Rauchmelder / Gassensor für
ALL3418v2/3500/3692/4500/5000
• neues aches Desktop- / Wandgehäuse aus Aluminium
• I2C Bus für den Multiplexing Einsatz
• wahlweise in schwarz oder in weiß erhältlich
• Winkelbefestigungen für die Wandmontage
Messen, steuern und regeln Sie automatisch und unabhängig
ALLNET verfolgt bereits seit Jahren das Konzept der intelligenten Steuerung von Abläufen in der Gebäudetechnik über Netzwerk
und Internet. Intelligente Gebäudetechnik bietet nicht nur mehr Komfort, sondern fördert aktiv die Einsparung von Energiekosten.
Zentral gesteuert und über Netzwerk / Internet erreichbar ermöglichen die ALLNET Homeautomation Produkte intelligente Gebäudetechnik unabhängig von Zeit und Standort.
Der ALL4454 Rauchmelder/ Sensor kann auch für Detection von Gasen verwendet werden.
Art.-Nr. 102435(sw) / 96689(w)
Irrtum und technische Änderungen, die dem Fortschritt oder der Weiterentwicklung des Produktes dienen vorbehalten.
www.allnet.de
Page 2
Rauchmelder/Sensor im Desktop-/ Wandgehäuse
• meldet Rauch und Gas
• Aluminiumgehäuse mit Lasche zur Wandbefestigung
• Mehrfach Multiplexing = mehrere Multiplexing Module an einer Leitung
Multiplexing - Hinweis zum Betreiben mehrerer Sensoren an einem Sensorport
Grundsätzlich ist es bei den ARM- und MIPS-basierten Systemen möglich, im Gegensatz zum ALL3000/4000, mehr als einen
Sensor an einem physikalischen Port zu betreiben.
Hardwaremäßige Voraussetzung ist, daß die Sensoren über 2 RJ45-Anschlüsse verfügen, so daß das Sensorsignal zum jeweils
nächsten Sensor weitergeführt werden kann. Die Gesamt-Kabellänge von 100 m erhöht sich dabei nicht.
Damit die Sensoren von den Geräten auch eindeutig identi ziert werden können, ist es erforderlich, daß diese softwareseitig
unterschiedliche I2C-Chipadressen und ID´s haben. Sensoren mit gleicher Chipadresse und einstellbarer ID lassen sich kombinieren. Bei Sensoren ohne einstellbarer Adresse kann nur jeweils 1 Sensortyp pro Port angeschlossen werden.
Irrtum und technische Änderungen, die dem Fortschritt oder der Weiterentwicklung des Produktes dienen vorbehalten.
www.allnet.de
Page 3
PRODUCT INFORMATION
0.1
1
10
-20-1001020304050
Ambient Temperature (°C)
2
5
.5
R.H.
35%
50%
65%
100%
0.1
1
10
1001000
Air
Methane
Concentration (ppm)
Carbon monoxide
Isobutane
n-Hexane
Benzene
Ethanol
Acetone
505005000
TGS 822 - for the detection of Organic Solvent Vapors
Features:
* High sensitivity to organic solvent vapors
such as ethanol
* High stability and reliability over a long
period
Applications:
* Breath alcohol detectors
* Gas leak detectors/alarms
* Solvent detectors for factories, dry
cleaners, and semiconductor
* Long life and low cost
* Uses simple electrical circuit
The sensing element of Figaro gas sensors is a tin dioxide (SnO2) semiconductor
which has low conductivity in clean air. In the presence of a detectable gas, the
sensor's conductivity increases depending on the gas concentration in the air. A
simple electrical circuit can convert the change in conductivity to an output signal
which corresponds to the gas concentration.
The TGS 822 has high sensitivity to the vapors of organic solvents as well as other
volatile vapors. It also has sensitivity to a variety of combustible gases such as
carbon monoxide, making it a good general purpose sensor. Also available with a
ceramic base which is highly resistant to severe environments as high as 200°C
(model# TGS 823).
The figure below represents typical sensitivity characteristics,
all data having been gathered at standard test conditions (see
reverse side of this sheet). The Y-axis is indicated as sensor
resistance ratio (Rs/Ro) which is defined as follows:
Rs = Sensor resistance of displayed gases at
various concentrations
Ro = Sensor resistance in 300ppm ethanol
The figure below represents typical temperature and humidity
dependency characteristics. Again, the Y-axis is indicated as
sensor resistance ratio (Rs/Ro), defined as follows:
Rs = Sensor resistance at 300ppm of ethanol
at various temperatures/humidities
Ro = Sensor resistance at 300ppm of ethanol
at 20°C and 65% R.H.
Sensitivity Characteristics:
IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER’S SPECIFIC APPLICATIONS. FIGARO STRONGLY
RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER’S TARGET
GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS
NOT BEEN SPECIFICALLY TESTED BY FIGARO.
Temperature/Humidity Dependency:
Page 4
Item
Symbol
Condition
Specification
Sensor ResistanceRsEthanol at 300ppm/air1kΩ ~ 10kΩ
Change Ratio of
Sensor Resistance
Rs/Ro
Rs(Ethanol at 300ppm/air)
Rs(Ethanol at 50ppm/air)
0.40 ± 0.10
Heater ResistanceR
H
Room temperature
38.0 ± 3.0Ω
Heater Power
Consumption
P
H
VH=5.0V660mW (typical)
Structure and Dimensions:
Item
Symbol
Rated Values
Remarks
Heater VoltageVH5.0±0.2VAC or DC
Circuit VoltageVCMax. 24V
DC only
Ps≤15mW
Load ResistanceRLVariable0.45kΩ min.
1 Sensing Element:
SnO2 is sintered to form a thick film on
the surface of an alumina ceramic tube
which contains an internal heater.
The numbers shown around the sensor symbol in the circuit diagram at the right
correspond with the pin numbers shown in the sensor's structure drawing (above).
When the sensor is connected as shown in the basic circuit, output across the Load
Resistor (VRL) increases as the sensor's resistance (Rs) decreases, depending on
gas concentration.
Standard Circuit Conditions:
Basic Measuring Circuit:
Electrical Characteristics:
Standard Test Conditions:
TGS 822 complies with the above electrical characteristics
when the sensor is tested in standard conditions as specified
below:
Test Gas Conditions: 20°±2°C, 65±5%R.H.
Circuit Conditions: VC = 10.0±0.1V (AC or DC),
VH = 5.0±0.05V (AC or DC),
RL = 10.0kΩ±1%
Preheating period before testing: More than 7 days
REV: 09/02
FIGARO USA, INC.
121 S. Wilke Rd. Suite 300
Arlington Heights, IL 60005
Phone: (847)-832-1701
Fax: (847)-832-1705
email: figarousa@figarosensor.com
Sensor Resistance (Rs) is calculated by
the following formula:
Rs = ( -1) x RL
Power dissipation across sensor electrodes (Ps)
VC
VRL
is calculated by the following formula:
VC2 x Rs
Ps =
(Rs + RL)
For information on warranty, please refer to Standard Terms and
Conditions of Sale of Figaro USA Inc.
2
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.