AMD Advanced Micro Devices AM29LV800BT90WCIB, AM29LV800BT90WCI, AM29LV800BT90WCEB, AM29LV800BT90WCE, AM29LV800BT90WCCB Datasheet

...
PRELIMINARY
This document contains information on a product under development at Advanced Micro Devices. The information is intended to help you ev aluate this product. AMD reserves the right to change or dis continue work on thi s proposed product without notice.
Publication# 21490 Rev: E Amendment/+1 Issue Date: March 1998
Refer to AMD’s Website (www.amd.com) for the latest information.
Am29LV800B
DISTINCTIVE CHARACTERISTICS
Single power supply operation
— Full voltage range: 2.7 to 3. 6 volt read and write
operations for battery-powered applications
— Regulated voltage range: 3.0 to 3.6 volt read
and write operations and for compatibility with high performance 3.3 volt microprocessors
Manufactured on 0.35 µm process technology
— Compatible with 0.5 µm Am29LV800 device
High performance
— Full voltage range: access times as fast as 80 ns — Regulated voltage range: access times as fast
as 70 ns
Ultra low power consumption (typical values at
5 MHz)
— 200 nA Automatic Sleep mode current — 200 nA standby mode current — 7 mA read current — 15 mA program/erase current
Flexible sector architecture
— O ne 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and
fifteen 64 Kbyte sectors (byte mode)
— One 8 Kword, two 4 Kword, one 16 Kword, and
fifteen 32 Kword sectors (word mode) — Supports full chip erase — Sector Protection features:
A hardware method of locking a sector to
prevent any program or erase operations within
that sector
Sectors can be locked in-system or via
programming equipment
T emporary Sector Unprotect feat ure allows code
changes in previously locked sectors
Unlock Bypass Program Command
— Reduces overall programming time when
issuing multiple program command sequences
Top or bottom boot block configurations
available
Embedded Al gorithms
— Embedded Erase algorithm automatically
preprograms and erases the entire chip or any combination of designated sectors
— Embedded Program algorithm automatically
writes and verifies data at specified addresses
Minimum 1,000,000 write cycle guarantee per
sector
Package option
— 48-ball FBGA — 48-pin TSOP — 44-pin SO
Compatibility with JEDEC standards
— Pinout and software compatible with single-
power supply Flash
— Superior inadvertent write protection
Data# Polling and toggle bits
— P rovides a software method of detecting
program or erase operation completion
Ready/Busy# pin (RY/BY#)
— Provides a hardware method of detecting
program or erase cycle completion
Erase Suspend/Erase Resume
— Suspends an erase oper ation to read data from,
or program data to, a sector that is not being erased, then resumes the erase operation
Hardware reset pin (RESET#)
— Hardware method to reset the device to reading
array data
2 Am29LV800B
PRELIMINARY
GENERAL DESCRIPTION
The Am29LV800B is an 8 Mbit, 3.0 volt-only Flash memory organized as 1,048,576 bytes or 524,288 words. The device i s offered in 48-ba ll FBGA, 44-pin SO, and 48-pin TSOP packages. The word-wide data
(x16) appears on DQ15–DQ0; the byte-wide (x8) data appears on DQ7–DQ0. This device requires only a single, 3.0 volt V
CC
supply to perform read, program, and erase operations. A stand ard EPROM pro­grammer can also be used to program and erase the device.
This device is manufactured using AMD’s 0.35 µm process technology, and offers all the features and benefits of the Am29LV800, which was manufactured using 0.5 µm process technology. In addition, the Am29LV800B features unlock bypass programming and in-system sector protection/unprotection.
The standard device offers access times of 70, 80, 90 and 120 ns, allowing high speed microprocessors to operate without wait s tates. To el iminate bus conten­tion the device has separate chip enable (CE#), write enable (WE#) and output enable (OE#) controls.
The device requires only a single 3. 0 v o lt po wer sup- ply for both read and write functions. Internally gener­ated and regulated voltages are provided for the program and erase operations.
The device is entirely command set compatible with the JEDEC single-power-supply Flash standard. Com­mands are written to the command regis ter using standard micropr ocessor wri te timings. Register co n­tents serve as input to an internal state-machine that controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from other Flash or EPROM devices.
Device programming occurs by executing the program command sequence. This initiates the Embedded Program algorithm—an internal algorithm that auto­matically times the program pulse widths and verifies proper cell margin. The Unlock Bypass mode facili­tates faster programming times by requir ing only two write cycles to program data instead of four.
Device erasure occurs by ex ecuting the erase command sequence. This initiates the Embedded Erase algo­rithm—an i nternal algorithm that autom atically prepro -
grams the array (if it is not already programmed) before executing the erase operation. During erase, the device automatically times the erase pulse widths and verifies proper cell margin.
The host system can detect whether a program or erase operation is complete by observing the RY/BY# pin, or by reading the DQ7 (Data# Polling) and DQ6 (toggle) status bits. After a program or erase cycle has been completed, the device is ready to read array data or accept another command.
The sector erase ar chitecture allo ws memo ry secto rs to be erased and reprogrammed without affecting the data contents of other sectors. The device is fully erased when shipped from the factory.
Hardware data protection meas ures include a low V
CC
detector that automatically in hibits write opera­tions during power transitions. The hardware sector protection feature disables both program and erase operations in any combination of the sectors of mem­ory. This can be achieved in-system or via program­ming equipment.
The Erase Suspend feature enables the user to put erase on hold for any period of time to read data from, or program data to, any sector that is not selected for erasure. True background erase can thus be achieved.
The hardware RESET# pi n terminates any operation in progress and resets the internal state machine to reading array dat a. The RESET# pin ma y be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the system microprocessor to read the boot-up firmware from the Flash memory.
The device offers two power-saving features. When addresses have been stable for a specified amount of time, the device enters the automatic sleep m ode. The system can also place the de vice into the standby mode. Power consumption is greatly reduced in both these modes.
AMD’s Flash technology combines years of Flash memory manufacturing experience to produce the highest levels of quality, reliability and cost effective­ness. The device electrically erases all bi ts with in a sector simultaneously via Fowler-Nordheim tun­neling. The data is programmed using hot electron injection.
Am29LV800B 3
PRELIMINARY
PRODUCT SELECTOR GUIDE
Note: See “AC Characteristics” for full specifications.
BLOCK DIAGRAM
Family Part Number Am29LV800B
Speed Options
Regulated Voltage Range: VCC =3.0–3.6 V 70R
Full Voltage Range: VCC = 2.7–3.6 V 80 90 120
Max access time, ns (t
ACC
) 70 80 90 120 Max CE# access time, ns (tCE) 70 80 90 120 Max OE# access time, ns (tOE) 30 30 35 50
Input/Output
Buffers
X-Decoder
Y-Decoder
Chip Enable
Output Enable
Logic
Erase Voltage
Generator
PGM Voltage
Generator
Timer
VCC Detector
State
Control
Command
Register
V
CC
V
SS
WE#
BYTE#
CE#
OE#
STB
STB
DQ0
DQ15 (A-1)
Sector Switches
RY/BY#
RESET#
Data
Latch
Y-Gating
Cell Matrix
Address Latch
A0–A18
21490E-1
4 Am29LV800B
PRELIMINARY
CONNECTION DIAGRAMS
A1
A15
A18
A14 A13 A12 A11 A10 A9 A8 NC NC WE# RESET# NC NC RY/BY#
A17 A7 A6 A5 A4 A3 A2
1
16
2
3 4 5 6 7 8
17 18
19 20 21 22 23 24
9 10 11 12 13 14 15
A16
DQ2
BYTE#
V
SS
DQ15/A-1
DQ7
DQ14
DQ6
DQ13
DQ9 DQ1 DQ8 DQ0
OE#
V
SS
CE#
A0
DQ5
DQ12
DQ4
V
CC
DQ11
DQ3
DQ10
48
33
47 46 45 44 43 42 41 40 39 38 37 36 35 34
25
32 31 30 29 28 27 26
A1
A15
A18
A14 A13 A12 A11 A10
A9
A8 NC NC
WE#
RESET#
NC NC
RY/BY#
A17
A7
A6
A5
A4
A3
A2
1
16
2 3 4 5 6 7 8
17 18 19 20 21 22 23 24
9 10 11 12 13 14 15
A16
DQ2
BYTE# V
SS
DQ15/A-1 DQ7 DQ14 DQ6 DQ13
DQ9 DQ1 DQ8 DQ0 OE#
V
SS
CE# A0
DQ5 DQ12 DQ4 V
CC
DQ11 DQ3 DQ10
48
33
47 46 45 44 43 42 41 40 39 38 37 36 35 34
25
32 31 30 29 28 27 26
21490E-2
Reverse TSOP
Standard TSOP
Am29LV800B 5
PRELIMINARY
CONNECTION DIAGRAMS
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22
RY/BY#
A18 A17
A7 A6 A5 A4 A3 A2 A1 A0
CE#
V
SS
OE# DQ0 DQ8 DQ1 DQ9 DQ2
DQ10
DQ3
DQ11
44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23
RESET# WE# A8 A9 A10 A11 A12 A13 A14 A15 A16 BYTE# V
SS
DQ15/A-1 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 V
CC
A1 B1 C1 D1 E1 F1 G1 H1
A2 B2 C2 D2 E2 F2 G2 H2
A3 B3 C3 D3 E3 F3 G3 H3
A4 B4 C4 D4 E4 F4 G4 H4
A5 B5 C5 D5 E5 F5 G5 H5
A6 B6 C6 D6 E6 F6 G6 H6
DQ15/A-1 V
SS
BYTE#A16A15A14A12A13
DQ13 DQ6DQ14DQ7A11A10A8A9
V
CC
DQ4DQ12DQ5NCNCRESET#WE#
DQ11 DQ3DQ10DQ2NCA18NCRY/BY#
DQ9 DQ1DQ8DQ0A5A6A17A7
OE# V
SS
CE#A0A1A2A4A3
SO
21490E-3
FBGA
Bump Side (Bottom) View
6 Am29LV800B
PRELIMINARY
Special Handling Instructions for FBGA Package
Special handling is required for Flash Memory products in FBGA packages.
Flash memory devices in FBGA packages may be damaged if exposed to ultrasonic cleaning methods. The package and/or data integrity may be compromised if the package bod y is ex posed to temperatures above 150°C for prolonged periods of time.
PIN CONFIGURATION
A0–A18 = 19 addresses DQ0–DQ14 = 15 data inputs/outputs DQ15/A-1 = DQ15 (data inp ut/ output, word mode),
A-1 (LSB address input, byte mode) BYTE# = Selects 8-bit or 16-bit mode CE# = Chip enable OE# = Output enable WE# = Write enable RESET# = Hardwa r e reset pin, active low RY/BY# = Ready/Busy# output V
CC
= 3.0 volt-only single power supply
(see Product Selector Guide for speed
options and voltage supply toleranc es) V
SS
= Device ground
NC = Pin not connected internally
LOGIC SYMBOL
21490E-4
19
16 or 8
DQ0–DQ15
(A-1)
A0–A18
CE# OE#
WE# RESET# BYTE# RY/BY#
Am29LV800B 7
PRELIMINARY
ORDERING INFORMATION Standard Pr od ucts
AMD standard products are available in s everal packages and operating ranges. The order number (Valid Combi­nation) is formed by a combination of the elements below.
Valid Combinations
Valid Combinations list configurations planned to be sup­ported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.
DEVICE NUMBER/DESCRIPTION
Am29LV800B 8 Megabit (1 M x 8-Bit/512 K x 16-Bit) CMOS Flash Memory
3.0 Volt-only Read, Program, and Erase
CE70RAm29LV800B T
OPTIONAL PROCESSING
Blank = Standard Processing B = Burn-in (Contact an AMD representative for more information)
TEMPERATURE RANGE
C=Commercial (0°C to +70°C) I = Industrial (–40°C to +85°C) E = Extended (–55°C to +125°C)
PACKAGE TYPE
E = 48-Pin Thin Small Outline Package (TSOP)
Standard Pinout (TS 048)
F = 48-Pin Thin Small Outline Package (TSOP)
Reverse Pinout (TSR048) S = 44-Pin Small Outline Package (SO 044) WB = 48-ball Fine Pitch Ball Grid Array (FBGA)
0.80 mm pitch, 6 x 9 mm package
SPEED OPTION
See Product Selector Guide and Valid Combinations
BOOT CODE SECTOR ARCHITECTURE
T = Top Sector B = Bottom Sector
Valid Combinations
Am29LV800BT70R, Am29LV800BB70R
EC, EI, FC, FI, SC, SI, WBC
Am29LV800BT80, Am29LV800BB80
EC, EI, EE,
FC, FI, FE,
SC, SI, SE,
WBC, WBI, WBE
Am29LV800BT90, Am29LV800BB90
Am29LV800BT120, Am29LV800BB120
8 Am29LV800B
PRELIMINARY
DEVICE BUS OPERATIONS
This section describes the requirements and use of the device bus operations, which are initiated through the internal command register. The command register itself does not occupy any addressable memory loc ation. The register is composed of latches that store the com­mands, along with the address and data information needed to execute the command. The contents of the
register serve as inputs to the internal state machine. The state machine outputs d ictate the function of the device. Table 1 lists the device bus operations, the inputs and control lev els t he y requ ire , and t he resulting output. The following subsections describe each of these operations in further detail.
Table 1. Am29LV800B Device Bus Operations
Legend:
L = Logic Low = V
IL
, H = Logic High = VIH, VID = 12.0 ± 0.5 V, X = Don’t Care, AIN = Address In, DIN = Data In, D
OUT
= Data Out
Notes:
1. Addresses are A18:A0 in word mode (BYTE# = V
IH
), A18:A-1 in byte mode (BYTE# = VIL).
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “Sector Protection/Unprotection” section.
Word/Byte Configuration
The BYTE# pin controls whether the device data I/O
pins DQ15–DQ0 operate in the by te or word configur a­tion. If the BYTE# pin is set at logic ‘1’, the device is in word configuration, DQ15–DQ0 are activ e and c ontrol­led by CE# and OE#.
If the BYTE# pin is set at logic ‘0’, the device is in byte configuration, and only data I/O pins DQ0–DQ7 are ac­tive and controlled by CE# and OE#. The data I /O pins DQ8–DQ14 are tri-stated, and the DQ15 pin is used as an input for the LSB (A-1) address function.
Requirements for Reading Array Data
To read array data from the outputs, the system must drive the CE# and OE# pins to V
IL
. CE# is the power control and selects the device. OE# is the output con­trol and gates array data to the output pins. WE#
should remain at VIH. The BYTE# pin determines whether the device outputs array data in words or bytes.
The internal state machine is set for reading array data upon device po wer-u p , or after a hardw are res et. This ensure s that no sp urious alteration of the mem­ory content occurs dur ing the power transition. No command is nece ssary in this mode to ob tain array data. Standard microprocessor read cycles that as­sert valid addresses on the de vice addr ess inputs pro­duce valid data on the device data outputs. The device remains enab led f or read access until t he com­mand register contents are altered.
See “Reading Array Data” for more information. Refer to the AC Read Operations table for timing specifica­tions and to Figure 13 for the timing diagram. I
CC1
in
the DC Characteristics table represents the active cur­rent specification for reading array data.
Operation CE# OE# WE# RESET#
Addresses
(Note 1)
DQ0–
DQ7
DQ8–DQ15
BYTE#
= V
IH
BYTE#
= V
IL
Read L L H H A
IN
D
OUT
D
OUT
DQ8–DQ14 = High-Z,
DQ15 = A-1
Write L H L H A
IN
D
IN
D
IN
Standby
V
CC
±
0.3 V
XX
VCC ±
0.3 V
X High-Z High-Z High-Z
Output Disable L H H H X High-Z High-Z High-Z Reset X X X L X High-Z High-Z High-Z
Sector Protect (Note 2) L H L V
ID
Sector Address,
A6 = L, A1 = H,
A0 = L
D
IN
XX
Sector Unprotect (Note 2) L H L V
ID
Sector Address, A6 = H, A1 = H,
A0 = L
D
IN
XX
Temporary Sector Unprotect X X X V
ID
A
IN
D
IN
D
IN
High-Z
Am29LV800B 9
PRELIMINARY
Writing Commands/Command Sequences
To write a command or command sequence (which in­cludes programming data to the device and erasing sectors of memory), the system must drive WE# and CE# to V
IL
, and OE# to VIH.
For program operations, the BYT E# pin determin es whether the device accepts program data in bytes or
words. Refer to “Word/Byte Configuration” for more information.
The device features an Unlock Bypass mode to facili- tate faster programming. Once the device enters the Un­lock Bypass mode, only two write cycles are required to program a word or byte, instead of four. The “Word/Byte Program Command Sequence” section has details on programming data to the device using both standard and Unlock Bypass command sequences.
An erase operation can erase one sect or, multiple sec­tors, or the entire device. Tables 2 and 3 indicate the address space that each sector occupies. A “sector ad­dress” consists of the addres s bits required t o un iquely select a sector. The “Command Definitions” section has details on erasing a sector or the entire chip, or suspending/resuming the erase operation.
After the system writes the autoselect command se­quence, the device enters the autoselect mode. The system can then read autoselect codes from the inter­nal register (which is separate from the memory array) on DQ7–DQ0. Standard read cycle timings apply in this mode. Refer to the “Autoselect Mode” and “Autoselect Command Sequence” sections for more information.
I
CC2
in the DC Characteristics table represents the ac­tive current specification for the w rite mode. The “AC Characteristics” section contains timing specification tables and timing diagrams for write operations.
Program and Erase Operation Status
During an erase or program operation, the system ma y check the status of the operation by reading the status bits on DQ7–DQ0. Standard read cycle timings and I
CC
read specifications apply. Refer to “Write Operation Status” for more information, and to “AC Characteris­tics” for timing diagrams.
Standby Mode
When the system is not reading or writing to the device , it can place the device in the standby mode. In this mode, current consumption is great ly reduc ed, and the outputs are placed in the high impedance state, inde­pendent of the OE# input.
The device enters the CMOS standby mode when the CE# and RESET# pin s are both held at V
CC
± 0.3 V. (Note that this is a more restricted voltage range than V
IH
.) If CE# and RESET# ar e held a t VIH, but not within
V
CC
± 0.3 V, the device will be in the standb y mode, b ut
the standby current will be grea ter. The device requires standard access time (t
CE
) for read access when the device is in either of these standby modes, before it is ready to read data.
If the device is deselected during erasure or program­ming, the device draws active current until the operation is completed.
In the DC Characteristics table, I
CC3
and I
CC4
repre-
sents the standby current specification.
Automatic Sleep Mode
The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when addres ses remain stable for t
ACC
+ 30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Standard address access timings provide new data when addresses are chan ged. While in sleep mode, output data is latched and always available to the system. I
CC4
in the DC Characteristics table represents the automatic sleep mode current specification.
RESET#: Hardware Reset Pin
The RESET# pin provides a hardw are method of reset­ting the device to reading array data. When the RE­SET# pin is driven low for at least a period of t
RP
, the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET# pulse. The device also resets the inter nal state ma­chine to reading array data. The operation that was in­terrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity.
Current is reduced for the duration of the RESET# pulse. When RESET# is held at V
SS
±0.3 V, the device
draws CMOS standby c urrent (I
CC4
). If RESET# is held
at V
IL
but not within VSS±0.3 V, the standby current will
be greater. The RESET# pin may be tied to the system reset cir-
cuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firmware from the Flash memory.
If RESET# is asserted during a program or erase op­eration, the RY/BY# pin remains a “0” (busy) until the internal reset operation is complete, which requires a time of t
READY
(during Embedded Algorithms). The system can thus monitor RY/BY# to determine whether the reset oper ation is c omplete . If RESE T# is asserted when a program or erase oper ation is not e x­ecuting (RY/BY# pin is “1”), the reset operation is completed within a time of t
READY
(not during Embed-
ded Algorithms). The system can read data t
RH
after
the RESET# pin returns to V
IH
.
10 Am29LV800B
PRELIMINARY
Refer to the AC Characteristics tables for RESET# pa­rameters and to Figure 14 for the timing diagram.
Output Disable Mode
When the OE# input is at VIH, output from the device is disabled. The output pins are placed in t he high imped­ance state.
Table 2. Am29LV800BT Top Boot Block Sector Address Table
Sector A18 A17 A16 A15 A14 A13 A12
Sector Size
(Kbytes/ Kwords)
Address Range (in hexadecim al )
(x8)
Address Range
(x16)
Address Range
SA00000XXX 64/32 00000h–0FFFFh 00000h–07FFFh SA10001XXX 64/32 10000h1FFFFh08000h0FFFFh SA20010XXX 64/32 20000h2FFFFh10000h17FFFh SA30011XXX 64/32 30000h3FFFFh18000h1FFFFh SA40100XXX 64/32 40000h4FFFFh20000h27FFFh SA50101XXX 64/32 50000h5FFFFh28000h2FFFFh SA60110XXX 64/32 60000h6FFFFh30000h37FFFh SA70111XXX 64/32 70000h7FFFFh38000h3FFFFh SA81000XXX 64/32 80000h8FFFFh40000h47FFFh
SA91001XXX 64/32 90000h9FFFFh48000h4FFFFh SA101010XXX 64/32 A0000hAFFFFh50000h57FFFh SA111011XXX 64/32 B0000hBFFFFh58000h5FFFFh SA121100XXX 64/32 C0000hCFFFFh60000h67FFFh SA131101XXX 64/32 D0000hDFFFFh68000h6FFFFh SA141110XXX 64/32 E0000hEFFFFh70000h77FFFh SA1511110XX 32/16 F0000hF7FFFh78000h7BFFFh SA161111100 8/4 F8000hF9FFFh7C000h7CFFFh SA171111101 8/4 FA000hFBFFFh7D000h7DFFFh SA18111111X 16/8 FC000hFFFFFh7E000h7FFFFh
Am29LV800B 11
PRELIMINARY
Table 3. Am29LV800BB Bottom Boot Block Sector Address Table
Note for Tables 2 and 3: Address range is A18:A-1 in byte mode and A18:A0 in word mode. See “Word/Byte Configuration”
section for more information.
Autoselect Mode
The autoselect mode provides manufacturer and de­vice identification, and sector protection verification,
through identifier codes output on DQ7–DQ0. This mode is primarily intended for progr amming equipment to automatically match a device to be progr ammed with its correspondi ng programming al gorithm. However, the autoselect codes can also be accessed in-system through the command register.
When using programming equipment, the autoselect mode requires V
ID
(11.5 V to 12.5 V) on address pin A9.
Address pins A6, A1, and A0 must be as shown in Table
4. In addition, when verifying sector protection, the sec-
tor address must appear on the appr opriate highest order address bits (see Tables 2 and 3). Table 4 shows the remaining address bits that are don’t care. When all necessary bits have been set as required, the program­ming equipment may then read the corresponding iden­tifier code on DQ7–DQ0.
To access the autoselect codes in-system, the host system can issue the autoselect command via the command register, as shown in Table 5. This method does not require V
ID
. See “Command Definitions” for
details on using the autoselect mode.
Sector A18 A17 A16 A15 A14 A13 A12
Sector Size
(Kbytes/ Kwords)
Address Range (in hexadecim al )
(x8)
Address Range
(x16)
Address Range
SA0000000X 16/8 00000h–03FFFh 00000h–01FFFh
SA10000010 8/4 04000h05FFFh02000h02FFFh
SA20000011 8/4 06000h07FFFh03000h03FFFh
SA300001XX 32/16 08000h0FFFFh04000h07FFFh
SA40001XXX 64/32 10000h1FFFFh08000h0FFFFh
SA50010XXX 64/32 20000h2FFFFh10000h17FFFh
SA60011XXX 64/32 30000h3FFFFh18000h1FFFFh
SA70100XXX 64/32 40000h4FFFFh20000h27FFFh
SA80101XXX 64/32 50000h5FFFFh28000h2FFFFh
SA90110XXX 64/32 60000h6FFFFh30000h37FFFh SA100111XXX 64/32 70000h7FFFFh38000h3FFFFh SA111000XXX 64/32 80000h8FFFFh40000h47FFFh SA121001XXX 64/32 90000h9FFFFh48000h4FFFFh SA131010XXX 64/32 A0000hAFFFFh50000h57FFFh SA141011XXX 64/32 B0000hBFFFFh58000h5FFFFh SA151100XXX 64/32 C0000hCFFFFh60000h67FFFh SA161101XXX 64/32 D0000hDFFFFh68000h6FFFFh SA171110XXX 64/32 E0000hEFFFFh70000h77FFFh SA181111XXX 64/32 F0000hFFFFFh78000h7FFFFh
12 Am29LV800B
PRELIMINARY
Table 4. Am29LV800B Autoselect Codes (High Voltage Method)
L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care.
Sector Protection/Unprotection
The hardware sector protection feature disables both program and erase operations in any sect or. The hard­ware sector unprotection feature re-enables both pro­gram and erase operations in previously protected sectors.
The device is shipped with all sectors unprotected. AMD offers the option of programming and protecting sectors at its factory prior to shipping the device
through AMD’s ExpressFlash™ Servic e. Contact an AMD representative for details.
It is possible to determine whether a sector is protected or unprotected. See “Autoselect Mode” for details.
Sector Protection/unprotection can be implemented via two methods.
The primary method requires V
ID
on the RESET# pin only, and c an be implemented either in-system or via programming equipment. Figure 2 shows the algo­rithms and Figure 23 shows the timing diagram. This method uses standard m icroprocessor bus cycle tim­ing. For sector unprotect, all unprotected sectors must first be protected prior to the first sector unpro tect write cycle.
The alternate method intended on ly for programming equipment requires V
ID
on address pin A9 and OE#. This method is compatible with programmer routines written for earlier 3.0 v olt-only AMD flash de vices. Pub­lication number 20536 contains further details; contact an AMD representative to request a copy.
Temporary Sector Unprotect
This feature allows temporary unpr otection of previ­ously protected sectors to change data in-system. The
Sector Unprotect mode is activated by setting the RE­SET# pin to V
ID
. During this mode, formerly protected sectors can be programmed or erased b y selecting the sector addresses. Once V
ID
is removed from the RE­SET# pin, all the previously protected sectors are protected again. Figure 1 shows the algorithm, and Figure 22 shows the tim ing diagrams, for this feature.
Figure 1. Temporary Sector Unprotect Operation
Description Mode CE# OE# WE#
A18
to
A12
A11
to
A10 A9
A8
to
A7 A6
A5
to
A2 A1 A0
DQ8
to
DQ15
DQ7
to
DQ0
Manufacturer ID: AMD L L H X X V
ID
XLXLL X 01h
Device ID: Am29LV800B (Top Boot Block)
Word L L H
XXV
ID
XLXLH
22h DAh
Byte L L H X DAh
Device ID: Am29LV800B (Bottom Boot Block)
Word L L H
XXV
ID
XLXLH
22h 5Bh
Byte L L H X 5Bh
Sector Protection V erification L L H SA X V
ID
XLXHL
X
01h
(protected)
X
00h
(unprotected)
START
Perform Erase or
Program Operations
RESET# = V
IH
Temporary Sector
Unprotect Completed
(Note 2)
RESET# = V
ID
(Note 1)
Notes:
1. All protected sectors unprotected.
2. All previously protected sectors are protected once again.
21490E-5
Am29LV800B 13
PRELIMINARY
Figure 2. In-System Sector Protect/Unprotect Algorithms
Sector Protect:
Write 60h to sector
address with
A6 = 0, A1 = 1,
A0 = 0
Set up sector
address
Wait 150 µs
Verify Sector
Protect: Write 40h
to sector address
with A6 = 0,
A1 = 1, A0 = 0
Read from
sector address
with A6 = 0,
A1 = 1, A0 = 0
START
PLSCNT = 1
RESET# = V
ID
Wait 1 µs
First Write
Cycle = 60h?
Data = 01h?
Remove V
ID
from RESET#
Write reset
command
Sector Protect
complete
Yes
Yes
No
PLSCNT
= 25?
Yes
Device failed
Increment
PLSCNT
Temporary Sector
Unprotect Mode
No
Sector Unprotect:
Write 60h to sector
address with
A6 = 1, A1 = 1,
A0 = 0
Set up first sector
address
Wait 15 ms
Verify Sector
Unprotect: Write
40h to sector address with
A6 = 1, A1 = 1,
A0 = 0
Read from
sector address
with A6 = 1,
A1 = 1, A0 = 0
START
PLSCNT = 1
RESET# = V
ID
Wait 1 µs
Data = 00h?
Last sector
verified?
Remove V
ID
from RESET#
Write reset
command
Sector Unprotect
complete
Yes
No
PLSCNT
= 1000?
Yes
Device failed
Increment
PLSCNT
Temporary Sector
Unprotect Mode
No
All sectors
protected?
Yes
Protect all sectors:
The indicated portion
of the sector protect
algorithm must be
performed for all
unprotected sectors
prior to issuing the
first sector
unprotect address
Set up
next sector
address
No
Yes
No
Yes
No
No
Yes
No
Sector Protect
Algorithm
Sector Unprotect
Algorithm
First Write
Cycle = 60h?
Protect another
sector?
Reset
PLSCNT = 1
21490E-6
Loading...
+ 29 hidden pages