXR+
TEST0/FXR-
TEST3/SDI+
ANEGA
3.3 V
69 Ω
183 Ω 183 Ω
1 kΩ
69 Ω
82.5 Ω
DATA SHEET
3.3 V
0.1 μF
0.1 μF
3.3 V
0.01 μF
130 Ω
82.5 Ω 130 Ω 130 Ω
82.5 Ω
HFBR/HFCT-5903
3.3 V MT-RJ
5 RD+ 4 RD-
3 SD+
FXT-
FXT+
FX_SEL
1 kΩ
130 Ω 130 Ω
Figure 1. FXT± and FXR± Termination for 100BASE-FX
For 100BASE-FX operation, the NetPHY-1LP device receives a PECL data stream from the fiber optic trans­ceiver and decodes that data stream.
The 100BASE-X block consists of the following sub­blocks:
— Transmit Process — Receive Process — 4B/5B Encoder and Decoder — Scrambler/Descrambler — Link Monitor — Far End Fault Generation and Detection &
Code-Group Generator
— MLT-3 encoder/decoder with Adaptive
Equalization — Baseline Restoration — Clock Recovery
Transmit Process
The transmit process generates code-groups based on the transmit control and data signals on the MII. This process is also responsible for frame encapsulation into a Physical Layer Stream, generating the collision signal based on whether a carrier is received simulta­neously during transmission and generating the Carrier Sense CRS and Collision COL signals at the MII. The transmit process is implemented in compliance with the
10 TD­9 TD+
22236G-3
transmit state diagram as defined in Clause 24 of the IEEE 802.3u specification.
The NetPHY-1LP device transmit function converts synchronous 4-bit data nibbles from the MII to a 125­Mbps differential serial data stream. The entire opera­tion is synchronous to a 25-MHz clock and a 125-MHz clock. Both clocks are generated by an on-chip PLL clock synthesizer that is locked to an external 25-MHz clock source.
In 100BASE-FX mode, the NetPHY-1LP device will by­pass the scrambler. The output data is an NRZI PECL signal. This PECL level signal will then drive the Fiber transmitter.
Receive Process
The receive path includes a receiver with adaptive equalization and DC restoration, MLT-3-to-NRZI con­version, data and clock recovery at 125-MHz, NRZI-to­NRZ conversion, Serial-to-Parallel conversion, de­scrambling, and 5B to 4B decoding. The receiver circuit starts with a DC bias for the differential RX± inputs, fol­lows with a low-pass filter to filter out high-frequency noise from the transmission channel media. An energy detect circuit is also added to determine whether there is any signal energy on the media. This is useful in the power-saving mode. (See the description in Power
18 Am79C874 22235K
Loading...
+ 42 hidden pages