AMD Am29LV320MT, Am29LV320MB Service Manual

查询AM29LV320MB100E供应商
DATASHEET
Am29LV320MT/B
32 Megabit (2 M x 16-Bit/4 M x 8-Bit) MirrorBit
DISTINCTIVE CHARACTERISTICS
ARCHITECTURAL ADVANTAGES
Single power supply operation
— 3 V for read, erase, and program operations
Manufactured on 0.23 µm MirrorBit process
technology
SecSi (Secured Si licon) Sector region
— 128-word/256-byte sector for permanent, secure
identification through an 8-w ord /16 -by te rand om Electronic Serial Number, accessible through a command sequence
— May be programmed and locked at the factory or by
the customer
Flexible sector architecture
— Sixty-three 32 Kword/64- Kby te sec tors — Eight 4 Kword/8 Kbyte boot sectors
Compatibility with JEDEC standards
— Provides pinout and software compatibility for
single-power supply flash, and superior inadvertent write protection
Minimum 100,000 erase cycle guaran tee per sect or
20-year data retention at 125°C
PERFORMANCE CHA RA CT ER IST ICS
High performance
— 90 ns access time — 25 ns page read times — 0.5 s typical sector erase time — 15 µs typical effective write buffer word programming
time: 16-word/32-byte write buffer reduces overall
programming time for multipl e-w ord /byt e upda tes — 4-word/8-byte page read buffer — 16-word/32-byte write buffer
Low power consumption (typical values at 3.0 V, 5
MHz)
— 13 mA typical active read current — 50 mA typical erase/program current — 1 µA typical standby mode current
Package options
— 48-pin TSOP — 48-ball Fine-pitch BGA — 64-ball Fortified BGA
SOFTWARE & HARDWARE FEATURES
Software features
— Program Suspend & Resume: read other sectors
before programming operation is completed
— Erase Suspend & Resume: read/program other
sectors before an erase operat ion is com ple ted — Data# polling & toggle bits provide status — Unlock Bypass Program command reduces overall
multiple-word programming time — CFI (Com mon F lash Inte rfac e) com plia nt: a llow s hos t
system to identify and accommodate multiple flash
devices
Hardware features
— Sector Group Protection: hardware-level method of
preventing write operations within a sector group — Temporary Sector Unprotect: V
changing code in locked sectors — WP#/ACC input:
Write Protect input (WP#) protects top or bottom two
sectors regardless of sector protection settings
ACC (high voltage) accelerates programming time for
higher throughput during system production — Hardware reset input (RESET#) resets device — Ready/Busy# output (RY/BY#) indicates program or
erase cycle completion
-level method of
ID
This Data Sheet states AMD’s current technical specifications regarding the Products described herein. This Data Sheet may be revised by subsequent versions or modifications due to changes in technical specifications.
Refer to AMD’s Website (www.amd.com) for the latest information.
Publication# 26518 Rev: B Amendment/0 Issue Date: May 16, 2003
DATASHEET
GENERAL DESCRIPTION
The Am29LV320M/TB is a 32 Mbit, 3.0 volt single power supply flash memory device organized as 2,097,152 words or 4,194,304 bytes. The device has an 8-bit/16-bit bus and can be programmed either in the host system or in standard EPROM programmers.
An access time of 90, 100, 110, or 120 ns is available. Note that each a ccess time has a spec ific operat ing voltage range (V specified in the Product Selector Guide and the Order-
ing Information sections. The devic e is offered in a
48-pin TSOP, 48-ball Fine-pitch BGA or 64-ball Forti­fied BGA package. Each device has separate chip en­able (CE#), write enable (WE#) and output enable (OE#) controls.
Each device requires on ly a single 3.0 volt power supply for both read and write functions. In addition to
input, a high-voltage accelerated program
a V
CC
(ACC) function provides shorter programming times through increased current on the WP#/ACC input. This feature is intended to facilitate factory throughput dur­ing system production, but may also be used in the field if desired.
The device is entirely command set compatible with the JEDEC single-pow er-supply Flash standard. Commands are written to the device using standard microprocessor write timing. Write cycles also inter­nally latch address es and data nee ded for the pro­gramming and erase operations.
The sector erase architec ture allow s memory sec­tors to be erased and reprogrammed without affecting the data conten ts of oth er se ctors. T he devi ce is f ully erased when shipped from the factory.
Device programming and erasure are initiated through command sequences. Once a program or erase oper­ation has begun, the host system need only poll the DQ7 (Data# Polling) or DQ6 (toggle) status bits or monitor the Ready/Busy# (RY/BY#) output to deter­mine whether the operation is complete. To facilitate programming, an Unlock Bypass mode reduces com­mand sequence overhead by requiring only two write cycles to program data instead of four.
) and an I/O voltage range (VIO), as
CC
Hardware data protection measures include a low
detector that automatically inhibits write opera-
V
CC
tions during power transitions. The hardware sector protection feature disables both program and erase operations in any combination of sectors of memory. This can be achieved in-system or via programming equipment.
The Erase Suspend/Erase Resume feature allows the host system to pause an erase operation in a given sector to read or program any other sector and then complete the erase operati on. The Program Suspend/Program Resume feature enables the host system to pause a program operation in a given sector to read any other sector and then complete the pro­gram operation.
The hardware RESET# p in terminates any opera tion in progress and resets the device, after which it is then ready for a new operation. T he RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the host system to read boot-up firmware from the Flash memory device.
The device redu ces power consumption in the standby mode when it detects specific voltage levels on CE# and RESET#, or when addresses have been stable for a specified period of time.
The Write Protect (WP#) feature protects the top or bottom two sectors by asserting a logic low on the WP#/ACC pin. The protected sector will still be pro­tected even during accelerated programming.
The SecSi (Secured Silicon) Sector provides a 128-word/256-byte area for code or data that can be permanently protected. Once this sector is protected, no further changes within the sector can occur.
AMD MirrorBit flash technology combines years of Flash memory manufacturing experienc e to produce the highest levels of quality, reliability and cost effec­tiveness. The device electrically erases all bits within a sector simultaneously via hot-hole assisted erase. The data is programmed using hot electron injection.
2 Am29LV320MT/B May 16, 2003
DATASHEET
MIRRORBIT 32 MBIT DEVICE FAMILY
Device Bus Sector Architecture Packages VIORY/BY# WP#, ACC WP# Protection
LV033MU x8 Uniform (64 Kbyte)
LV320MT/B x8/x16
LV320MH/L x8/x16 Uniform (64 Kbyte)
Boot (8 x 8 Kbyte
at top & bottom)
40-pin TSOP (std. & rev. pinout),
48-ball FBGA
48-pin TSOP, 48-ball Fine-pitch BGA,
64-ball Fortified BGA
56-pin TSOP (std. & rev. pinout),
64-ball Fortified BGA
Yes Yes ACC only No WP#
No Ye s WP#/ACC pin
Yes Yes WP#/ACC pin
2 x 8 Kbyte
top or bottom
1 x 64 Kbyte
high or low
RELATED DOCUMENTS
To download related documents, click on the following links or go to www.amd.com uct Information
MirrorBitFlash InformationTech-
Flash MemoryProd-
nical Documentation.
MirrorBit™ Flash Memory Write Buffer Programming and Page Buffer Read
Implementing a Commo n Layout for AMD Mi rrorBit and Intel StrataFlash Memory Devices
Migrating from Single-byte to Three-byte Device IDs AMD MirrorBit™ White Paper
May 16, 2003 Am29LV320MT/B 3
DATASHEET
TABLE OF CONTENTS
Product Selector Guide. . . . . . . . . . . . . . . . . . . . . 5
Block Diag ra m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . 6
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . 9
Device Bus Operations . . . . . . . . . . . . . . . . . . . . 10
Table 1. Device Bus Operation s ....................... ............................ ..10
Requirements for Reading Array Data ........................ ...........10
Writing Commands/Command Sequences ............................11
Automatic Sleep Mode ................. ............ ............ ..................12
RESET#: Hardware Reset Pi n ................................. ..............12
Output Disable Mode ..............................................................12
Table 2. Am29LV320MT Top Boot Sector Architecture ..................12
Table 3. Am29LV320MB Bottom Boot Sector Architecture .............14
Table 4. Autoselect Codes, (High Voltage Method) .......................16
Sector Group Protection and Unprotection .............................17
Table 5. Am29LV320MT Top Boot Sector Protection .....................17
Table 6. Am29LV320MB Bottom Boot Sector Protection ................17
Write Protect (WP#) ................................................................17
Temporary Sector Group Unprotect ....................................... 18
Figure 1. Temporary Sector Group Unprotect Operation................ 18
Figure 2. In-System Sector Group Protect/Unprotect A lgorit hm s ... 19
SecSi (Secured Silicon) Sector Flash Memory Region ..........20
Table 7. SecSi Sector Contents ......................................................20
Figure 3. SecSi Sector Protect Verify.............................................. 21
Hardware Data Protection ......................................................21
Common Flash Memory Interface (CFI). . . . . . . 21
Command Definitions . . . . . . . . . . . . . . . . . . . . . 24
Reading Array Data ................................................................24
Reset Command ................. .................................. ............ ......25
Autoselect Command Sequence ............................................25
Enter SecSi Sector/Exit SecSi Sector CommandSequence ..25
Word/Byte Program Command Sequence .............................25
Figure 4. Write Buffer Programming Operation............................... 28
Figure 5. Program Operation............................................. ............. 29
Program Suspend/Program Resume Command Sequence ...29
Figure 6. Program Suspend/Program Resume............................... 30
Chip Erase Command Sequence ...........................................30
Sector Erase Command Sequence ........................................30
Figure 7. Erase Operation............................................................... 31
Erase Suspend/Erase Resume Commands ................ ...........31
Write Operation Status . . . . . . . . . . . . . . . . . . . . 34
DQ7: Data# Polling ................................................................. 34
Figure 8. Data# Polling Algorithm ................................................... 34
DQ6: Toggle Bit I ....................................................................35
Figure 9. Toggle Bit Algorithm......................................................... 36
DQ2: Toggle Bit II ...................................................................36
Reading Toggle Bits DQ6/DQ2 ..............................................36
DQ5: Exceeded Timing Limits ................................................ 37
DQ3: Sector Era s e Time r ..................... ... .. .............. ... .. ..........37
DQ1: Write-to-B u ffer A b o rt .................................. .. .. ... ............37
Table 14. Write Operation Sta tus ........................ .............. .............37
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . 38
Figure 10. Maximum Negative Overshoot Waveform................... 38
Figure 11. Maximum Positive Overshoot Waveform..................... 38
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 39
Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 12. Test Setup..... ............................ ............................ ....... 40
Table 15. Test Specifications ............................................ .............40
Key to Switching Waveforms. . . . . . . . . . . . . . . . 40
Figure 13. Input Waveforms and
Measurement Levels...................................................................... 40
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 41
Read-Only Operations ...........................................................41
Figure 14. Read Operation Timings. . .............. ....................... ........ 41
Figure 15. Page Read Timings...................................................... 42
Hardware Reset (RESET#) ....................................................43
Figure 16. Reset Timings............................................................... 43
Erase and Program Operations .............................................. 44
Figure 17. Program Operation Timings.......................................... 45
Figure 18. Accelerated Program Timing Diagram.......................... 45
Figure 19. Chip/Sector Erase Operation Timings.......................... 46
Figure 20. Data# Polling Timings (During Embedded Algorithms). 47
Figure 21. Toggle Bit Timings (During Embedded Algorithms)...... 48
Figure 22. DQ2 vs. DQ6......................... ........................................ 48
Temporary Sector Unprotect ..................................................49
Figure 23. Temporary Sector Group Unprotect Timing Dia gram ... 49 Figure 24. Sector Group Protect and Unprotect Timing Diagram .. 50
Alternate CE# Controlled Erase and ProgramOperations .....51
Figure 25. Alternate CE# Controlled Write (Erase/Program)
OperationTimings....................... .............. ........................... .......... 52
Erase And Programming Performan ce. . . . . . . . 53
Latchup Characteristics. . . . . . . . . . . . . . . . . . . . 53
TSOP Pin and BGA Package Capacitance . . . . . 54
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 55
TS 048—48-Pin Standard Pinout Thin Small Outline Package
(TSOP) ................................................................................... 55
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 56
TS 048—48-Pin Standard Pinout Thin Small Outline Package
(TSOP) ................................................................................... 56
FBC048—48-Ball Fine-pitch Ball Grid Array (fBGA)
9 x 8 mm P ackage ........... ................... ..................... ............... 5 7
Physical Dimensions LAA064—64-Ball Fortified Ball Grid Array (FBGA)
13 x 11 mm Package. . . . . . . . . . . . . . . . . . . . . . . 58
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 60
4 Am29LV320MT/B May 16, 2003
DATASHEET
PRODUCT SELECTOR GUIDE
Part Number Am29LV320MT/B
V
= 3.0–3.6 V 90R 100R 110R 120R
Speed Option
Max. Access Time (ns) 90 100 110 120 Max. CE# Access Time (ns) 90 100 110 120
CC
V
= 2.7–3.6 V 100 110 120
CC
Max. Page access time (t
)25 30 30403040
PACC
Max. OE# Access Time (ns) 25 30 30 40 30 40
Note: See “AC Characteristics” for full specifications.
BLOCK DIAGRAM
DQ0
DQ15 (A-1)
Input/Output
Buffers
Data
Latch
V
CC
V
RESET#
WE#
WP#/ACC
BYTE#
CE#
OE#
RY/BY#
Sector Switches
SS
Erase Voltage
Generator
State
Control
Command
Register
PGM Voltage
Generator
Chip Enable
Output Enable
STB
Logic
A20–A0
VCC Detector
Timer
STB
Y-Decoder
X-Decoder
Address Latch
Y-Gating
Cell Matrix
May 16, 2003 Am29LV320MT/B 5
CONNECTION DIAGRAMS
DATASHEET
A15 A14 A13 A12 A11 A10
A9
A8 A19 A20
WE#
RESET#
NC
WP#/ACC
RY/BY#
A18 A17
A7
A6
A5
A4
A3
A2
A1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
48-Pin Standard TSOP
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
A16 BYTE# V
SS
DQ15/A-1 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4
V
CC
DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 OE#
V
SS
CE# A0
48-ball Fine-pitch BGA
Top View, Balls Facing Down
A6 B6 C6 D6 E6 F6 G6 H6
DQ15/A-1
A5 B5 C5 D5 E5 F5 G5 H5
DQ13 DQ6DQ14DQ7A11A10A8A9
A4 B4 C4 D4 E4 F4 G4 H4
V
A3 B3 C3 D3 E3 F3 G3 H3
DQ11 DQ3DQ10DQ2A20A18WP#/ACCRY/BY#
A2 B2 C2 D2 E2 F2 G2 H2
DQ9 DQ1DQ8DQ0A5A6A17A7
A1 B1 C1 D1 E1 F1 G1 H1
OE#
V
CC DQ4DQ12DQ5A19NCRESET#WE#
V
SSBYTE#A16A15A14A12A13
SSCE#A0A1A2A4A3
6 Am29LV320MT/B May 16, 2003
CONNECTION DIAGRAMS
DATASHEET
64-Ball Fortified BGA
Top View, Balls Facing Down
A8
NC
A7
A13
A6 A9
A5
WE#
A4
RY/BY#
A3
A7
A2
A3
A1 NC
B8 C8 D8 E8 F8 G8 H8
NCNCNC
B7 C7 D7 E7 F7 G7 H7
B6 C6 D6 E6 F6 G6 H6
B5 C5 D5 E5 F5 G5 H5
B4 C4 D4 E4 F4 G4 H4
B3 C3 D3 E3 F3 G3 H3
B2 C2 D2 E2 F2 G2 H2
B1 C1 D1 E1 F1 G1 H1
SS
DQ15/A-1BYTE#A16A15A14A12
DQ13DQ14DQ7A11A10A8
DQ12DQ5A19NCRESET#
CC
OE#CE#A0A1A2A4
NCNCNCV
V
SS
DQ6
DQ4V
DQ3DQ11DQ10DQ2A20A18WP#/ACC
DQ1DQ9DQ8DQ0A5A6A17
V
SS
NCNCNCNCNCNCNC
Special Package Handling Instructions
and/or data integrity may be compromi sed if the package body is exposed to temperatures above 150°C
Special handling is required for Flash Memory products
for prolonged periods of time.
in molded packages (TSOP and BGA). The package
May 16, 2003 Am29LV320MT/B 7
DATASHEET
PIN DESCRIPTION
A20–A0 = 21 Address inputs DQ14–DQ0 = 15 Data inputs/outputs DQ15/A-1 = DQ15 (Data input/output, word mode),
A-1 (LSB Address input, byte mode) CE# = Chip Enable input OE# = Output Enable input WE# = Write Enable input WP#/ACC = Hardware Write Protect input/Pro-
gramming Acceleration input RESET# = Hardware Reset Pin input RY/BY# = Ready/Busy output BYTE# = Selects 8-bit or 16-bit mode
= 3.0 volt-only single power supply
V
CC
V
SS
NC = Pin Not Connected Internally
(see Product Selector Guide for
speed options and voltage
supply tolerances)
= Device Ground
LOGIC SYMBOL
21
A20–A0
CE# OE# WE#
WP#/ACC RESET# BYTE#
16 or 8
DQ15–DQ0
(A-1)
RY/BY#
8 Am29LV320MT/B May 16, 2003
DATASHEET
ORDERING INFORMATION Standard Products
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the following:
Am29LV320M T 120R PC I
TEMPERATURE RANGE
I = Industrial (–40
PACKAGE TYPE
E = 48-Pin Thin Small Outline Package (TSOP) Standard Pinout (TS 048) PC = 64-Ball Fortified Ball Grid Array (
1.0 mm pitch, 13 x 11 mm package (LAA064)
WC = 48-Ball Fine Pitch Ball Grid Array (FBGA),
0.80 mm pitch, 9 x 8 mm package (FBC048)
SPEED OPTION
See Product Selector Guide a nd Valid Combinations
°C to +85°C)
FBGA),
SECTOR ARCHITECTURE AND WP# PROTECTION (WP# = V
T = Top boot sector device, top two address secto rs protected B = Bottom boot sector device, bottom two address sectors protected
DEVICE NUMBER/DESCRIPTION
Am29LV320MT/B 32 Megabit (2 M x 16-Bit/4 M x 8-Bit) MirrorBit Boot Sector Flash Memory
3.0 Volt-only Read, Program, and Erase
Valid Combinations for
TSOP Package
Am29LV320MT90R, Am29LV320MB90R
Am29LV320MT100, Am29LV320MB100
Am29LV320MT110, Am29LV320MB110
Am29LV320MT120, Am29LV320MB120
Am29LV320MT100R, Am29LV320MB100R
Am29LV320MT110R, Am29LV320MB110R
Am29LV320MT120R, Am29LV320MB120R
Speed
(ns)
90 3.0–3.6 V
100
110
EI
120
100
110
120
V
CC
Range
2.7–3.6 V
3.0–3.6 V
Valid Combinations
Valid Com binations l ist c onfi gurations pl anned to be supported in vol­ume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly re­leased combinations.
Valid Combinations for
BGA Packages
Order Number Package Markin g
Am29LV320MT90R
Am29LV320MB90R
Am29LV320MT100
Am29LV320MB100
Am29LV320MT110
Am29LV320MB110
Am29LV320MT120
Am29LV320MB120
Am29LV320MT100R
Am29LV320MB100R
Am29LV320MT110R
Am29LV320MB110R
Am29LV320MT120R
Am29LV320MB120R
WCI L320MT90QI
PCI L320MT90NI
WCI L320MB90QI
PCI L320MB10NI
WCI L320MT10UI
PCI L320MT10PI
WCI L320MB10UI
PCI L320MB10PI
WCI L320MT11UI
PCI L320MT11PI
WCI L320MB11UI
PCI L320MB11PI
WCI L320MT12UI
PCI L320MT12PI
WCI L320MB12UI
PCI L320MB12PI
WCI L320MT10QI
PCI L320MT10NI
WCI L320MB10QI
PCI L320MB10NI
WCI L320MT11QI
PCI L320MT11NI
WCI L320MB11QI
PCI L320MB11NI
WCI L320MT12QI
PCI L320MT12NI
WCI L320MB12QI
PCI L320MB12NI
IL
)
Speed
(ns)
90
100
110
120
100
110
120
V
CC
Range
3.0–
3.6 V
2.7–
3.6 V
3.0–
3.6 V
3.0–
3.6 V
May 16, 2003 Am29LV320MT/B 9
DATASHEET
DEVICE BUS OPERATIONS
This section describes the requirements and use of the device bus operations, which are in itiated through the internal command register. The command register itself does not occupy any addressabl e memory l oca­tion. The register is a latch used to store the com­mands, along with the ad dress and da ta information needed to execute the command. The contents of the
Table 1. Device Bus Operations
register serve as inputs to the intern al state machine. The state machine outputs dictate the function of the device. Table 1 lists the device bus operations, the in- puts and control l evels they requir e, and the resultin g output. The following subsections de scribe each of these operations in further detail.
DQ8–DQ15
Addresses
Operation CE# OE# WE# RESET# WP# ACC
Read L L H H Write (Program/Erase) L H L H (Note 3) X A Accelerated Program L H L H
±
V
Standby
Output Disable L H H H Reset X X X L
Sector Group Protect (Note 2)
Sector Group Unprotect (Note 2)
T emporary Sector Group Unprotect
CC
0.3 V
XX
LHL V
LHL V
XXX V
V
CC
0.3 V
ID
ID
ID
±
XX
(Note 3) V
HH
XH
XX XX
HX
HX
HX A
(Note 2)
SA, A6 =L, A3=L, A2=L, A1=H, A0=L
SA, A6=H, A3=L, A2=L, A1=H, A0=L
DQ0–
DQ7
A
IN
IN
A
IN
X
X X
D (Note 4) (Note 4) (Note 4) (Note 4)
High-Z High-Z High-Z
High-Z High-Z High-Z High-Z High-Z High-Z
(Note 4) X X
(Note 4) X X
IN
(Note 4) (Note 4) High-Z
OUT
BYTE#
= V
IH
D
OUT
BYTE#
= V
IL
DQ8–DQ14
= High-Z,
DQ15 = A-1
Legend: L = Logic Low = VIL, H = Logic Hi gh = VIH, VID = 11.5–12.5 V, VHH = 11.5–12. 5 V , X = Do n’t Care , SA = Sect or Addr ess ,
= Address In, DIN = Data In, D
A
IN
= Data Out
OUT
Notes:
1. Addresses are A20:A0 in word mode; A20:A-1 in byte mode. Sector addresses are A20:A12 in both modes.
2. The sector protect and sector unprotect functions may al so be i mplemente d via programmi ng equipmen t. See the “Sector Group Protection and Unprotection” sectio n.
3. If WP# = V
, the first or last sector remains protect ed. I f WP# = VIH, the top two or bottom two sectors wi ll be prot ected or
IL
unprotected as determined by the method d escribe d in “Sector Group Pr otecti on and Unprotect ion ”. All sector s are unprote cted when shipped from the factory (The SecSi Secto r may be facto ry pr otected depending on ver sion or dered.)
4. D
IN
or D
as required by command sequence, data polling, or sector protect algorithm (see Figure 2).
OUT
Word/Byte Configuration
The BYTE# pin controls whether the de vice data I/O pins operate in the b yte or word confi guration. If the BYTE# pin is set at logic ‘1’, the device is in word con­figuration, DQ0–DQ15 are active and co ntrolled by CE# and OE#.
If the BYTE# pin is set at logic ‘0’, the device is in byte configuration, and only data I/O pins DQ0–DQ7 are active and controlled by CE# and OE#. The data I/O
pins DQ8–DQ14 are tri-stated, and the DQ15 pin is used as an input for the LSB (A-1) address function.
Requirements for Reading Array Data
To read array data from the outputs, the system must drive the CE# and OE# pins to V control and selects the device. OE# is the output con­trol and gates array data to the output pins. WE# should remain at V
.
IH
. CE# is the power
IL
10 Am29LV320MT/B May 16, 2003
DATASHEET
The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory content occurs durin g the power transition. No com­mand is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the device data outputs. The device remains enabled for read access until the command register contents are altered.
See “Reading Array Data” for more information. Refer to the AC Read-Only Operations table for timing spec- ifications and to Figure 14 for the timing diagram. Refer to the DC Characteristics table for the active current specification on reading array data.
Page Mode Read
The device is capable of fast page mode read and is compatible with the page mode Mask ROM read oper­ation. This mode provides faster read access speed for random locations wi thin a page. T he page s ize of the device is 4 words/8 bytes. The appropriate page is selected by th e higher addres s bits A(ma x)–A2. A d­dress bits A1–A0 in word mode (A1–A-1 in byte mode) determine the specif ic wor d withi n a page. This is an asynchronous operation; the m icroprocesso r supplies the specific word location.
The random or initial page access is equal to t
and subsequent page read accesses (as long as
t
CE
ACC
or
the locations specified by the microprocessor falls within that page) is equival ent to t
. When CE# is
PACC
deasserted and reasserted for a subsequent access, the access time is t
or tCE. Fast page mode ac-
ACC
cesses are obtained by keeping the “read-page ad­dresses” constant and cha nging the “i ntra-read p age” addresses.
Writing Commands/Command Sequences
To write a command or command sequence (which in­cludes programming data to the device and erasing sectors of memory), the system must drive WE# and CE# to V
The device features an Unlock Bypass mode to facil­itate faster programming. Once the device enters the Unlock Bypass mo de, only two write cycles are re­quired to program a word or byte, instead of four. The “Word/Byte Program Co mmand Sequenc e” section has details on programming data to the device using both standard and Unlock Bypass command se­quences.
An erase operation can erase one sector, multiple sec­tors, or the entire device. Tables 3 and 2 indicates the address space that each sector occupies.
Refer to the DC Characteristics table for the active current specification for the write mode. The AC Char-
, and OE# to VIH.
IL
acteristics section contains timing spec ification tables
and timing diagrams for write operations.
Write Buffer
Write Buffer Programming allows the system to write a maximum of 16 words/32 bytes in one programming operation. This results in faster effective programming time than the standard programming algorithms. See “Write Buffer” for more information.
Accelerated Program Operation
The device offers accelerated program operations through the ACC function. This is one of two functions provided by the WP#/ACC pin. This function is prima­rily intended to allow faster manu facturing throu ghput at the factory.
If the system asserts V
on this pin, the device auto-
HH
matically enters the aforementioned Unlock Bypass mode, temporarily unprotects any protec ted sectors, and uses the higher voltage on the pin to reduce the time required for program operations. The system would use a two-cycle progra m command sequence as required by the Unlock Bypass mode. Removing
from the WP#/ACC p in returns th e device to nor-
V
HH
mal operation. N ote that the WP# /ACC pin must not
be at V
for operations oth er than acceler ated pro-
HH
gramming, or device damage may result. In addition, no external pullup is necessary since the WP#/ACC pin has internal pullup to V
CC
.
Autoselect Functions
If the system writes the autoselect command s e­quence, the device enters the autoselect mo de. The system can then read autoselect codes from the inter­nal register (which is separate from the memory array) on DQ7–DQ0. Standard read cycle timings apply in this mode. Refer to the Autoselect M ode and Au tose-
lect Command Sequence sections for m ore informa-
tion.
Standby Mode
When the system is n ot reading or wri ting to the de­vice, it can place the device in the standby mode. In this mode, current consum ption is greatly reduc ed, and the outputs are placed in the high impedance state, independent of the OE# input.
The device enters the CMOS standby mode when the CE# and RESET# pins are both held at V (Note that this is a more restricted voltage range tha n
.) If CE# and RESET# are held at VIH, but not within
V
IH
± 0.3 V, the device will be in the s tandby mode,
V
CC
but the standby current will be greater. The device re­quires standard ac cess time (t
) for read access
CE
when the device is in either of these standby modes, before it is ready to read data.
± 0.3 V.
CC
May 16, 2003 Am29LV320MT/B 11
DATASHEET
If the device is deselected during erasure or program­ming, the device draws active current until the operation is completed.
Refer to the DC Characteristics table for the standby current specification.
Automatic Sleep Mode
The automatic sleep mode minimizes Flash device en­ergy consumption. The device automatically enables this mode when addresses remain stable for t
ACC
+ 30 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Standard ad­dress access timings provide new data when ad­dresses are changed. While in sleep mode, output data is latched and always available to the system. Refer to the DC Characteristics table for the automatic sleep mode current specification.
RESET#: Hardware Reset Pin
The RESET# pin provides a hardware me thod of re­setting the device to reading array data. When the RE­SET# pin is driven low for at least a period of t device immediately term inates any operation in progress, tristates all output pins, and ignores all
RP
, the
read/write command s for the dur ation of the RESET# pulse. The device also resets the internal state ma­chine to reading array data. The operation that was in­terrupted should be reinitiated once the device is ready to accept another command sequence, to en­sure data integrity.
Current is reduced for the duration of the RESET# pulse. When RESET# is held at V draws CMOS standby current (I
but not within VSS±0.3 V, the standby current will
at V
IL
±0.3 V, the device
SS
). If RESET# is held
CC4
be greater. The RESET# pin may be tied to the system reset cir-
cuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firm­ware from the Flash memory.
Refer to the AC Characteristics tables for RESET# pa­rameters and to Figure 16 for the timing diagram.
Output Disable Mode
When the OE# input is at VIH, output from the device is disabled. The output pins are placed in the high impedance state.
Table 2. Am29LV320MT Top Boot Sector Architecture
Sector
SA0 000000xxx 64/32 000000h–00FFFFh 00000h–07FFFh SA1 000001xxx 64/32 010000h–01FFFFh 08000h–0FFFFh SA2 000010xxx 64/32 020000h–02FFFFh 10000h–17FFFh SA3 000011xxx 64/32 030000h–03FFFFh 18000h–1FFFFh SA4 000100xxx 64/32 040000h–04FFFFh 20000h–27FFFh SA5 000101xxx 64/32 050000h–05FFFFh 28000h–2FFFFh SA6 000110xxx 64/32 060000h–06FFFFh 30000h–37FFFh SA7 000111xxx 64/32 070000h–07FFFFh 38000h–3FFFFh SA8 001000xxx 64/32 080000h–08FFFFh 40000h–47FFFh
SA9 001001xxx 64/32 090000h–09FFFFh 48000h–4FFFFh SA10 001010xxx 64/32 0A0000h–0AFFFFh 50000h–57FFFh SA11 001011xxx 64/32 0B0000h–0BFFFFh 58000h–5FFFFh SA12 001100xxx 64/32 0C0000h–0CFFFFh 60000h–67FFFh SA13 001101xxx 64/32 0D0000h–0DFFFFh 68000h–6FFFFh SA14 001101xxx 64/32 0E0000h–0EFFFFh 70000h–77FFFh SA15 001111xxx 64/32 0F0000h–0FFFFFh 78000h–7FFFFh SA16 010000xxx 64/32 100000h–00FFFFh 80000h–87FFFh SA17 010001xxx 64/32 110000h–11FFFFh 88000h–8FFFFh SA18 010010xxx 64/32 120000h–12FFFFh 90000h–97FFFh SA19 010011xxx 64/32 130000h–13FFFFh 98000h–9FFFFh SA20 010100xxx 64/32 140000h–14FFFFh A0000h–A7FFFh SA21 010101xxx 64/32 150000h–15FFFFh A8000h–AFFFFh SA22 010110xxx 64/32 160000h–16FFFFh B0000h–B7FFFh SA23 010111xxx 64/32 170000h–17FFFFh B8000h–BFFFFh SA24 011000xxx 64/32 180000h–18FFFFh C0000h–C7FFFh SA25 011001xxx 64/32 190000h–19FFFFh C8000h–CFFFFh SA26 011010xxx 64/32 1A0000h–1AFFFFh D0000h–D7FFFh SA27 011011xxx 64/32 1B0000h–1BFFFFh D8000h–DFFFFh
Sector Address
A20–A12
Sector Size
(Kbytes/Kwords)
(x8)
Address Range
(x16)
Address Range
12 Am29LV320MT/B May 16, 2003
DATASHEET
Table 2. Am29LV320MT Top Boot Sector Architecture (Continued)
Sector
SA28 011000xxx 64/32 1C0000h–1CFFFFh E0000h–E7FFFh SA29 011101xxx 64/32 1D0000h–1DFFFFh E8000h–EFFFFh SA30 011110xxx 64/32 1E0000h–1EFFFFh F0000h–F7FFFh SA31 011111xxx 64/32 1F0000h–1FFFFFh F8000h–FFFFFh SA32 100000xxx 64/32 200000h–20FFFFh F9000h–107FFFh SA33 100001xxx 64/32 210000h–21FFFFh 108000h–10FFFFh SA34 100010xxx 64/32 220000h–22FFFFh 110000h–117FFFh SA35 101011xxx 64/32 230000h–23FFFFh 118000h–11FFFFh SA36 100100xxx 64/32 240000h–24FFFFh 120000h–127FFFh SA37 100101xxx 64/32 250000h–25FFFFh 128000h–12FFFFh SA38 100110xxx 64/32 260000h–26FFFFh 130000h–137FFFh SA39 100111xxx 64/32 270000h–27FFFFh 138000h–13FFFFh SA40 101000xxx 64/32 280000h–28FFFFh 140000h–147FFFh SA41 101001xxx 64/32 290000h–29FFFFh 148000h–14FFFFh SA42 101010xxx 64/32 2A0000h–2AFFFFh 150000h–157FFFh SA43 101011xxx 64/32 2B0000h–2BFFFFh 158000h–15FFFFh SA44 101100xxx 64/32 2C0000h–2CFFFFh 160000h–167FFFh SA45 101101xxx 64/32 2D0000h–2DFFFFh 168000h–16FFFFh SA46 101110xxx 64/32 2E0000h–2EFFFFh 170000h–177FFFh SA47 101111xxx 64/32 2F0000h–2FFFFFh 178000h–17FFFFh SA48 110000xxx 64/32 300000h–30FFFFh 180000h–187FFFh SA49 110001xxx 64/32 310000h–31FFFFh 188000h–18FFFFh SA50 110010xxx 64/32 320000h–32FFFFh 190000h–197FFFh SA51 110011xxx 64/32 330000h–33FFFFh 198000h–19FFFFh SA52 100100xxx 64/32 340000h–34FFFFh 1A0000h–1A7FFFh SA53 110101xxx 64/32 350000h–35FFFFh 1A8000h–1AFFFFh SA54 110110xxx 64/32 360000h–36FFFFh 1B0000h–1B7FFFh SA55 110111xxx 64/32 370000h–37FFFFh 1B8000h–1BFFFFh SA56 111000xxx 64/32 380000h–38FFFFh 1C0000h–1C7FFFh SA57 111001xxx 64/32 390000h–39FFFFh 1C8000h–1CFFFFh SA58 111010xxx 64/32 3A0000h–3AFFFFh 1D0000h–1D7FFFh SA59 111011xxx 64/32 3B0000h–3BFFFFh 1D 8000h–1DFFFFh SA60 111100xxx 64/32 3C0000h–3CFFFFh 1E0000h–1E7FFFh SA61 111101xxx 64/32 3D0000h–3DFFFFh 1E8000h–1EFFFFh SA62 111110xxx 64/32 3E0000h–3EFFFFh 1F0000h–1F7FFFh SA63 111111000 8/4 3F0000h–3F1FFFh 1F8000h–1F8FFFh SA64 111111001 8/4 3F2000h–3F3FFFh 1F9000h–1F9FFFh SA65 111111010 8/4 3F4000h–3F5FFFh 1FA000h–1FAFFFh SA66 111111011 8/4 3F6000h–3F7FFFh 1FB000h–1FBFFFh SA67 111111100 8/4 3F8000h–3F9FFFh 1FC000h–1FCFFFh SA68 111111101 8/4 3FA000h–3FBFFFh 1FD000h–1FDFFFh SA69 111111110 8/4 3FC000h–3FDFFFh 1FE000h–1FEFFFh SA70 111111111 8/4 3FE000h–3FFFFFh 1FF000h–1FFFFFh
Sector Address
A20–A12
Sector Size
(Kbytes/Kwords)
(x8)
Address Range
(x16)
Address Range
May 16, 2003 Am29LV320MT/B 13
DATASHEET
Table 3. Am29LV320MB Bottom Boot Sector Architecture
Sector
SA0 000000000 8/4 000000h–001FFFh 00000h–00FFFh
SA1 000000001 8/4 002000h–003FFFh 01000h–01FFFh
SA2 000000010 8/4 004000h–005FFFh 02000h–02FFFh
SA3 000000011 8/4 006000h–007FFFh 03000h–03FFFh
SA4 000000100 8/4 008000h–009FFFh 04000h–04FFFh
SA5 000000101 8/4 00A000h–00BFFFh 05000h–05FFFh
SA6 000000110 8/4 00C000h–00DFFFh 06000h–06FFFh
SA7 000000111 8/4 00E000h–00FFFFFh 07000h–07FFFh
SA8 000001xxx 64/32 010000h–01FFFFh 08000h–0FFFFh
SA9 000010xxx 64/32 020000h–02FFFFh 10000h–17FFFh SA10 000011xxx 64/32 030000h–03FFFFh 18000h–1FFFFh SA11 000100xxx 64/32 040000h–04FFFFh 20000h–27FFFh SA12 000101xxx 64/32 050000h–05FFFFh 28000h–2FFFFh SA13 000110xxx 64/32 060000h–06FFFFh 30000h–37FFFh SA14 000111xxx 64/32 070000h–07FFFFh 38000h–3FFFFh SA15 001000xxx 64/32 080000h–08FFFFh 40000h–47FFFh SA16 001001xxx 64/32 090000h–09FFFFh 48000h–4FFFFh SA17 001010xxx 64/32 0A0000h–0AFFFFh 50000h–57FFFh SA18 001011xxx 64/32 0B0000h–0BFFFFh 58000h–5FFFFh SA19 001100xxx 64/32 0C0000h–0CFFFFh 60000h–67FFFh SA20 001101xxx 64/32 0D0000h–0DFFFFh 68000h–6FFFFh SA21 001101xxx 64/32 0E0000h–0EFFFFh 70000h–77FFFh SA22 001111xxx 64/32 0F0000h–0FFFFFh 78000h–7FFFFh SA23 010000xxx 64/32 100000h–00FFFFh 80000h–87FFFh SA24 010001xxx 64/32 110000h–11FFFFh 88000h–8FFFFh SA25 010010xxx 64/32 120000h–12FFFFh 90000h–97FFFh SA26 010011xxx 64/32 130000h–13FFFFh 98000h–9FFFFh SA27 010100xxx 64/32 140000h–14FFFFh A0000h–A7FFFh SA28 010101xxx 64/32 150000h–15FFFFh A8000h–AFFFFh SA29 010110xxx 64/32 160000h–16FFFFh B0000h–B7FFFh SA30 010111xxx 64/32 170000h–17FFFFh B8000h–BFFFFh SA31 011000xxx 64/32 180000h–18FFFFh C0000h–C7FFFh SA32 011001xxx 64/32 190000h–19FFFFh C8000h–CFFFFh SA33 011010xxx 64/32 1A0000h–1AFFFFh D0000h–D7FFFh SA34 011011xxx 64/32 1B0000h–1BFFFFh D8000h–DFFFFh SA35 011000xxx 64/32 1C0000h–1CFFFFh E0000h–E7FFFh SA36 011101xxx 64/32 1D0000h–1DFFFFh E8000h–EFFFFh SA37 011110xxx 64/32 1E0000h–1EFFFFh F0000h–F7FFFh SA38 011111xxx 64/32 1F0000h–1FFFFFh F8000h–FFFFFh SA39 100000xxx 64/32 200000h–20FFFFh F9000h–107FFFh SA40 100001xxx 64/32 210000h–21FFFFh 108000h–10FFFFh SA41 100010xxx 64/32 220000h–22FFFFh 110000h–117FFFh SA42 101011xxx 64/32 230000h–23FFFFh 118000h–11FFFFh SA43 100100xxx 64/32 240000h–24FFFFh 120000h–127FFFh SA44 100101xxx 64/32 250000h–25FFFFh 128000h–12FFFFh SA45 100110xxx 64/32 260000h–26FFFFh 130000h–137FFFh SA46 100111xxx 64/32 270000h–27FFFFh 138000h–13FFFFh SA47 101000xxx 64/32 280000h–28FFFFh 140000h–147FFFh SA48 101001xxx 64/32 290000h–29FFFFh 148000h–14FFFFh SA49 101010xxx 64/32 2A0000h–2AFFFFh 150000h–157FFFh SA50 101011xxx 64/32 2B0000h–2BFFFFh 158000h–15FFFFh SA51 101100xxx 64/32 2C0000h–2CFFFFh 160000h–167FFFh SA52 101101xxx 64/32 2D0000h–2DFFFFh 168000h–16FFFFh SA53 101110xxx 64/32 2E0000h–2EFFFFh 170000h–177FFFh
Sector Address
A20–A12
Sector Size
(Kbytes/Kwords)
(x8)
Address Range
(x16)
Address Range
14 Am29LV320MT/B May 16, 2003
DATASHEET
Table 3. Am29LV320MB Bottom Boot Sector Architecture (Continued)
Sector
SA54 101111xxx 64/32 2F0000h–2FFFFFh 178000h–17FFFFh SA55 110000xxx 64/32 300000h–30FFFFh 180000h–187FFFh SA56 110001xxx 64/32 310000h–31FFFFh 188000h–18FFFFh SA57 110010xxx 64/32 320000h–32FFFFh 190000h–197FFFh SA58 110011xxx 64/32 330000h–33FFFFh 198000h–19FFFFh SA59 100100xxx 64/32 340000h–34FFFFh 1A0000h–1A7FFFh SA60 110101xxx 64/32 350000h–35FFFFh 1A8000h–1AFFFFh SA61 110110xxx 64/32 360000h–36FFFFh 1B0000h–1B7FFFh SA62 110111xxx 64/32 370000h–37FFFFh 1B8000h–1BFFFFh SA63 111000xxx 64/32 380000h–38FFFFh 1C0000h–1C7FFFh SA64 111001xxx 64/32 390000h–39FFFFh 1C8000h–1CFFFFh SA65 111010xxx 64/32 3A0000h–3AFFFFh 1D0000h–1D7FFFh SA66 111011xxx 64/32 3B0000h–3BFFFFh 1D 8000h–1DFFFFh SA67 111100xxx 64/32 3C0000h–3CFFFFh 1E0000h–1E7FFFh SA68 111101xxx 64/32 3D0000h–3DFFFFh 1E8000h–1EFFFFh SA69 111110xxx 64/32 3E0000h–3EFFFFh 1F0000h–1F7FFFh SA70 111111xxx 64/32 3F0000h–3FFFFFh 1F8000h–1FFFFFh
Sector Address
A20–A12
Note: The address range is A20:A-1 in byte mode (BYTE# = VIL) or A20:A0 in word mode (BYTE# = VIH)
Sector Size
(Kbytes/Kwords)
(x8)
Address Range
Address Range
(x16)
May 16, 2003 Am29LV320MT/B 15
DATASHEET
Autoselect Mode
The autoselect mode provides manufacturer and de­vice identification, and sector protection verification, through identifier codes output on DQ7–DQ0. This mode is prim arily intend ed for progr amming equi p­ment to automatically match a device to be pro­grammed with its corresponding programming algorithm. However, the autoselect codes can also be accessed in-system through the command register .
When using programming equipment, the autoselect mode requires V A6, A3, A2, A1, and A0 must be as shown in Table 4.
on address pin A9. Address pins
ID
In addition, when verifying sector protection, the sector address must appear on the appropriate highest order address bits (see Tables 2 and 3). Table 4 shows the remaining address bits that are do n’t care. W hen all necessary bits have been set as required, the pro­gramming equipment may then read the correspond­ing identifier code on DQ7–DQ0.
To access the autoselect codes in-system, the host system can issue the autoselect command via the command register, as shown in Tables 12 and 13. This method does not require V
. Refer to t he Aut os ele ct
ID
Command Sequence section for more information.
Tabl e 4. Autoselect Codes, (High Voltage Method)
A21
Description CE# OE# WE#
Manufacturer ID: AMD L L H X X
Cycle 1 Cycle 2 H H L 22 X 1Ah
Device ID
Cycle 3 H H H 22 X
Sector Protection Verification
SecSi Sector In d i cator Bit (DQ7), WP# protects top two address sector
SecSi Sector Indicator Bit (DQ7), WP# protects bottom two address sector
LLHXX
LLHSAX
LLHXX
LLHXX
to
A15
A14
to
A9A8toA7A6A5to
A10
V
ID
V
ID
V
ID
V
ID
V
ID
XLX L L L 00 X 01h
XLX
XLX L H L X X
XLX L HH X X
XLX L HH X X
A3
toA2A1 A0
A4
LLH 22 X 7Eh
DQ8 to DQ15
BYTE#
= V
BYTE#
IH
= V
DQ7 to DQ0
IL
00 (bottom boot)
01h (top boot)
01h (protected),
00h (unprotected)
98h (factory locked),
18h (not factory locked)
88h (factory locked),
08h (not factory locked)
Legend: L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care.
16 Am29LV320MT/B May 16, 2003
DATASHEET
Sector Group Protection and Unprotection
The hardware sector group protection feature disables both program and erase operations in any sector group. In this device, a sector group consists of fou r adjacent sectors that are protected or unprotected at the same time (see Tables 5 and 6). The hardware sector group unprotection feature re-enables both pro­gram and erase operations in previously protected sector groups. Sector group protection/unprotection can be implemented via two methods.
Sector protection/unprotection requires V SET# pin only, and can be implemented either in-sys­tem or via progr amming eq uipment. Figure 2 sh ows the algorithms and Figure 24 shows the timing dia­gram. This method uses standard microprocessor bus cycle timing. For sector group unprotect, all unpro­tected sector groups must first be protected prior to the first sector group unprotect write cycle.
The device is shipped with all se ctor groups unpro­tected. AMD offers the option of programming and protecting sector groups at its factory prior to shipping the device through AMD’s ExpressFlash™ Service. Contact an AMD representative for details.
It is possible to determin e whether a se ctor group is protected or unprotected. See the Autoselect Mode section for details.
Table 5. Am29LV320MT Top Boot
Sector Protection
Sector A20–A12
SA0-SA3 0000XXXXXh 256 (4x64) Kbytes SA4-SA7 0001XXXXXh 256 (4x64) Kbytes
SA8-SA11 0010XXXXXh 256 (4x64) Kbytes SA12-SA15 0011XXXXXh 256 (4x64) Kbytes SA16-SA19 0100XXXXXh 256 (4x64) Kbytes SA20-SA23 0101XXXXXh 256 (4x64) Kbytes SA24-SA27 0110XXXXXh 256 (4x64) Kbytes SA28-SA31 0111XXXXXh 256 (4x64) Kbytes
SA32–SA35 1000XXXXXh, 256 (4x64) Kbytes SA36–SA39 1001XXXXXh 256 (4x64) Kbytes SA40–SA43 1010XXXXXh 256 (4x64) Kbytes SA44–SA47 1011XXXXXh 256 (4x64) Kbytes SA48–SA51 1100XXXXXh 256 (4x64) Kbytes
SA52-SA55 1101XXXXXh 256 (4x64) Kbytes SA56-SA59 1110XXXXXh 256 (4x64) Kbytes
SA60-SA62
SA63 111111000h 8 Kbytes SA64 111111001h 8 Kbytes SA65 111111010h 8 Kbytes
111100XXXh 111101XXXh 111110XXXh
on the RE-
ID
Sector/
Sector Block Size
192 (3x64) Kbytes
Sector A20–A12
SA66 111111011h 8 Kbytes SA67 111111100h 8 Kbytes SA68 111111101h 8 Kbytes SA69 111111110h 8 Kbytes SA70 111111111h 8 Kbytes
Sector/
Sector Block Size
Table 6. Am29LV320MB Bottom Boot
Sector Protection
Sector A20–A12
SA0 000000000h 8 Kbytes SA1 000000001h 8 Kbytes SA2 000000010h 8 Kbytes SA3 000000011h 8 Kbytes SA4 000000100h 8 Kbytes SA5 000000101h 8 Kbytes SA6 000000110h 8 Kbytes SA7 000000111h 8 Kbytes
SA8–SA10
SA11–SA14 0001XXXXXh 256 (4x64) Kbytes SA15–SA18 0010XXXXXh 256 (4x64) Kbytes SA19–SA22 0011XXXXXh 256 (4x64) Kbytes SA23–SA26 0100XXXXXh 256 (4x64) Kbytes SA27-SA30 0101XXXXXh 256 (4x64) Kbytes SA31-SA34 0110XXXXXh 256 (4x64) Kbytes SA35-SA38 0111XXXXXh 256 (4x64) Kbytes SA39-SA42 1000XXXXXh 256 (4x64) Kbytes SA43-SA46 1001XXXXXh 256 (4x64) Kbytes SA47-SA50 1010XXXXXh 256 (4x64) Kbytes SA51-SA54 1011XXXXXh 256 (4x64) Kbytes SA55–SA58 1100XXXXXh 256 (4x64) Kbytes SA59–SA62 1101XXXXXh 256 (4x64) Kbytes SA63–SA66 1110XXXXXh 256 (4x64) Kbytes SA67–SA70 1111XXXXXh 256 (4x64) Kbytes
000001XXXh, 000010XXXh,
000011XXXh,
Sector/
Sector Block Size
192 (3x64) Kbytes
Write Protect (WP#)
The Write Protect function provides a hardware method of protecting the top two or bottom two sectors without using V vided by the WP#/ACC input.
If the system asserts V vice disables pro gram a nd er ase func tions in th e first or last sector independently of whether those sectors were protected or unprotected usin g the method de­scribed in “Sector Group Protecti on and Unprotec ti on”. Note that if WP#/ACC is at V the standby mode, the m aximum input lo ad current is increased. See the table in “DC Characteristics”.
. WP# is one of two functions pro-
ID
on the WP#/ACC pin, the de-
IL
when the device is in
IL
May 16, 2003 Am29LV320MT/B 17
DATASHEET
If the system asserts V
on the WP#/ACC pin, the de-
IH
vice reverts to whether the top or bottom two sectors were previously set to be protected or unprotected using the method described in “Sector Group Protec­tion and Unprotection”. Note: No external pullup is
necessary since the WP#/ACC pin has internal pullup to V
CC
Temporary Sector Group Unprotect
(Note: In this device, a sector group consists of four adjacent sectors that are prote cted or unprotected at the same ti me (see Table 6).
This feature allo ws tempora ry unprotecti on of previ­ously protected sector groups to change data in-sys­tem. The Sector Group Unprotect mode is act ivated by setting the RESET# p in to V merly protected sector groups can be programmed o r erased by selecting the sector group addresses. Once
is removed from the RESET# pi n, all the prev i-
V
ID
ously protected sector groups are protected again. Figure 1 shows the algorithm, and Figure 23 shows the timing diagrams, for this feature.
. During this m ode, for-
ID
START
RESET# = V
(Note 1)
Perform Erase or
Program Operations
RESET# = V
Temporary Sector
Group Unprotect
Completed (Note 2)
Notes:
1. All protected sector groups unprotected (If WP# = V the first or last sector will remain protected).
2. All previously protect ed sec tor gro ups are prote cte d once again.
ID
IH
,
IL
Figure 1. T emporary Sector Group
Unprotect Operation
18 Am29LV320MT/B May 16, 2003
DATASHEET
Temporary Sector
Group Unprotect
Mode
Increment
PLSCNT
START
PLSCNT = 1
RESET# = V
Wait 1 µs
No
First Write
Cycle = 60h?
Set up sector
group address
Sector Group Protect:
Write 60h to sector group address with
A6–A0 = 0xx0010
Wait 150 µs
Verify Sector Group
Protect: Write 40h
to sector group
address with
A6–A0 = 0xx0010
Yes
START
Protect all sector
groups: The indicated
ID
Reset
PLSCNT = 1
portion of the sector
group protect algorithm
must be performed for all
unprotected sector
groups prior to issuing
the first sector group
unprotect address
PLSCNT = 1
RESET# = V
Wait 1 µs
First Write
Cycle = 60h?
All sector
No
protected?
Set up first sector
group address
Sector Group
Unprotect: Write 60h to sector group address with
A6–A0 = 1xx0010
Wait 15 ms
groups
Yes
Yes
ID
Temporary Sector
No
Group Unprotect
Mode
No
PLSCNT
= 25?
Yes
Device failed
Sector Group
Protect
Algorithm
Read from
sector group address
with A6–A0
= 0xx0010
No
Data = 01h?
Protect
another
sector group?
Remove V
from RESET#
Write reset
command
Sector Group
Protect complete
Yes
No
Verify Sector Group
Unprotect: Write
40h to sector group
Increment
PLSCNT
No
Yes
ID
PLSCNT
= 1000?
Yes
Device failed
Sector Group
address with
A6–A0 = 1xx0010
Read from sector group address with
A6–A0 = 1xx0010
No
Data = 00h?
Last sector
Remove V
from RESET#
group
verified?
Yes
Yes
ID
Set up
next sector group
address
No
Unprotect Algorithm
Write reset
command
Sector Group
Unprotect complete
Figure 2. In-System Sector Group Protect/Unprotect Algorithms
May 16, 2003 Am29LV320MT/B 19
Loading...
+ 42 hidden pages