ALLIED Vision Technologies Prosilica GX6600 User Manual

AVT Prosilica GX
Allied Vision Technologies GmbH Taschenweg 2a D-07646 Stadtroda, Germany
Technical Manual
AVT GigE Vision Cameras
V2.0.8
26 November 2013
Legal notice
For customers in the U.S.A.
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communica­tions. However, there is no guarantee that interferences will not occur in a particular installation. If the equipment does cause harmful interference to radio or television reception, the user is encouraged to try to correct the interference by one or more of the following measures:
• Reorient or relocate the receiving antenna.
• Increase the distance between the equipment and the receiver.
• Use a different line outlet for the receiver.
• Consult a radio or TV technician for help.
You are cautioned that any changes or modifications not expressly approved in this manual could void your authority to operate this equipment. The shielded interface cable recommended in this manual must be used with this equipment in order to comply with the limits for a computing device pursuant to Subpart A of Part 15 of FCC Rules.
For customers in Canada
This apparatus complies with the Class A limits for radio noise emissions set out in the Radio Inter­ference Regulations.
Pour utilisateurs au Canada
Cet appareil est conforme aux normes classe A pour bruits radioélectriques, spécifiées dans le Règlement sur le brouillage radioélectrique.
Life support applications
These products are not designed for use in life support appliances, devices, or systems where mal­function of these products can reasonably be expected to result in personal injury. Allied Vision Technologies customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Allied Vision Technologies for any damages resulting from such improper use or sale.
Trademarks
Unless stated otherwise, all trademarks appearing in this document of Allied Vision Technologies are brands protected by law.
Warranty
The information provided by Allied Vision Technologies is supplied without any guarantees or warranty whatsoever, be it specific or implicit. Also, excluded are all implicit warranties concern­ing the negotiability, the suitability for specific applications or the non-breaking of laws and pat­ents. Even if we assume that the information supplied to us is accurate, errors and inaccuracy may still occur.
Copyright
All texts, pictures and graphics are protected by copyright and other laws protecting intellectual property. It is not permitted to copy or modify them for trade use or transfer, nor may they be used on websites.
Allied Vision Technologies GmbH 11/2013
All rights reserved. Managing Director: Mr. Frank Grube Tax ID: DE 184383113
Headquarters:
Taschenweg 2a D-07646 Stadtroda, Germany Tel: +49 (0)36428 6770 Fax: +49 (0)36428 677-28 e-mail: info@alliedvisiontec.com
2
Contents
Contacting Allied Vision Technologies ................................................... 5
Introduction ............................................................................................................ 6
Document history............................................................................................................ 6
Conventions used in this manual ........................................................................................ 8
Precautions.................................................................................................................... 8
Cleaning optics............................................................................................................. 10
Conformity ..............................................................................................................12
Specifications .......................................................................................................13
Prosilica GX1050/1050C ................................................................................................. 13
Prosilica GX1660/1660C ................................................................................................. 15
Prosilica GX1910/1910C ................................................................................................. 17
Prosilica GX1920/1920C ................................................................................................. 19
Prosilica GX2300/2300C ................................................................................................. 21
Prosilica GX2750/2750C ................................................................................................. 23
Prosilica GX3300/3300C ................................................................................................. 25
Prosilica GX6600/6600C ................................................................................................. 27
Camera attribute highlights ........................................................................29
Filters ........................................................................................................................30
Camera dimensions ..........................................................................................31
Prosilica GX C-Mount: GX1050, GX1660, GX1910, GX2300 ...................................................... 31
Prosilica GX F-Mount: GX2300, GX3300 .............................................................................. 32
Prosilica GX1920 and GX2750 .......................................................................................... 33
Prosilica GX6600 ........................................................................................................... 34
Tripod adapter.............................................................................................................. 35
Optical flange focal distance ........................................................................................... 37
Adjustment of C-Mount................................................................................................... 39
Adjustment of F-Mount................................................................................................... 40
Camera interfaces .............................................................................................41
Status LEDs .................................................................................................................. 41
Gigabit Ethernet port ..................................................................................................... 42
Camera I/O connector pin assignment ............................................................................... 43
I/O definition ............................................................................................................... 44
Lens control port .......................................................................................................... 47
Video iris connection ..................................................................................................... 48
Motorized lens connection .............................................................................................. 49
3
Trigger timing diagram................................................................................................... 50
Firmware update.................................................................................................52
Resolution and ROI frame rates ...............................................................53
Prosilica GX1050 ........................................................................................................... 55
Prosilica GX1660 ........................................................................................................... 57
Prosilica GX1910 ........................................................................................................... 59
Prosilica GX1920 ........................................................................................................... 61
Prosilica GX2300 ........................................................................................................... 63
Prosilica GX2750 ........................................................................................................... 65
Prosilica GX3300 ........................................................................................................... 67
Prosilica GX6600 ........................................................................................................... 69
Prosilica GX model comparison ........................................................................................ 71
Description of the data path........................................................................73
Prosilica GX: monochrome cameras ................................................................................... 73
Prosilica GX: color cameras.............................................................................................. 73
Appendix..................................................................................................................74
Sensor position accuracy of Prosilica GX............................................................................. 74
Additional references ......................................................................................75
Index...........................................................................................................................76
4

Contacting Allied Vision Technologies

Contacting Allied Vision Technologies
Info
Technical information:
http://www.alliedvisiontec.com
Support:
support@alliedvisiontec.com
Allied Vision Technologies GmbH (Headquarters)
Taschenweg 2a 07646 Stadtroda, Germany Tel: +49 36428-677-0 Fax: +49 36428-677-28 e-mail: info@alliedvisiontec.com
Allied Vision Technologies Canada Inc.
101-3750 North Fraser Way Burnaby, BC, V5J 5E9, Canada Tel: +1 604-875-8855 Fax: +1 604-875-8856 e-mail: info@alliedvisiontec.com
Allied Vision Technologies Inc.
38 Washington Street Newburyport, MA 01950, USA Toll Free number +1 877-USA-1394 Tel: +1 978-225-2030 Fax: +1 978-225-2029 e-mail: info@alliedvisiontec.com
Allied Vision Technologies Asia Pte. Ltd.
82 Playfair Road #07-02 D’Lithium, Singapore 368001 Tel: +65 6634-9027 Fax: +65 6634-9029 e-mail: info@alliedvisiontec.com
Allied Vision Technologies (Shanghai) Co. Ltd.
2-2109 Hongwell International Plaza 1602# ZhongShanXi Road, Shanghai 200235, China Tel: +86 21-64861133 Fax: +86 21-54233670 e-mail: info@alliedvisiontec.com
5

Introduction

Introduction
This AVT Prosilica GX Technical Manual describes in depth the technical speci­fications of the Prosilica GX camera family including dimensions, feature over­view, I/O definition, trigger timing waveforms, and frame rate performance.
For information on software installation read the AVT GigE Installation Man- ual. For detailed information on camera features and controls specific to the Prosilica GX refer to the AVT GigE Camera and Driver Features and AVT GigE
Camera and Driver Attributes documents.
www
AVT Prosilica GX literature:
http://www.alliedvisiontec.com/us/support/downloads/ product-literature/prosilica-GX.html

Document history

Version Date Remarks
V2.0.0 2011-Jul-14 New Manual - SERIAL status
V2.0.1 2011-Dec-06
V2.0.2 2011-Dec-22
V2.0.3 2012-Feb-27
Added GX2750 model information
– Specifications – Mechanicals – Region of interest performance
Added GX6600 model information
– Specifications – Mechanicals
Added GX6600 frame rate charts
V2.0.4 2013-Jan-30 Renamed Camera IO signals
Reworked cleaning optics section
Reworked the camera spectral plots and Framerate vs. Height graphs
Removed the camera internal circuit diagram
Removed the camera external circuit example diagram
to be continued on next page
Table 1: Document history
6
Introduction
Version Date Remarks
continued from last page
V2.0.5 2013-Jun-06 Updated the RoHS directive
•Added Status LEDs section
Updated bit depth and exposure control values in the Specifica-
tions chapter
Updated the pixel format naming according to the GenICam standard
Added frame rate vs. height graphs for 2 Byte pixel format and bandwidth limiting information in Resolution and ROI frame
rates on page 53
Added VIMBA SDK link in Additional references section
Updated AVT recommended cabling to Category 6 or higher in the Gigabit Ethernet port section
V2.0.6 2013-Jul-05 Added contact information for Allied Vision Technologies
(Shanghai) Co. Ltd.
Updated spectral plots for GX1910 on page 18
Updated the links to AVT GigE Installation Manual
•Added links to AVT GigE Camera and Driver Features document
V2.0.7 2013-Oct-02 Added a note on locking screw cables on page 42
Added optical flange focal distance and maximum lens protru­sion information on page 37
•Added Additional references on page 75
Updated the Cleaning optics section
Added frame rate tables in chapter Resolution and ROI frame
rates on page 53
Updated table 10 on page 29
Updated links to AVT PvAPI SDK
V2.0.8 2013-Nov-26 Added Prosilica GX model comparison for Single and Dual GigE
port (16 bit) operation on page 72
Updated Index
Added chapter Description of the data path on page 73
Updated spectral sensitivity plots in chapter Specifications on page 13
Table 1: Document history
7
Introduction

Conventions used in this manual

To give this manual an easily understood layout and to emphasize important information, the following typographical styles and symbols are used:

Styles

Style Function Example
Bold Programs, inputs, or highlighting
important information
Courier Code listings etc. Input
Upper case Register REGISTER
Italics Modes, fields Mode
Parentheses and/or blue Links (Link)

Symbols

Note
This symbol highlights important information.
bold
Caution
This symbol highlights important instructions. You have to fol­low these instructions to avoid malfunctions.
www
This symbol highlights URLs for further information. The URL itself is shown in blue.

Precautions

Caution
Example:
http://www.alliedvisiontec.com
Do not disassemble the camera housing. Warranty is void if camera has been disassembled.
This camera contains sensitive internal components.
8
Introduction
Caution
Caution
Caution
Caution
Keep shipping material.
Poor packaging of the product may cause damage during ship­ping.
Verify all external connections.
Verify all external connections in terms of voltage levels, power requirements, voltage polarity, and signal integrity prior to powering the device.
Cleaning.
This product can be damaged by some volatile cleaning agents. Avoid cleaning the image sensor unless absolutely necessary. Please see instructions on optics cleaning in this document.
Do not exceed environmental specifications.
See environmental specifications limits in the Specifications section of this document. Special care must be taken to main­tain a reasonable operating temperature. If the camera is oper­ated in temperatures higher than the specified range, the camera should be mounted on a heat sink.
9
Introduction

Cleaning optics

Caution
AVT does not warranty against any physical damage to the sen­sor/filter/protection glass or lenses. Use utmost care when cleaning optical components.
Caution
Do not touch any optics with fingers. Oil from fingers can damage fragile optical coatings.

Identifying debris

Debris on the image sensor or optical components appears as a darkened area or smudge on a camera image. Do not confuse this with a pixel defect which appears as a distinct point.

Locating debris

First determine whether the debris is on the sensor glass, IR filter (if used), or lens. The farther away the debris is from the sensor, the blurrier the debris appears on a camera image.
Stream a live image from the camera using a uniform target, such as a piece of paper. To determine if the debris is on the camera lens, rotate the lens indepen­dent of the camera. If the spot moves, the debris is on the lens. Otherwise, the debris is on the IR filter (if used) or the sensor glass.

Color cameras with IR filter

Prosilica GX color cameras are equipped with an IR filter. With no lens or lens cap on a camera, the IR filter is exposed and debris can accumulate on it. This is the most probable location for debris. It should not be necessary to remove the IR filter for cleaning. Clean the outside of the IR filter glass using the tech­niques explained in the next section.
If it is determined that the debris is on the inside surface of the filter glass, or on the sensor glass, IR filter removal is necessary. Depending on the manufac­turing date of your Prosilica GX camera, the IR filter may be slot type, or pinhole type. Slot type filters can be removed using a small flat head screw driver. Pin­hole type filters require a pin spanner wrench for removal.
10
Introduction
Note
A pin spanner wrench suitable for IR filter removal is available for purchase from AVT. AVT P/N: E9020001

Cleaning with air

Blow directly on the contaminated surface with moderate pressure, clean com­pressed air.
Caution
View a live image with the camera after blowing. If debris is still present, repeat the process until it is determined that the particulate cannot be dislodged. If this is the case, proceed to the contact cleaning technique.

Contact cleaning

Do not exceed 6 bar (90 psi). If using canned air, approxi­mately ~ 4.8 bar (70 psi) when full, do not shake or tilt the can, as extreme changes in temperature due to sudden cold air can crack the optic glass.
Only use this method if the above air cleaning method does not sufficiently clean the surface. Use 99% pure isopropyl alcohol and clean cotton swabs. Wet the swab in the alcohol. Quickly wipe the optics in a single stroke. Prolonged exposure of alcohol on the swab can cause the swab glue to loosen and transfer to the optic glass. Do not reuse the same swab. Repeat this process until the debris is removed. If this process fails to remove the debris, contact AVT.
11

Conformity

Conformity
Allied Vision Technologies declares under its sole responsibility that all stan­dard cameras of the AVT Prosilica GX family, to which this declaration relates, are in conformity with the following standard(s) or other normative docu­ment(s):
CE, following the provisions of 2004/108/EG directive
FCC Part 15 Class A
RoHS (2011/65/EU)
We declare, under our sole responsibility, that the previously described AVT Prosilica GX cameras conform to the directives of the CE.
Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential environment. This equipment generates radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Any modifications not expressly approved in this manual may void your authority to operate this equipment.
12

Specifications

Specifications

Prosilica GX1050/1050C

Feature Specification
Resolution 1024 x 1024
Sensor Truesense KAI-01050
Type CCD Progressive
Sensor size Type 1/3
Cell size 5.5 µm
Lens mount C (adjustable)
Max frame rate at full resolution 109 fps (1 port) - 112 fps (2 ports)
A/D 14 bit
On-board FIFO 128 MB
Bit depth Monochrome cameras: 14 bit
Color cameras: 12 bit
Mono formats GX1050: Mono8, Mono12, Mono12Packed, Mono14
GX1050C: Mono8
Color formats BayerGR8, BayerGR12, BayerGR12Packed, RGB8Packed, BGR8Packed,
RGBA8Packed, BGRA8Packed, RGB12Packed, YUV411Packed
Exposure control 10 µs to 26.8 s; 1 µs increments
Gain control 0 to 34 dB
Horizontal binning 1 to 8 pixels
Vertical binning 1 to 8 rows
Opto-coupled I/Os 2 input, 4 output
RS-232 1
Power requirements 5–24 VDC
Power consumption 5.4 W (1 port) – 6.7 W (2 ports)
Mass 269 g
Body dimensions (L x W x H) 107.2 x 53.3 x 33 mm (including connectors, w/o tripod and lens)
Operating temperature 0 to +50 °C ambient temperature (without condensation)
Storage temperature -10 to +70 °C ambient temperature (without condensation)
Trigger latency 1.5 µs
Trigger jitter ±0.5 µs
Operating humidity 20 to 80% non-condensing
Hardware interface standard IEEE 802.3 1000BASE-T, 100BASE-TX
Software interface standard GigE Vision Standard 1.2
Regulatory CE, FCC Class A, RoHS (2011/65/EU)
Table 2: Prosilica GX1050/1050C camera specifications
13
Specifications
0%
10%
20%
30%
40%
50%
60%
350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100
Quantum Efficiency
Wavelength [nm]
Measured with AR coated cover glass
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
400 500 600 700 800 900 1000 1100
Quantum Efficiency
Wavelength [nm]
Measured with AR coated cover glass
Red Green Blue
Figure 1: Prosilica GX1050 monochrome spectral response
Figure 2: Prosilica GX1050C color spectral response (without IR cut filter)
14
Specifications

Prosilica GX1660/1660C

Feature Specification
Resolution 1600 x 1200
Sensor Truesense KAI-02050
Type CCD Progressive
Sensor size Type 2/3
Cell size 5.5 µm
Lens mount C (adjustable)
Max frame rate at full resolution 60 fps (1 port) - 66 fps (2 ports)
A/D 14 bit
On-board FIFO 128 MB
Bit depth Monochrome cameras: 14 bit
Color cameras: 12 bit
Mono formats GX1660: Mono8, Mono12, Mono12Packed, Mono14
GX1660C: Mono8
Color formats BayerGR8, BayerGR12, BayerGR12Packed, RGB8Packed, BGR8Packed,
RGBA8Packed, BGRA8Packed, RGB12Packed, YUV411Packed
Exposure control 10 µs to 26.8 s; 1 µs increments
Gain control 0 to 34 dB
Horizontal binning 1 to 8 pixels
Vertical binning 1 to 8 rows
Opto-coupled I/Os 2 input, 4 output
RS-232 1
Power requirements 5–24 VDC
Power consumption 5.6 W (1 port) – 6.7 W (2 ports)
Mass 269 g
Body dimensions (L x W x H) 107.2 x 53.3 x 33 mm (including connectors, w/o tripod and lens)
Operating temperature 0 to +50 °C ambient temperature (without condensation)
Storage temperature -10 to +70 °C ambient temperature (without condensation)
Trigger latency 1.5 µs
Trigger jitter ±0.5 µs
Operating humidity 20 to 80% non-condensing
Hardware interface standard IEEE 802.3 1000BASE-T, 100BASE-TX
Software interface standard GigE Vision Standard 1.2
Regulatory CE, FCC Class A, RoHS (2011/65/EU)
Table 3: Prosilica GX1660/1660C camera specifications
15
Specifications
0%
10%
20%
30%
40%
50%
60%
350 450 550 650 750 850 950 1050 1150
Quantum Efficiency
Wavelength [nm]
Measured with AR coated cover glass
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
400 500 600 700 800 900 1000 1100
Quantum Efficiency
Wavelength [nm]
Measured with AR coated cover glass
Red Green Blue
Figure 3: Prosilica GX1660 monochrome spectral response
Figure 4: Prosilica GX1660C color spectral response (without IR cut filter)
16
Specifications

Prosilica GX1910/1910C

Feature Specification
Resolution 1920 x 1080
Sensor Truesense KAI-02150
Type CCD Progressive
Sensor size Type 2/3
Cell size 5.5 µm
Lens mount C (adjustable)
Max frame rate at full resolution 55 fps (1 port) - 63 fps (2 ports)
A/D 14 bit
On-board FIFO 128 MB
Bit depth Monochrome cameras: 14 bit
Color cameras: 12 bit
Mono formats GX1910: Mono8, Mono12, Mono12Packed, Mono14
GX1910C: Mono8
Color formats BayerGR8, BayerGR12, BayerGR12Packed, RGB8Packed, BGR8Packed,
RGBA8Packed, BGRA8Packed, RGB12Packed, YUV411Packed
Exposure control 10 µs to 26.8 s; 1 µs increments
Gain control 0 to 34 dB
Horizontal binning 1 to 8 pixels
Vertical binning 1 to 8 rows
Opto-coupled I/Os 2 input, 4 output
RS-232 1
Power requirements 5–24 VDC
Power consumption 5.6 W (1 port) – 6.7 W (2 ports)
Mass 269 g
Body dimensions (L x W x H) 107.2 x 53.3 x 33 mm (including connectors, w/o tripod and lens)
Operating temperature 0 to +50 °C ambient temperature (without condensation)
Storage temperature -10 to +70 °C ambient temperature (without condensation)
Trigger latency 1.5 µs
Trigger jitter ±0.5 µs
Operating humidity 20 to 80% non-condensing
Hardware interface standard IEEE 802.3 1000BASE-T, 100BASE-TX
Software interface standard GigE Vision Standard 1.2
Regulatory CE, FCC Class A, RoHS (2011/65/EU)
Table 4: Prosilica GX1910/1910C camera specifications
17
Specifications
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
50%
350 450 550 650 750 850 950 1050
Quantum Efficiency
Wavelength [nm]
Measured with AR coated cover glass
0%
5%
10%
15%
20%
25%
30%
35%
40%
375 475 575 675 775 875 975 1075
Quantum Efficiency
Wavelength [nm]
Measured with clear
cover glass
Red Green Blue
Figure 5: Prosilica GX1910 monochrome spectral response
Figure 6: Prosilica GX1910 color spectral response (without IR cut filter)
18
Specifications

Prosilica GX1920/1920C

Feature Specification
Resolution 1936 x 1456
Sensor Sony ICX674
Type CCD Progressive
Sensor size Type 2/3
Cell size 4.54 µm
Lens mount C (adjustable)
Max frame rate at full resolution 40 fps
A/D 14 bit
On-board FIFO 128 MB
Bit depth Monochrome cameras: 14 bit
Color cameras: 12 bit
Mono formats GX1920: Mono8, Mono12, Mono12Packed, Mono14
GX1920C: Mono8
Color formats BayerRG8, BayerRG12, BayerGR12Packed, RGB8Packed, BGR8Packed,
RGBA8Packed, BGRA8Packed, YUV411Packed
Exposure control 10 µs to 26.8 s; 1 µs increments
Gain control 0 to 24 dB
Horizontal binning 1 to 8 pixels
Vertical binning 1 to 8 rows
Opto-coupled I/Os 2 input, 4 output
RS-232 1
Power requirements 5–24 VDC
Power consumption 5.3 W (1 port) – 6.2 W (2 ports)
Mass 269 g
Body dimensions (L x W x H) 108.1 x 53.3 x 33 mm (including connectors, w/o tripod and lens)
Operating temperature 0 to +50 °C ambient temperature (without condensation)
Storage temperature -10 to +70 °C ambient temperature (without condensation)
Trigger latency 1.5 µs
Trigger jitter ±0.5 µs
Operating humidity 20 to 80% non-condensing
Hardware interface standard IEEE 802.3 1000BASE-T, 100BASE-TX
Software interface standard GigE Vision Standard 1.2
Regulatory CE, FCC Class A, RoHS (2011/65/EU)
Table 5: Prosilica GX1920/1920C camera specifications
19
Specifications
70%
50%
40%
30%
20%
10%
Wavelength [nm]
400 500 600 700 800 900 1000
0%
60%
Quantum Eciency
60%
Red Green Blue
50%
40%
30%
20%
Wavelength [nm]
Quantum Eciency
400 450 500 550 600 650 700
10%
0%
Figure 7: Prosilica GX1920 monochrome spectral response
Figure 8: Prosilica GX1920C color spectral response (without IR cut filter)
20
Specifications

Prosilica GX2300/2300C

Feature Specification
Resolution 2336 x 1752
Sensor Truesense KAI-04050
Type CCD Progressive
Sensor size Type 1
Cell size 5.5 µm
Lens mount C (adjustable) / F
Max frame rate at full resolution 28 fps (1 port) - 32 fps (2 ports)
A/D 14 bit
On-board FIFO 128 MB
Bit depth Monochrome cameras: 14 bit
Color cameras: 12 bit
Mono formats GX2300: Mono8, Mono12, Mono12Packed, Mono14
GX2300C: Mono8
Color formats BayerGR8, BayerGR12, BayerGR12Packed, RGB8Packed, BGR8Packed,
RGBA8Packed, BGRA8Packed, RGB12Packed, YUV411Packed
Exposure control 10 µs to 26.8 s; 1 µs increments
Gain control 0 to 34 dB
Horizontal binning 1 to 8 pixels
Vertical binning 1 to 8 rows
Opto-coupled I/Os 2 input, 4 output
RS-232 1
Power requirements 5–24 VDC
Power consumption 5.8 W (1 port) – 6.9 W (2 ports)
Mass 269 g
Body dimensions (L x W x H) 107.2 x 53.3 x 33 mm (including connectors, w/o tripod and lens)
Operating temperature 0 to +50 °C ambient temperature (without condensation)
Storage temperature -10 to +70 °C ambient temperature (without condensation)
Trigger latency 1.5 µs
Trigger jitter ±0.5 µs
Operating humidity 20 to 80% non-condensing
Hardware interface standard IEEE 802.3 1000BASE-T, 100BASE-TX
Software interface standard GigE Vision Standard 1.2
Regulatory CE, FCC Class A, RoHS (2011/65/EU)
Table 6: Prosilica GX2300/2300C camera specifications
21
Specifications
0%
10%
20%
30%
40%
50%
60%
350 500 650 800 950 1100
Quantum Efficiency
Wavelength [nm]
Measured with AR coated cover glass
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
400 500 600 700 800 900 1000 1100
Quantum Efficiency
Wavelength [nm]
Measured with AR coated cover glass
Red Green Blue
Figure 9: Prosilica GX2300 monochrome spectral response
Figure 10: Prosilica GX2300C color spectral response (without IR cut filter)
22
Specifications

Prosilica GX2750/2750C

Feature Specification
Resolution 2750 x 2200
Sensor Sony ICX694
Type CCD Progressive
Sensor size Type 1
Cell size 4.54 µm
Lens mount C (adjustable)
Max frame rate at full resolution 19 fps (1 port) – 20 fps (2 ports)
A/D 14 bit
On-board FIFO 128 MB
Bit depth Monochrome cameras: 14 bit
Color cameras: 12 bit
Mono formats GX2750: Mono8, Mono12, Mono12Packed, Mono14
GX2750C: Mono8
Color formats BayerRG8, BayerRG12, BayerGR12Packed, RGB8Packed, BGR8Packed,
RGBA8Packed, BGRA8Packed, YUV411Packed
Exposure control 10 µs to 26.8 s; 1 µs increments
Gain control 0 to 33 dB
Horizontal binning 1 to 8 pixels
Vertical binning 1 to 8 rows
Opto-coupled I/Os 2 input, 4 output
RS-232 1
Power requirements 5–24 VDC
Power consumption 6.1 W (1 port) – 7.1 W (2 ports)
Mass 269 g
Body dimensions (L x W x H) 108.1 x 53.3 x 33 mm (including connectors, w/o tripod and lens)
Operating temperature 0 to +50 °C ambient temperature (without condensation)
Storage temperature -10 to +70 °C ambient temperature (without condensation)
Trigger latency 1.5 µs
Trigger jitter ±0.5 µs
Operating humidity 20 to 80% non-condensing
Hardware interface standard IEEE 802.3 1000BASE-T, 100BASE-TX
Software interface standard GigE Vision Standard 1.2
Regulatory CE, FCC Class A, RoHS (2011/65/EU)
Table 7: Prosilica GX2750/2750C camera specifications
23
Specifications
60%
50%
40%
30%
20%
10%
Wavelength [nm]
400 500 600 700 800 900 1000
Quantum Eciency
0%
70%
70%
Red Green Blue
60%
40%
50%
30%
20%
10%
Wavelength [nm]
400 450 500 550 600 650 700
Quantum Eciency
Figure 11: Prosilica GX2750 monochrome spectral response
Figure 12: Prosilica GX2750C color spectral response (without IR cut filter)
24
Specifications

Prosilica GX3300/3300C

Feature Specification
Resolution 3296 x 2472
Sensor Truesense KAI-08050
Type CCD Progressive
Sensor size Type 4/3
Cell size 5.5 µm
Lens mount F
Max frame rate at full resolution 14 fps (1 port), 17 fps (2 ports)
A/D 14 bit
On-board FIFO 128 MB
Bit depth Monochrome cameras: 14 bit
Color cameras: 12 bit
Mono formats GX3300: Mono8, Mono12, Mono12Packed, Mono14
GX3300C: Mono8
Color formats BayerGR8, BayerGR12, BayerGR12Packed, RGB8Packed, BGR8Packed,
RGBA8Packed, BGRA8Packed, RGB12Packed, YUV411Packed
Exposure control 10 µs to 26.8 s; 1 µs increments
Gain control 0 to 34 dB
Horizontal binning 1 to 8 pixels
Vertical binning 1 to 8 rows
Opto-coupled I/Os 2 input, 4 output
RS-232 1
Power requirements 5–24 VDC
Power consumption 6.1 W (1 port) – 7.2 W (2 ports)
Mass 365 g
Body dimensions (L x W x H) 136.7 x 59.7 x 59.7 mm (including connectors, w/o tripod and lens)
Operating temperature 0 to +50 °C ambient temperature (without condensation)
Storage temperature -10 to +70 °C ambient temperature (without condensation)
Trigger latency 1.5 µs
Trigger jitter ±0.5 µs
Operating humidity 20 to 80% non-condensing
Hardware interface standard IEEE 802.3 1000BASE-T, 100BASE-TX
Software interface standard GigE Vision Standard 1.2
Regulatory CE, FCC Class A, RoHS (2011/65/EU)
Table 8: Prosilica GX3300/3300C camera specifications
25
Specifications
0%
10%
20%
30%
40%
50%
60%
350 500 650 800 950 1100
Quantum Efficiency
Wavelength [nm]
Measured with AR coated cover glass
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
400 500 600 700 800 900 1000 1100
Quantum Efficiency
Wavelength [nm]
Measured with AR
coated cover glass
Red Green Blue
Figure 13: Prosilica GX3300 monochrome spectral response
Figure 14: Prosilica GX3300C color spectral response (without IR cut filter)
26
Specifications

Prosilica GX6600/6600C

Feature Specification
Resolution 6576 x 4384
Sensor Truesense KAI-29050
Type CCD Progressive
Sensor size Type 35 mm
Cell size 5.5 µm
Lens mount F
Max frame rate at full resolution 4 fps
A/D 14 bit
On-board FIFO 128 MB
Bit depth Monochrome cameras: 14 bit
Color cameras: 12 bit
Mono formats GX6600: Mono8, Mono12, Mono12Packed, Mono14
GX6600C: Mono8
Color formats BayerGR8, BayerGR12, BayerGR12Packed, RGB8Packed, BGR8Packed,
RGBA8Packed, BGRA8Packed, RGB12Packed, YUV411Packed
Exposure control 30 µs to 33.5 s; 1 µs increments
Gain control 0 to 34 dB
Horizontal binning 1 to 8 pixels
Vertical binning 1 to 8 rows
Opto-coupled I/Os 2 input, 4 output
RS-232 1
Power requirements 5–24 VDC
Power consumption 6.7 W (1 port) – 7.6 W (2 ports)
Mass 510 g
Body dimensions (L x W x H) 136.6 x 59.7 x 59.7 mm (including connectors, w/o tripod and lens)
Operating temperature 0 to +50 °C ambient temperature (without condensation)
Storage temperature -10 to +70 °C ambient temperature (without condensation)
Trigger latency 2.5 µs
Trigger jitter ±0.5 µs
Operating humidity 20 to 80% non-condensing
Hardware interface standard IEEE 802.3 1000BASE-T, 100BASE-TX
Software interface standard GigE Vision Standard 1.2
Regulatory CE, FCC Class A, RoHS (2011/65/EU)
Table 9: Prosilica GX6600/6600C camera specifications
27
Specifications
0%
10%
20%
30%
40%
50%
350 500 650 800 950 1100
Quantum Efficiency
Wavelength [nm]
Measured with AR coated cover glass
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
400 500 600 700 800 900 1000 1100
Quantum Efficiency
Wavelength [nm]
Measured with AR coated cover glass
Red Green Blue
Figure 15: Prosilica GX6600 monochrome spectral response
Figure 16: Prosilica GX6600C color spectral response (without IR cut filter)
28

Camera attribute highlights

Camera attribute highlights
AVT cameras support a number of standard and extended features. The table below identifies a selection of interesting capabilities of the Prosilica GX camera family.
www
Control Description
Gain control Manual and auto
Exposure control Manual and auto
White balance Red and blue channel; manual and auto control
External tr igger event Rising edge, falling edge, any edge, level high, level
External trigger delay 0 to 60* s; 1 µs increments
Fixed rate control 0.001 fps to maximum frame rate
Imaging modes Free-running, external trigger, fixed rate, software
Sync out modes Trigger ready, trigger input, exposing, readout,
A complete listing of camera controls, including control defini­tions can be found online:
PvAPI users: AVT GigE Camera and Driver Attributes document
VIMBA users: AVT GigE Camera and Driver Features document
low
trigger
imaging, strobe, GPO
Region of interest Independent x and y control with 1 pixel resolution
Multicast Streaming to multiple computers
Event channel In-camera events including exposure start and trig-
ger are asynchronously broadcasted to the host computer
Chunk data Captured images are bundled with attribute infor-
mation such as exposure and gain value
*May vary depending on the camera model
Table 10: Prosilica GX camera and driver attribute highlights
29

Filters

60
70
80
90
100
0
10
20
30
40
Transmission [%]
Wavelength [nm]
50
350 450 550 650 750 850 950
Filters
All Prosilica GX color models are equipped with an infrared block filter (IR fil­ter). This filter is employed to prevent infrared wavelength photons from pass­ing to the sensor. In the absence of IR filter, images are dominated by red and incapable of being properly color balanced. Monochrome cameras do not employ an IR filter.
The figure below shows the filter transmission response for the IRC30 filter employed in the Prosilica GX cameras.
Figure 17: IRC30 filter transmission response
30

Camera dimensions

20.8
M3X4 (2x)
26
107.2
12.5
M2x3 (4x)
20
22.1
14 27.8
8.9
14
M3x4 (4x)
85.9
12.5
26
26
2.5
M3x4 (8x)
26
53.3
33
16
38
34
31.6
Adjustable C-Mount
5.190.9
9.9
26.7
Camera dimensions
The Prosilica GX family supports a range of sensor configurations. The mechan­ical drawings in this section reflect the following configurations:
C-Mount (adjustable)
•F-Mount
GX1920 and GX2750

Prosilica GX C-Mount: GX1050, GX1660, GX1910, GX2300

Figure 18: Prosilica GX adjustable C-Mount mechanical dimensions
31
Camera dimensions
20.8
39.1*
*Nominal adjustable
33
90.9
10
M3x4 (4x)
26
26
41.6
85.92.5
53.3
M3x4 (2x)
41.6
136.3
26
Adjustable Nikon F-Mount
59.7
M
2x3 (4x)
22.1
14
27.8
20
8.9
14

Prosilica GX F-Mount: GX2300, GX3300

Figure 19: Prosilica GX F-Mount mechanical dimensions
Note
Prosilica GX cameras are shipped with an adjustable C-Mount or F-Mount. The camera can also be built with a CS-Mount upon request.
32
Camera dimensions
13.4
26
M3X4 (2X)
14
27.8
14
M2X3 (4X)
20
20.8
8.9
22.1
108.1
31.6
Adjustable C-Mount
16 26 33
M3X4 (8X)
34 38
53.3
9.6
5.1
26.7
92.2
26
M3X4 (4X)
2.5
85.9
13.4
26

Prosilica GX1920 and GX2750

Figure 20: Prosilica GX1920 and GX2750 models mechanical dimensions
Note
Prosilica GX1920 and GX2750 are 1.3 mm longer than the remaining GX C-Mount models. The same tripod adapter can be used with all GX cameras.
33
Camera dimensions
23.3
M3x4 (4x)
136.6
26
88.92.5
26
24.6
27.8
20
8.9
93.9
36.3*
*Nominal adjustable
38.688.9
26
2.5
Adjustable Nikon F-Mount
M3x4 (4x)
26
53.3
59.7
53.3
M2x3 (4x)
14
14
38.9

Prosilica GX6600

Figure 21: Prosilica GX6600 models mechanical dimensions
Note
Prosilica GX6600 is taller than the remaining GX C-Mount models.
34
Camera dimensions
3
9
2
SECTION A-A
6
20.3
36.1
90.9
42
28
30
44
2.5
22.9
26
24
2.5
4X R3
4X R1.5
3.44X
1/4-20 UNC 5
7
5.1
2x
6
AA
0.5x 45
° TYP

Tripod adapter

For GX1050, GX1660, GX1910, GX1920, GX2300 and GX3300

A Prosilica GX camera can be mounted on a camera tripod by using a mounting plate. The GX1050, GX1660, GX1910, GX1920, GX2300 and GX3300 models can use the mounting plate 02-5030A
Note
Prosilica GX tripod mount is available for purchase from AVT.
AVT P/N: 02-5030A
Figure 22: Prosilica GX tripod mount mechanical drawing
35
Camera dimensions
2
SECTION A-A
6
3
9
0.5 X 45° TYP
A
A
2.5
4X R3
4X
42
44
4X R1.5
26
6
20.3
36.1
30
28
7
94
3.4
2.5
18.3
24
1/4-20 UNC 5
5.1
2x
26
A
A

For GX6600

Adjustment of lens mount model camera can be mounted on a camera tripod by using mounting plate 02-5034A.
Note
Prosilica GX6600 tripod mount is available for purchase from AVT.
AVT P/N: 02-5034A
Figure 23: Prosilica GX6600 tripod mount mechanical drawing
36
Camera dimensions
Optical flange focal distance Flange focal distance
IR cut filter thickness Sensor window thickness+
3
-------------------------------------------------------------------------------------------------------------


IR cut lter thickness Sensor window thickness
Flange focal distance
Max. lens protrusion
A
A
Section A-A
Image sensor die

Optical flange focal distance

Optical flange focal distance is the optical distance from the mounting flange to the image sensor die (see figure 24 and figure 25). Optical flange focal distance can be calculated as:

C-Mount cross section

Table 11 presents flange focal distance and maximum lens protrusion values for Prosilica GX cameras with C-Mount.
Figure 24: Cross section of typical Prosilica GX front assembly with C-Mount
Camera Lens protrusion [mm] IR cut filter* [mm] Sensor window [mm]
GX1050 13.64 0.00 0.79 17.79
GX1050C 8.49 1.00 0.76 18.11
GX1660 13.64 0.00 0.76 17.78
GX1660C 8.49 1.00 0.76 18.11
GX1910 13.64 0.00 0.76 17.78
GX1910C 8.49 1.00 0.76 18.11
GX1920 13.64 0.00 0.75 17.78
GX1920C 3.84 1.00 0.75 18.11
GX2300 13.64 0.00 0.76 17.78
Table 11: Flange focal distance and maximum lens protrusion for Prosilica GX cameras with C-Mount
Nominal flange focal
distance [mm]
37
Camera dimensions
Flange focal distance
IR cut lter thickness Sensor window thickness
Section A-A
A
A
Image sensor die
Camera Lens protrusion [mm] IR cut filter* [mm] Sensor window [mm]
GX2300C 9.01 1.00 0.76 18.11
GX2750 13.64 0.00 0.75 17.78
GX2750C 3.84 1.00 0.75 18.11
GX3300 13.64 0.00 0.76 17.78
GX3300C 9.01 1.00 0.76 18.11
*Only color Prosilica GX cameras are equipped with IR cut filter.
Table 11: Flange focal distance and maximum lens protrusion for Prosilica GX cameras with C-Mount
Nominal flange focal
distance [mm]

F-Mount cross section

Table 12 presents flange focal distance values for Prosilica GX cameras with F­Mount.
Figure 25: Cross section of typical Prosilica GX front assembly with F-Mount
Camera IR cut filter* [mm] Sensor window [mm] Nominal flange focal distance [mm]
GX3300 - 0.76 46.75 GX3300C 1.0 0.76 47.09 GX6600 - 0.76 46.75 GX6600C 1.0 0.76 47.09 *Only color Prosilica GX cameras are equipped with IR cut filter.
Table 12: Flange focal distance for Prosilica GX cameras with F-Mount
38
Camera dimensions
LOCKING WRENCH
LOCKING RING
C-MOUNT RING

Adjustment of C-Mount

www
The C-Mount or CS-Mount is adjusted at the factory and should not require adjusting. If for some reason the lens mount requires adjustment, use the fol­lowing method.
Figure 26: Prosilica GX camera and locking wrench
Prosilica GX cameras are shipped with an adjustable C-Mount or F-Mount. The camera can also be built with a CS-Mount on request. See AVT Modular Concept for more information:
http://www.alliedvisiontec.com/us/support/downloads/ product-literature/avt-modular-concept.html

Loosen locking ring

Use an adjustable wrench to loosen the locking ring. Be careful not to scratch the camera. When the locking ring is loose, unthread the ring a few turns from the camera face.
Note

Image to infinity

Use a C-Mount compatible lens (CS-Mount compatible lens, if using CS ring) that allows an infinity focus. Set the lens to infinity and image a distant object— 10 to 15 m should suffice. Make sure the lens is firmly threaded onto the C­Mount ring. Rotate the lens and C-Mount ring until the image is focused. Care­fully tighten the locking ring and recheck focus.
A wrench suitable for this procedure is available for purchase from AVT. AVT P/N: 02-5003A
39
Camera dimensions
M3 SET SCREW: 3 PLACES
F-MOUNT FRONT ASSEMBLY

Adjustment of F-Mount

The F-Mount is adjusted at the factory and should not require adjusting. If for some reason, the lens mount requires adjustment, use the following method.
Figure 27: Prosilica GX F-Mount isometric view

Attach F-Mount compatible lens

Use an F-Mount compatible lens that allows an infinity focus. Attach the lens to the camera using a counter-clockwise rotation of about a quarter turn. The lens should snap into place and the lens flange and camera flange should mate over the full circumference.

Loosen F-Mount front assembly

Use a 1.5mm hex wrench to loosen the 3 set screws than hold the F-Mount front assembly to the camera body.

Image to infinity

Set the lens to infinity and image a distant object—10 to 15 m should suffice. Gently move the F-Mount front until focused and lock it in place.
40

Camera interfaces

I/O PORT: CAMERA POWER EXTERNAL SYNC IO RS-232 TX/RX
LED1
LED2
LED4
LED3
GIGABIT ETHERNET CABLE MOUNTING HOLES
GIGABIT ETHERNET PORT 2
GIGABIT ETHERNET PORT 1
Camera interfaces
This chapter provides information on Gigabit Ethernet port, inputs and outputs, and trigger features.

Status LEDs

www
For more information on GigE accessories:
http://www.alliedvisiontec.com/emea/products/ accessories/gige-accessories.html
Figure 28: Prosilica GX connection ports
The color of the LEDs have the following meaning:
LED Color Status
LED1 Flashing green Camera is powered
Solid green Camera is booted, and link with the
host is established
LED2 Flashing/solid orange Ethernet activity
LED3 Flashing green Camera is powered
Solid green Camera is booted, and link with the
host is established
LED4 Flashing/solid orange Ethernet activity
Table 13: Status of LEDs in Prosilica GX
Note
– Once the camera is booted, LED1/LED3 will remain solid
green as long as the camera is powered, even if connection with the host is lost.
– All four LEDs are engaged only when camera is operated in
Link Aggregation Group (LAG) mode.
41
Camera interfaces

Gigabit Ethernet port

The Gigabit Ethernet port conforms to the IEEE 802.3 1000BASE-T standard for Gigabit Ethernet over copper. AVT recommends using Category 6 or higher com­patible cabling and connectors for best performance.
The Prosilica GX offers two Gigabit Ethernet ports. This interface is enabled using Link aggregation. A link aggregation group (LAG) is automatically config­ured on the camera when both ports are connected. The host computer requires a dual port, LAG capable Ethernet adapter. The LAG group needs to be config­ured by the user.
www
Note
Note
Note
The AVT GigE Installation Manual offers detailed instructions for using Prosilica GX cameras in a dual port configuration.
http://www.alliedvisiontec.com/fileadmin/content/PDF/ Products/Technical_Manual/GigE_Install_Manual/ AVT_GigE_Installation_Manual.pdf
See Hardware Selection for AVT GigE Cameras application note for a list of recommended Ethernet adapters:
http://www.alliedvisiontec.com/fileadmin/content/PDF/ Support/Application_Notes/ Hardware_Selection_for_AVT_GigE_Cameras.pdf
A standard Ethernet adapter is available for purchase from AVT: AVT P/N: 02-3002A Model: Intel Pro 1000/PT
Cable lengths up to 100 m are supported.
The 8-pin RJ-45 jack has the pin assignment according to the Ethernet standard (IEEE 802.3 1000BASE-T).
Prosilica GX cameras support cables with vertical locking screw connector for a secured connection (See figure 28).
AVT recommends using locking-screw cables from Components Express, Inc. for a perfect fit. Visit the CEI product configurator to customize the cable according to your needs.
42
Camera interfaces
1 9
8
7
6
5
4
3
2
11 12
10

Camera I/O connector pin assignment

Pin Signal Direction Level Description
1 Camera GND In GND for RS-232
and ext. power
2 Camera Power In 5–24 VDC Camera power supply
Ground for RS-232 and camera power supply
3 Out 4 Out Open emitter max.
Output 4 isolated (SyncOut4)
20 mA
4In 1 In U
(high) = 5–24 V
in
(low) = 0–0.8 V
U
in
5 Out 3 Out Open emitter max.
Input 1 isolated (SyncIn1)
Output 3 isolated (SyncOut3)
20 mA
6 Out 1 Out Open emitter max.
Output 1 isolated (SyncOut1)
20 mA
7 Isolated IO
GND
In/Out Common GND for
In/Out
Isolated input and output signal ground
8 RxD RS-232 In RS-232 Terminal receive data
9 TxD RS-232 Out RS-232 Terminal transmit data
10 Isolated Out
Power
11 In 2 In U
12 Out 2 Out Open emitter max.
In Common VCC for
outputs 5–24 V DC
(high) = 5–24 V
in
(low) = 0–0.8 V
U
in
Power input for digital outputs
Input 2 isolated (SyncIn2)
Output 2 isolated (SyncOut2)
20 mA
Table 14: Camera I/O connector pin assignment
The General Purpose I/O port uses a Hirose HR10A-10R-12PB connector on the camera side. The mating cable connector is Hirose HR10A-10P-12S.
Note
This cable side Hirose connector can be purchased from AVT. AVT P/N: K7600040 or 02-7002A
43
Camera interfaces

I/O definition

Camera Power

The Prosilica GX camera family supports a wide input power voltage range. The camera will not power in reverse polarity. Exceeding the voltage range specified below will damage the camera.
Caution
5–24 V. 12 V nominal.
Note

Isolated IO GND

This connection provides the user ground reference and return path for the In 2, Out 3, and Out 4. It is also recommended that the ground wiring be physi-
cally close to the used In/Out to prevent parasitic coupling. For example, a good cable design would connect the required signal on one conductor of a twisted pair and the Isolated IO GND on the second conductor of the same twisted pair.

RxD RS-232 and TxD RS-232

A 12 V power adapter with Hirose connector can be ordered from AVT:
AVT P/N 02-8003A North America Supply.
AVT P/N 02-8004A Universal Supply.
These signals are RS-232 compatible. These signals allow communication from the host system via the Ethernet port to a peripheral device connected to the camera. Tie RS-232 ground to Camera GND to complete the RS-232 circuit.
www
For complete RS-232 description and usage, see:
http://www.alliedvisiontec.com/fileadmin/content/PDF/ Support/Application_Notes/ApplNote_-_RS­232_AVT_GigE.pdf

Isolated Out Power

The Isolated Out Power connection provides power for isolated signals Out 3 and Out 4. The voltage requirement is 5–24 V DC. The current requirement for this supply is a function of the optical isolator collector current and the number of outputs used in the system. Isolated Out Power wiring should be physically close to Out 3 / Out 4 wiring to prevent parasitic coupling.
44
Camera interfaces
180 R
1/10 W
TO CAMERA LOGIC
IN 2
ISOLATED IO GND
DS
G
VCC
GND
HCPL-063L
1
2 3
4
7
6
8
5
VDD+3.3
IN 1
DS
G
180 R
1/10 W
CAMERA INTERNAL EXTERNAL

Input triggers

In 1 and In 2
In 1 and In 2 allow the camera to be synchronized to some external event. These signals are optically isolated and require the signal common (Isolated IO GND). The camera can be programmed to trigger on the rising or falling edge of these signals. The camera can also be programmed to capture an image at some pro­grammable delay time after the trigger event. These signals can be driven from 5 V to 24 V with a minimum current source of 5 mA.
Figure 29: Prosilica GX input trigger. Camera internal circuit
Note
Avago HCPL-063L are optically coupled gates that combine a GaAsP light emitting diode and an integrated high gain photo detector. These are used for the opto-isolated camera inputs.

Output signals

Output signals can be configured to active high or active low. The internal cam­era signals are listed as follows:
Exposing Corresponds to when camera is integrating light
Trigger Ready Indicates when the camera will accept a trigger signal
Trigger Input A relay of the trigger input signal used to “daisy chain” the
trigger signal for multiple cameras
Readout Valid when camera is reading out data
Imaging Valid when camera is exposing or reading out
Strobe Programmable pulse based on one of the above events
GPO User programmable binary output
45
Camera interfaces
T
4
T
2
T
3
CAMERA LOGIC SIGNAL
OUT
T
1
100K
442R
ISOLATED OUT POWER
R
ISOLATED IO GND
EXTERNALCAMERA INTERNAL
1
2
16
15
3.3 V CAMERA
LOGIC SIGNAL
OUT(1 to 4)
TLP281-4GB
Out (1 to 4)
These signals are optically isolated and require the user to provide a high volt­age level (Isolated Out Power) and signal common (Isolated IO GND). Iso- lated Out Power can be from 5 V to 24 V. An example of the functional circuit is indicated in the diagram below.
Figure 30: Prosilica GX output trigger circuit
Note
Toshiba TLP281-4GB consist of photo transistor, optically cou­pled to a GaAsP light emitting diode and an integrated high gain photo detector. These are used for the opto-isolated cam-
era outputs.
Various Isolated Out Power values and load values for the above circuit are indicated in the following table. Trigger current, OUT ICC, is a function of Iso-
lated Out Power voltage and load resistor R.
ISOLATED OUT POWER
5 V 8 mA 500 Ω 4.1 V 32 mW 1.5 s 6.5 s 2 s 14 s 5 V 4.8 mA 1 KΩ 4.8 V 23 mW 1.5 s 5 s 17 s 40 s 12 V 9.2 mA 1.2 KΩ 11.2 V 101 mW 1.5 s 11.2 s 2 s 20 s 12 V 4.9 mA 2.4 KΩ 11.8 V 58 mW 1.5 s 8.5 s 17 s 55 s
OUT
ICC
R V LOAD R POWER
24 V 9.5 mA 2.4 KΩ 23.2 V 217 mW 1.5 s 22 s 2 s 37 s
DISSIPATION
T
1
T
2
T
3
T
4
24 V 5 mA 4.8 KΩ 23.8 V 120 mW 1.5 s 12 s 17 s 105 s
Table 15: Prosilica GX trigger circuit values
46
Camera interfaces
1
87654
32

Lens control port

Pin Signal Direction Description
1 Iris + Out Open Iris
2 Iris - Out Close iris
3 Focus + Out Focus far
4 Focus - Out Focus close
5 Zoom + Out Zoom out
6 Zoom - Out Zoom in
7 Video Iris Out PWM Signal for Iris Control
8 External GND --- External Ground for all lens control signals
Table 16: Prosilica GX lens connector definition
The lens control connector is a Hirose 3260-8S3. This connector provides the signals necessary to control the iris, focus, and zoom of most commercially available TV Zoom and Video-type auto-iris lenses. The cable side connector is Hirose 3240-8P. The camera can be configured to operate lenses with unipolar voltage requirements of 6–12 V or lenses that operate with bipolar voltages from ±6 V up to ±12 V. This voltage level can be controlled through software. The default voltage is set to 6 V. The current capacity for each axis is 50 mA.
Caution
Do not exceed the lens manufacturers voltage specification.
Note
This cable side Hirose connector can be purchased from AVT.
AVT P/N: 02-7004A
47
Camera interfaces
12V POWER
CAMERA GROUND
1
2
3
4
5
6
7
8
9
10
12
HIROSE HR10A-10P-12S
1 2 3 4 5 6 7 8 9 10 11 12
CABLE SIDE
11
CAMERA POWER
CAMERA GND
1 2 3 4
VIDEO SIGNAL
LENS POWER
LENS GROUND
JEITA CONNECTOR
1 2 3 4
VIDEO
AUTO-IRIS
LENS
4
3
8
7
6
5
2
1
HIROSE 3240-8P-C(50)

Video iris connection

Prosilica GX cameras provide built-in auto iris controls for controlling video­type auto-iris lenses. These lenses are available from many popular security lens companies including Pentax, Fujinon, Tamron, Schneider and others.
Remote iris lens control allows the camera to be more adaptable to changing light conditions. It allows the user to manually control the exposure and gain values and rely solely on the auto iris for adjustment to ambient lighting.
Caution
This diagram uses CAMERA POWER to power the video iris lens, and assumes CAMERA POWER = 12 V. Most video iris lenses operate at a 8–16 V input voltage. Therefore, this circuit is
not appropriate if using a 24 V camera power supply. Doing so may irreparably damage your lens. Please consult your
video iris lens specifications for the appropriate drive voltage.
Figure 31: Prosilica GX video iris schematic
48
Camera interfaces
FOCUS+
ZOOM
IRIS-
FOCUS
-
COMMON
FOCUS-
FOCUS
ZOOM-
ZOOM+
COMMON
ZOOM+
FOCUS
ZOOM
FOCUS+
COMMON
HIROSE 3240-8P-C(50)
1
2
3
4
5
6
7
8
TV ZOOM LENS
UNIPOLAR TYPE
ZOOM-
IRIS
IRIS
HIROSE 3240-8P-C(50)
1
2
3
4
5
6
7
8
IRIS-
COMMON
COMMON
COMMON
COMMON
IRIS+
IRIS+
TV ZOOM LENS BIPOLAR TYPE

Motorized lens connection

Figure 32: Prosilica GX motorized lens connection diagram
Caution
WARNING
Verify lens voltage setting on camera does not exceed lens voltage specification. Camera lens voltage is controlled by software. This is set to 6 V after power up and cannot be saved to user configuration files. Current capacity per axis = 50 mA.
49
Camera interfaces
User trigger
Logic trigger
Exposure
Readout
Trigger ready
Imaging
Interline time
Idle
Tpd
Trigger latency
Exposure
start delay
Trigger
jitter
Registered exposure time
Readout time
NN+1
NN+1
Note: Jitter at the beginning of an exposure has no eect on the length of exposure.

Trigger timing diagram

Figure 33: Prosilica GX internal signal timing waveforms

Notes on triggering

Term Definition
User trigger Trigger signal applied by the user (hardware
trigger, software trigger)
Logic trigger Trigger signal seen by the camera internal logic
(not visible to the user)
Tpd Propagation delay between the user trigger and the
Exposure High when the camera image sensor is integrating
Readout High when the camera image sensor is reading out
Trigger latency Time delay between the user trigger and the start
Trigger jitter Error in the trigger latency time
Table 17: Explanation of signals in timing diagram
logic trigger
light
data
of exposure
50
Camera interfaces
Term Definition
Trigger ready Indicates to the user that the camera will accept the
next trigger
Registered exposure time
Exposure start delay Registered exposure time subtracted from the read-
Interline time Time between sensor row readout cycles
Imaging High when the camera image sensor is either
Idle High if the camera image sensor is not exposing
Table 17: Explanation of signals in timing diagram
Exposure time value currently stored in the camera memory
out time and indicates when the next exposure cycle can begin such that the exposure will end after the current readout
exposing and/or reading out data
and/or reading out data
Trigger rules
Note
The user trigger pulse width should be at least three times the width of the trigger latency as indicated in Chapter
Specifications on page 13.
•The end of exposure will always trigger the next readout.
•The end of exposure must always end after the current readout.
•The start of exposure must always correspond with the interline time if
readout is true.
Exposure start delay equals the readout time minus the registered expo-
sure time.
Triggering during the Idle State
For applications requiring the shortest possible Trigger Latency and the smallest possible Trigger Jitter the User Trigger signal should be applied when Imaging is false and Idle is true. In this case, Trigger Latency and Trigger Jitter are as indi- cated in the camera specifications.
Triggering during the Readout State
For applications requiring the fastest triggering cycle time whereby the camera image sensor is exposing and reading out simultaneously, apply the User Trigger signal as soon as a valid Trigger Ready is detected. In this case, Trigger Latency and Trigger Jitter can be up to 1 row time since Exposure must always begin on an Interline boundary.
51

Firmware update

Firmware update
Firmware updates are carried out via the GigE connection. AVT provides an application for all Prosilica GX cameras that loads firmware to the camera using a simple interface. New feature introductions and product improvements moti­vate new firmware releases. All users are encouraged to use the newest firm­ware available and complete the firmware update if necessary.
www
www
Download the latest GigE firmware loader from the AVT website:
http://www.alliedvisiontec.com/us/support/downloads/ firmware.html
For more information on GigE firmware update:
http://www.alliedvisiontec.com/fileadmin/content/PDF/ Support/Application_Notes/AppNote_­_GigE_Firmware_Update.pdf
52

Resolution and ROI frame rates

50
100
150
200
250
300
350
400
0 150 300 450 600 750 900 1050
Frame Rate [fps]
Height [pixels]
Dual GigE - 16 bit Single GigE - 16 bit
Bandwidth limited
Resolution and ROI frame rates
This section provides performance information about the impact of reducing the region of interest on the camera’s maximum frame rate. In addition, because the Prosilica GX camera offers Dual GigE LAG, the impact of using a single Ether­net connection versus dual Ethernet connections with the host is compared.

Single port GigE connection with the Prosilica GX

When a Prosilica GX camera is connected to the host computer using a single Ethernet connection, it behaves like a single port GigE Vision camera. The total bandwidth available for the camera is 125 MB or 1 Gb. A Dual GigE LAG connec­tion supported by the Prosilica GX camera offers up to 250 MB or 2 Gb of band­width.

Bandwidth limiting of frame rate

There are several factors that limit the frame rate of a camera, for example, input trigger speed and mode, exposure time, sensor readout time, and avail­able bandwidth. For the following discussion and charts we assume input trig­ger settings and exposure time are set so as not to limit the frame of the camera. This leaves sensor readout time, the time to physically output the charge off a camera sensor, and available bandwidth. In most cases, the sensor readout time dictates the true frame rate of a camera, unless the amount of transmitted data exceeds what is available on the GigE interface.
In the example chart below, the frame rate for a 16-bit pixel format is given on a GX1050 camera. The upper line shows the frame rate in Dual GigE mode, where no bandwidth limitation occurs. The lower line shows the frame rate in single GigE mode, where bandwidth limitation occurs after a data threshold of 124 Mb/s. This is the shaded region below, occurring at an image height greater than 200 pixels.
Figure 34: Illustration of bandwidth limiting: frame rate vs. height for Prosilica GX1050 in single port
GigE configuration - 16 bit pixel format
53
Resolution and ROI frame rates
Note
For some GX cameras, e.g. GX1910, GX2300, bandwidth limit­ing occurs even in 8-bit pixel formats, although not as severely as with a 16-bit pixel format.
The Prosilica GX camera can be operated near peak sensor frame rates even when using a single port connection. The frame rate vs. height graphs included in this section provide frame rate performance results for both single GigE port and Dual GigE LAG configurations at 8-/16-bit output formats.
Note
Frame rate data was generated using StreamBytesPer­Second = 124 MB/s and 8-/16-bit pixel format
– 8-bit pixel formats: Mono8, BayerRG8, or BayerGR8 – 16-bit pixel formats: Mono12, BayerRG12, or Bayer-
GR12
Frame rates may be lower if using network hardware inca­pable of 124 MB/s.
ROIs are center image, where attribute RegionY = (full sensor height – ROI height)/2, for maximum speed advantage on a quad-tap CCD sensor.
The camera frame rate can be increased by reducing the camera's Height attribute, resulting in a decreased region of interest (ROI) or “window”.
The camera frame rate can also be increased by increas­ing the camera's BinningY attribute, resulting in a verti­cally scaled image (less overall height with same field of view).
There is no frame rate increase with reduced width.
54
Resolution and ROI frame rates
100
150
200
250
300
350
400
0 150 300 450 600 750 900 1050
Frame Rate [fps]
Height [pixels]
Dual GigE - 8 bit Single GigE - 8 bit

Prosilica GX1050

8-bit output format

Figure 35: Frame rate vs. height for Prosilica GX1050 - 8 bit pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
1024 1024 0 112.1 112.1 2 512 1024 196.6 197.0 1000 1024 12 114.0 114.0 3 340 1024 262.2 263.6
900 1024 62 122.7 122.7 4 256 1024 313.3 315.4 800 1024 112 132.8 132.8 5 204 1024 354.5 358.4 768 1024 128 136.3 136.3 6 170 1024 385.7 392.9 700 1024 162 144.4 144.4 7 146 1024 418.6 421.2 600 1024 212 158.6 158.6 8 128 1024 442.1 444.6 512 1024 256 173.7 173.7 400 1024 312 197.0 196.9 300 1024 362 224.4 224.4 256 1024 384 238.6 238.6 200 1024 412 260.7 260.7 128 1024 448 294.7 294.7
64 1024 480 332.4 332.4 50 1024 487 342.4 342.4 32 1024 496 356.6 356.6 20 1024 502 366.5 366.5 10 1024 507 374.7 374.7
2 1024 511 381.0 381.0
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
55
Resolution and ROI frame rates
50
100
150
200
250
300
350
400
0 150 300 450 600 750 900 1050
Frame Rate [fps]
Height [pixels]
Dual GigE - 16 bit Single GigE - 16 bit

16-bit output format

Figure 36: Frame rate vs. height for Prosilica GX1050 - 2 Byte pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
1024 1024 0 57.1 112.1 2 512 1024 113.1 197.0 1000 1024 12 58.4 114.0 3 340 1024 168.4 263.6
900 1024 62 64.8 122.7 4 256 1024 221.1 315.4 800 1024 112 72.9 132.8 5 204 1024 274.4 358.4 768 1024 128 75.9 136.3 6 170 1024 329.3 392.9 700 1024 162 83.2 144.4 7 146 1024 379.9 421.2 600 1024 212 96.8 158.6 8 128 1024 423.4 444.6 512 1024 256 113.2 173.7 400 1024 312 144.3 197.0 300 1024 362 191.2 224.4 256 1024 384 223.1 238.6 200 1024 412 260.7 260.7 128 1024 448 294.7 294.7
64 1024 480 332.4 332.4 50 1024 487 342.4 342.4 32 1024 496 356.6 356.6 20 1024 502 366.5 366.5 10 1024 507 374.7 374.7
2 1024 511 381.0 381.0
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
56
Resolution and ROI frame rates
60
100
140
180
220
260
0 200 400 600 800 1000 1200
Frame Rate [fps]
Height [pixels]
Dual GigE - 8 bit Single GigE - 8 bit

Prosilica GX1660

8-bit output format

Figure 37: Frame rate vs. height for Prosilica GX1660 - 8 bit pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
1200 1600 0 62.1 66.5 2 600 1600 118.7 121.0 1080 1600 60 69.1 71.8 3 400 1600 165.4 165.4 1024 1600 88 72.9 74.7 4 300 1600 202.7 202.7
900 1600 150 81.6 81.5 5 240 1600 234.1 234.1 768 1600 216 90.6 90.6 6 200 1600 260.8 260.8 600 1600 300 105.6 105.6 7 170 1600 283.9 283.9 512 1600 344 115.6 115.6 8 150 1600 303.1 303.1 400 1600 400 131.6 131.6 300 1600 450 149.6 149.6 240 1600 480 163.2 163.2 200 1600 500 173.9 173.9 128 1600 536 196.8 196.8 100 1600 550 207.8 207.8
64 1600 568 223.3 223.3 50 1600 575 230.1 230.1 32 1600 584 238.7 238.7 20 1600 590 245.2 245.2 10 1600 595 250.7 250.7
2 1600 599 256.4 256.4
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
57
Resolution and ROI frame rates
30
70
110
150
190
230
270
0 200 400 600 800 1000 1200
Frame Rate [fps]
Height [pixels]
Dual GigE - 16 bit Single GigE - 16 bit

16-bit output format

Figure 38: Frame rate vs. height for Prosilica GX1660 - 2 Byte pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
1200 1600 0 31.3 62.5 2 600 1600 62.3 120.7 1080 1600 60 34.7 69.4 3 400 1600 92.6 165.4 1024 1600 88 36.6 73.2 4 300 1600 123.5 202.8
900 1600 150 41.6 81.6 5 240 1600 152.8 234.2 768 1600 216 48.7 90.7 6 200 1600 182.9 260.8 600 1600 300 62.1 105.6 7 170 1600 214.7 284.0 512 1600 344 72.9 115.7 8 150 1600 242.9 303.1 400 1600 400 92.6 131.6 300 1600 450 122.7 149.6 240 1600 480 153.4 163.2 200 1600 500 174.0 174.0 128 1600 536 196.9 196.9 100 1600 550 207.8 207.8
64 1600 568 223.3 223.3 50 1600 575 230.2 230.2 32 1600 584 238.7 238.8 20 1600 590 245.3 245.3 10 1600 595 250.8 250.8
2 1600 599 256.5 256.5
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
58
Resolution and ROI frame rates
50
75
100
125
150
175
200
225
250
275
0 100 200 300 400 500 600 700 800 900 1000 1100
Frame Rate [fps]
Height [pixels]
Dual GigE - 8 bit Single GigE - 8 bit

Prosilica GX1910

8-bit output format

Figure 39: Frame rate vs. height for Prosilica GX1910 - 8 bit pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
1080 1920 0 55.6 63.5 2 540 1920 116.3 116.4 1024 1920 28 58.8 66.1 3 360 1920 160.8 160.8 1000 1920 40 60.1 67.3 4 270 1920 198.5 198.5
900 1920 90 66.8 72.6 5 216 1920 230.6 230.6 800 1920 140 74.9 78.9 6 180 1920 258.2 258.2 700 1920 190 85.3 86.4 7 154 1920 282.3 282.4 600 1920 240 95.2 95.3 8 134 1920 302.3 302.3 540 1920 270 101.6 101.7 500 1920 290 106.1 106.5 400 1920 340 120.2 120.7 300 1920 390 138.7 138.8 270 1920 405 145.0 145.6 200 1920 440 163.0 163.8 134 1920 473 185.2 186.2 100 1920 490 198.7 199.9
50 1920 515 223.2 224.7 20 1920 530 240.1 241.9 10 1920 535 247.2 247.2
2 1920 539 252.2 252.2
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
59
Resolution and ROI frame rates
25
50
75
100
125
150
175
200
225
250
275
0 100 200 300 400 500 600 700 800 900 1000 1100
Frame Rate [fps]
Height [pixels]
Dual GigE - 16 bit Single GigE - 16 bit

16-bit output format

Figure 40: Frame rate vs. height for Prosilica GX1910 - 2 Byte pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
1080 1920 0 28.9 55.6 2 540 1920 57.5 115.0 1024 1920 28 30.5 58.8 3 360 1920 86.1 160.8 1000 1920 40 31.3 60.1 4 270 1920 114.1 198.5
900 1920 90 34.7 66.8 5 216 1920 141.5 230.7 800 1920 140 39.0 74.9 6 180 1920 169.2 258.3 700 1920 190 44.5 85.3 7 154 1920 196.3 282.4 600 1920 240 51.8 95.2 8 134 1920 226.5 302.4 540 1920 270 57.5 101.6 500 1920 290 62.1 106.1 400 1920 340 77.5 120.2 300 1920 390 102.9 138.7 270 1920 405 114.1 145.0 200 1920 440 153.4 163.0 134 1920 473 186.2 185.2 100 1920 490 199.9 198.7
50 1920 515 224.7 223.2 20 1920 530 241.9 240.1 10 1920 535 248.3 247.2
2 1920 539 254.8 252.2
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
60
Resolution and ROI frame rates
40
60
80
100
120
140
0 250 500 750 1000 1250 1500
Frame Rate [fps]
Height [pixels]
Dual GigE - 8 bit Single GigE - 8 bit

Prosilica GX1920

8-bit output format

Figure 41: Frame rate vs. height for Prosilica GX1920 - 8 bit pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
1456 1936 0 40.6 40.6 2 728 1936 70.2 70.2 1200 1936 128 46.4 46.4 3 484 1936 92.8 92.8 1080 1936 188 49.6 49.6 4 364 1936 109.5 109.5
900 1936 278 55.5 55.5 5 290 1936 123.5 123.5 800 1936 328 59.5 59.5 6 242 1936 134.5 134.5 728 1936 364 62.5 62.5 7 208 1936 143.5 143.5 600 1936 428 69.1 69.1 8 182 1936 151.1 151.1 500 1936 478 75.3 75.3 484 1936 486 76.3 76.3 400 1936 528 82.6 82.6 364 1936 546 85.6 85.6 300 1936 578 91.6 91.6 250 1936 603 96.9 96.9 182 1936 637 105.0 105.0 140 1936 658 111.0 111.0 100 1936 678 117.1 117.1
50 1936 703 126.0 126.0
2 1936 727 135.6 135.6
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
61
Resolution and ROI frame rates
20
40
60
80
100
120
140
0 250 500 750 1000 1250 1500
Frame Rate [fps]
Height [pixels]
Dual GigE - 16 bit Single GigE - 16 bit

16-bit output format

Figure 42: Frame rate vs. height for Prosilica GX1920 - 2 Byte pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
1456 1936 0 21.3 40.6 2 728 1936 42.5 70.3 1200 1936 128 25.8 46.4 3 484 1936 63.6 92.8 1080 1936 188 28.7 49.6 4 364 1936 84.2 110.0
900 1936 278 34.4 55.5 5 290 1936 105.8 124.1 800 1936 328 38.6 59.5 6 242 1936 125.6 135.1 728 1936 364 42.4 62.5 7 208 1936 144.1 144.1 600 1936 428 51.5 69.1 8 182 1936 151.7 151.7 500 1936 478 61.6 75.3 484 1936 486 63.7 76.3 400 1936 528 76.7 82.6 364 1936 546 84.1 85.6 300 1936 578 91.8 91.6 250 1936 603 97.2 96.9 182 1936 637 105.3 105.0 140 1936 658 111.3 111.0 100 1936 678 117.2 117.1
50 1936 703 126.0 126.0
2 1936 727 135.7 135.6
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
62
Resolution and ROI frame rates
25
40
55
70
85
100
115
130
0 200 400 600 800 1000 1200 1400 1600 1800
Frame Rate [fps]
Height [pixels]
Dual GigE - 8 bit Single GigE - 8 bit

Prosilica GX2300

8-bit output format

Figure 43: Frame rate vs. height for Prosilica GX2300 - 8 bit pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
1752 2336 0 28.3 32.8 2 876 2336 56.5 59.3 1600 2336 76 31.0 35.0 3 584 2336 81.2 81.2 1500 2336 126 33.1 36.7 4 438 2336 99.5 99.5 1400 2336 176 35.4 38.5 5 350 2336 115.0 115.0 1300 2336 226 38.1 40.5 6 292 2336 128.0 128.0 1200 2336 276 41.2 42.7 7 250 2336 139.4 139.4 1100 2336 326 45.0 45.2 8 218 2336 148.2 148.2 1000 2336 376 48.0 48.0
876 2336 438 52.0 52.0 700 2336 526 58.9 58.9 584 2336 584 64.6 64.6 500 2336 626 69.5 69.5 400 2336 676 76.4 76.4 300 2336 726 84.8 84.8 218 2336 767 93.2 93.2 100 2336 826 108.5 108.5
50 2336 851 116.8 116.8 10 2336 871 124.4 124.4
2 2336 875 125.9 125.9
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
63
Resolution and ROI frame rates
10
30
50
70
90
110
130
0 300 600 900 1200 1500 1800
Frame Rate [fps]
Height [pixels]
Dual GigE - 16 bit Single GigE - 16 bit

16-bit output format

Figure 44: Frame rate vs. height for Prosilica GX2300 - 2 Byte pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
1752 2336 0 14.7 28.3 2 876 2336 29.3 58.6 1600 2336 76 16.1 31.0 3 584 2336 43.8 81.2 1500 2336 126 17.2 33.1 4 438 2336 58.3 99.5 1400 2336 176 18.4 35.4 5 350 2336 73.0 115.0 1300 2336 226 19.8 38.1 6 292 2336 87.2 128.1 1200 2336 276 21.4 41.2 7 250 2336 101.5 139.5 1100 2336 326 23.4 44.7 8 218 2336 115.8 148.3 1000 2336 376 25.7 48.0
876 2336 438 29.3 52.0 700 2336 526 36.6 58.9 584 2336 584 43.8 64.6 500 2336 626 51.1 69.5 400 2336 676 63.7 76.4 300 2336 726 84.6 84.8 218 2336 767 93.2 93.2 100 2336 826 108.6 108.5
50 2336 851 116.8 116.8 10 2336 871 124.5 124.4
2 2336 875 125.9 125.9
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
64
Resolution and ROI frame rates
15
25
35
45
55
65
75
85
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Frame Rate [fps]
Height [pixels]
Dual GigE - 8 bit Single GigE - 8 bit

Prosilica GX2750

8-bit output format

Figure 45: Frame rate vs. height for Prosilica GX2750 - 8 bit pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
2200 2752 0 19.1 20.6 2 1100 2752 36.9 36.9 2000 2752 100 21.1 22.1 3 732 2752 50.1 50.1 1800 2752 200 23.4 23.4 4 550 2752 60.8 60.8 1600 2752 300 25.8 25.8 5 440 2752 69.6 69.6 1400 2752 400 28.1 28.1 6 366 2752 77.2 77.2 1200 2752 500 31.0 31.0 7 314 2752 83.5 83.5 1000 2752 600 34.4 34.4 8 274 2752 88.4 88.4
800 2752 700 38.7 38.7 600 2752 800 44.2 44.2 400 2752 900 51.6 51.6 300 2752 950 56.4 56.4 200 2752 1000 61.9 61.9 100 2752 1050 68.7 68.7
50 2752 1075 72.8 72.8 20 2752 1090 75.5 75.5 10 2752 1095 76.3 76.3
5 2752 1097.5 76.7 76.7 2 2752 1099 77.1 77.1
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
65
Resolution and ROI frame rates
10
20
30
40
50
60
70
80
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Frame Rate [fps]
Height [pixels]
Dual GigE - 16 bit Single GigE - 16 bit

16-bit output format

Figure 46: Frame rate vs. height for Prosilica GX2750 - 2 Byte pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
2200 2752 0 10.0 19.1 2 1100 2752 19.9 37.0 2000 2752 100 10.9 21.1 3 732 2752 29.8 50.2 1800 2752 200 12.1 23.4 4 550 2752 39.6 60.9 1600 2752 300 13.7 25.8 5 440 2752 49.4 69.8 1400 2752 400 15.6 28.1 6 366 2752 59.3 77.4 1200 2752 500 18.2 31.0 7 314 2752 68.9 83.8 1000 2752 600 21.8 34.4 8 274 2752 78.8 88.9
800 2752 700 27.3 38.7 600 2752 800 36.3 44.2 400 2752 900 51.7 51.6 300 2752 950 56.5 56.4 200 2752 1000 62.0 61.9 100 2752 1050 68.9 68.7
50 2752 1075 73.0 72.8 20 2752 1090 75.6 75.5 10 2752 1095 76.5 76.3
5 2752 1097.5 76.9 76.7 2 2752 1099 77.3 77.1
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
66
Resolution and ROI frame rates
10
20
30
40
50
60
70
0 500 1000 1500 2000 2500
Frame Rate [fps]
Height [pixels]
Dual GigE - 8 bit Single GigE - 8 bit

Prosilica GX3300

8-bit output format

Figure 47: Frame rate vs. height for Prosilica GX3300 - 8 bit pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
2472 3296 0 14.2 17.1 2 1236 3296 28.4 31.2 2300 3296 86 15.3 18.0 3 824 3296 42.6 43.1 2100 3296 186 16.8 19.2 4 618 3296 53.2 53.2 1900 3296 286 18.5 20.6 5 494 3296 61.9 61.9 1700 3296 386 20.7 22.3 6 412 3296 69.4 69.4 1500 3296 486 23.5 24.2 7 352 3296 75.7 75.7 1236 3296 618 27.3 27.3 8 308 3296 81.4 81.4 1100 3296 686 29.2 29.2 1000 3296 736 30.8 30.8
900 3296 786 32.6 32.6 700 3296 886 36.9 36.9 618 3296 927 39.1 39.1 500 3296 986 42.5 42.5 400 3296 1036 46.0 46.0 308 3296 1082 49.8 49.8 200 3296 1136 55.1 55.1 100 3296 1186 61.1 61.1
50 3296 1211 64.7 64.7
2 3296 1235 68.4 68.4
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
67
Resolution and ROI frame rates
0
10
20
30
40
50
60
70
0 500 1000 1500 2000 2500
Frame Rate [fps]
Height [pixels]
Dual GigE - 16 bit Single GigE - 16 bit

16-bit output format

Figure 48: Frame rate vs. height for Prosilica GX3300 - 2 Byte pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
2472 3296 0 7.4 14.2 2 1236 3296 14.8 29.5 2300 3296 86 7.9 15.3 3 824 3296 22.1 43.1 2100 3296 186 8.7 16.8 4 618 3296 29.5 53.2 1900 3296 286 9.6 18.5 5 494 3296 36.8 62.0 1700 3296 386 10.7 20.7 6 412 3296 44.1 69.5 1500 3296 486 12.2 23.5 7 352 3296 51.4 75.8 1236 3296 618 14.8 27.3 8 308 3296 58.8 81.4 1100 3296 686 16.6 29.2 1000 3296 736 18.2 30.8
900 3296 786 20.2 32.6 700 3296 886 26.0 36.9 618 3296 927 29.4 39.1 500 3296 986 36.3 42.5 400 3296 1036 45.4 46.0 308 3296 1082 49.9 49.8 200 3296 1136 55.2 55.1 100 3296 1186 61.2 61.1
50 3296 1211 64.7 64.7
2 3296 1235 68.5 68.4
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
68
Resolution and ROI frame rates
4
6
8
10
12
14
16
18
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frame Rate [fps]
Height [pixels]
Dual GigE - 8 bit Single GigE - 8 bit

Prosilica GX6600

8-bit output format

Figure 49: Frame rate vs. height for Prosilica GX6600 - 8 bit pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
4384 6576 0 4.0 4.0 2 2192 6576 7.4 7.4 4000 6576 192 4.3 4.3 3 1460 6576 10.4 10.4 3500 6576 442 4.7 4.7 4 1096 6576 13 13 3000 6576 692 5.3 5.3 5 876 6576 15.3 15.3 2500 6576 942 6.0 6.0 6 730 6576 17.4 17.4 2000 6576 1192 6.9 6.9 7 626 6576 19.1 19.1 1500 6576 1442 8.1 8.1 8 548 6576 20.7 20.7 1200 6576 1592 9.1 9.1 1000 6576 1692 9.8 9.8
800 6576 1792 10.8 10.8 600 6576 1892 11.9 11.9 500 6576 1942 12.5 12.5 400 6576 1992 13.2 13.2 300 6576 2042 14.1 14.1 200 6576 2092 15.0 15.0 100 6576 2142 16.0 16.0
50 6576 2167 16.6 16.6 10 6576 2187 17.1 17.1
2 6576 2191 17.2 17.2 1 6576 2191 17.2 17.2
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
69
Resolution and ROI frame rates
2
4
6
8
10
12
14
16
18
0 550 1100 1650 2200 2750 3300 3850 4400
Frame Rate [fps]
Height [pixels]
Dual GigE - 16 bit Single GigE - 16 bit

16-bit output format

Figure 50: Frame rate vs. height for Prosilica GX6600 - 2 Byte pixel format
Height1Width2RegionY
Frame rate
single GigE
Frame rate
dual GigE
3
BinningY Height Width
Frame rate
single GigE
Frame rate
dual GigE
4384 6576 0 2.1 4.0 2 2192 6576 4.2 7.5 4000 6576 192 2.3 4.3 3 1460 6576 6.3 10.4 3500 6576 442 2.6 4.7 4 1096 6576 8.4 13.0 3000 6576 692 3.1 5.3 5 876 6576 10.4 15.3 2500 6576 942 3.7 6.0 6 730 6576 12.5 17.4 2000 6576 1192 4.6 6.9 7 626 6576 14.6 19.2 1500 6576 1442 6.1 8.1 8 548 6576 16.7 20.8 1200 6576 1592 7.6 9.1 1000 6576 1692 9.2 9.8
800 6576 1792 10.8 10.8 600 6576 1892 11.9 11.9 500 6576 1942 12.5 12.5 400 6576 1992 13.3 13.2 300 6576 2042 14.1 14.1 200 6576 2092 15.0 15.0 100 6576 2142 16.1 16.0
50 6576 2167 16.7 16.6 10 6576 2187 17.2 17.1
2 6576 2191 17.3 17.2 1 6576 2191 17.3 17.2
1
There is no frame rate increase with reduced width.
2
For maximum speed advantage ROIs are taken as center image, where attribute RegionY = (full sensor height – ROI height)/2.
3
BinningY is hor izontal row summing on CCD before readout.
70
Resolution and ROI frame rates
1
10
100
1000
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frame Rate [fps]
Height [pixels]
GX1050 GX1660 GX1910 GX1920
GX2300 GX2750 GX3300 GX6600
1
10
100
1000
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frame Rate [fps]
Height [pixels]
GX1050 GX1660 GX1910 GX1920
GX2300 GX2750 GX3300 GX6600

Prosilica GX model comparison

Single GigE port (8 bit) operation

Figure 51: Maximum frame rate vs. height for all Prosilica GX cameras using single Ethernet port

Dual GigE LAG (8 bit) operation

Figure 52: Maximum frame rate vs. height for all Prosilica GX cameras using two Ethernet ports
71
Resolution and ROI frame rates
1
10
100
1000
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frame Rate [fps]
Height [pixels]
GX1050 GX1660 GX1910 GX1920
GX2300 GX2750 GX3300 GX6600
1
10
100
1000
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frame Rate [fps]
Height [pixels]
GX1050 GX1660 GX1910 GX1920
GX2300 GX2750 GX3300 GX6600

Single GigE port (16 bit) operation

Figure 53: Maximum frame rate vs. height for all Prosilica GX cameras using single Ethernet port - 2 Byte
pixel format

Dual GigE LAG (16 bit) operation

Figure 54: Maximum frame rate vs. height for all Prosilica GX cameras using two Ethernet ports - 2 Byte
pixel format
72

Description of the data path

Sensor
Analog Analog
ADC
HIROSE I/O
RS232
Analog Analog
Gain
Camera control
Vertical
binning /
Vertical ROI
14 bit
14 bit
GigE
14 bit
Frame
memory
Gigabit Ethernet interface
Factory calibrated. NOT a user control.
Horizontal
binning
14 bit 14 bit
Defect
§
mask
Horizontal
ROI
Oset
§
Defect masking is not available for GX1050, GX1660, and GX1910
HIROSE I/O
RS232
Sensor
Analog
Analog
ADC
GigE
14 bit
Analog Analog
Gain
Horizontal
binning*
Vertical
binning* /
Vertical ROI
14 bit
Gigabit Ethernet interface
14 bit
White balance
8/12 bit8/12/14 bit
Frame
memory
Bayer
Interpolation
3 X 3
Factory calibrated. NOT a user control.
For on-camera interpolated PixelFormats only—outputs 8 bit. On-camera interpolated PixelFormat, RGB12Packed—outputs 12 bit. Raw un-interpolated PixelFormats skip this block—outputs 14 bit.
14 bit
Defect
§
mask
14 bit
Camera control
Horizontal
ROI
§
Defect masking is not available for GX1050C, GX1660C, and GX1910C
Oset
*
Color information lost while binning is active.
Description of the data path
The following diagrams illustrate the data flow and the bit resolution of image data. The individual blocks are described in more detail in the AVT GigE Camera and Driver Features document.

Prosilica GX: monochrome cameras

Figure 55: Block diagram of Prosilica GX monochrome cameras

Prosilica GX: color cameras

Figure 56: Block diagram of Prosilica GX color cameras
73

Appendix

x
y
Sensor case
D
Camera body
Pixel area
Sensor case
Camera body
Pixel area
Appendix

Sensor position accuracy of Prosilica GX

Method of Positioning:
Reference points:
Accuracy:
Optical alignment of photo sensitive sensor area into camera front module. (lens mount front flange)
Sensor: Center of pixel area (photo sensitive cells) Camera: Center of camera front flange (outer case edges)
x/y ±250 µm (Sensor shift)
α
< 1° (Sensor rotation)
74

Additional references

Additional references

Prosilica GX webpage

http://www.alliedvisiontec.com/us/products/cameras/gigabit-ethernet/pro­silica-gx.html

Prosilica GX Documentation

http://www.alliedvisiontec.com/us/support/downloads/product-literature/ prosilica-gx.html

AVT VIMBA SDK

http://www.alliedvisiontec.com/us/products/software/vimba-sdk.html

AVT GigE PvAPI SDK

http://www.alliedvisiontec.com/us/products/legacy.html

AVT Knowledge Base

http://www.alliedvisiontec.com/us/support/knowledge-base.html

AVT Case Studies

http://www.alliedvisiontec.com/us/products/applications/industrial­inspection.html

Prosilica GX Firmware

http://www.alliedvisiontec.com/us/support/downloads/firmware.html
75
Index
Index
A
Adjustment
C-Mount ............................................ 39
F-Mount ............................................ 40
B
Bandwidth limiting .............................. 53, 54
Block diagram
Prosilica GX color cameras .................... 73
Prosilica GX monochrome cameras.......... 73
C
Camera dimensions ................................... 31
Camera GND........................................ 43
Camera interfaces ..................................... 41
Camera Power ..................................... 43
CE.......................................................... 12
Cleaning optics ........................................ 10
Copyright.................................................. 2
, 44
, 44
D
Data path................................................ 73
Declaration of conformity........................... 12
Document history ....................................... 6
E
I
Idle (signal) ............................................ 51
Imaging (signal) ...................................... 51
Input triggers
In 1............................................. 43
In 2........................................ 43
Integrating light (trigger).......................... 50
Interline boundary ................................... 51
Interline time (signal)............................... 51
Isolated IO GND.........................43
Isolated Out Power .........................43
, 44, 45, 46
, 45
, 44, 45
, 44, 46
L
Legal notice .............................................. 2
lens protrusion ........................................ 37
Link Aggregation Group (LAG)...........41
Logic trigger (definition) ........................... 50
, 42, 53
M
Mechanical dimensions
C-Mount............................................ 31
F-Mount ............................................ 32
GX6600 tripod mount........................... 36
Prosilica GX1920 and GX2750 ................ 33
Prosilica GX6600................................. 34
Tripod mounting plate ......................... 35
Multicast ................................................ 29
Environmental specifications ........................9
Exposing (trigger) .................................... 51
Exposure (definition) ................................ 50
Exposure cycle (trigger)............................. 51
Exposure start delay (signal) ...................... 51
F
FCC Class A .....12, 13, 15, 17, 19, 21, 23, 25, 27
Flange focal distance
C-Mount cross section .......................... 37
F-Mount cross section .......................... 38
G
GND for ext. power.................................... 43
O
Optical flange focal distance....................... 37
Output signals
Out 1 ........................................... 43
Out 2 ........................................... 43
Out 3 ......................................43
Out 4 ......................................43
, 46
, 46 , 44, 46 , 44, 46
P
Precautions ............................................... 8
Propagation delay (trigger) ........................ 50
Prosilica GX model comparison
Dual GigE LAG (16 bit) operation............ 72
Dual GigE LAG (8 bit) operation.............. 71
Prosilica GX Technical Manual V2.0.8
76
Index
Single GigE port (16 bit) operation ......... 72
Single GigE port (8 bit) operation........... 71
R
Reading out data (trigger).......................... 51
Readout (definition) ................................. 50
Readout data (trigger)............................... 50
Region of interest.................................. 6
Registered exposure time (signal)................ 51
Resolution and ROI frame rates
GX1050 16-bit output format................. 56
GX1050 8-bit output format .................. 55
GX1660 16-bit output format................. 58
GX1660 8-bit output format .................. 57
GX1910 16-bit output format................. 60
GX1910 8-bit output format .................. 59
GX1920 16-bit output format................. 62
GX1920 8-bit output format .................. 61
GX2300 16-bit output format................. 64
GX2300 8-bit output format .................. 63
GX2750 16-bit output format................. 66
GX2750 8-bit output format .................. 65
GX3300 16-bit output format................. 68
GX3300 8-bit output format .................. 67
GX6600 16-bit output format................. 70
GX6600 8-bit output format .................. 69
RoHS (2011/65/EU).. 12 25, 27
RS-232 ................................................... 43
, 13, 15, 17, 19, 21, 23,
, 29
Prosilica GX3300-Monochrome .............. 26
Prosilica GX6600-Color......................... 28
Prosilica GX6600-Monochrome .............. 28
Status LEDs ............................................. 41
Styles....................................................... 8
Symbols ................................................... 8
T
Time delay (trigger) .................................. 50
Tpd (definition) ....................................... 50
Trademarks ............................................... 2
Trigger jitter (definition) ........................... 50
Trigger latency (definition) ........................ 50
Trigger ready (signal)................................ 51
Trigger rules............................................ 51
Trigger timing diagram .............................. 50
U
User trigger (definition) ............................ 50
V
Video iris ........................................... 47, 48
W
Warranty................................................... 2
S
Sensor position ........................................ 74
Sensor row readout cycles .......................... 51
Specifications .......................................... 13
Spectral sensitivity
Prosilica GX1050-Color......................... 14
Prosilica GX1050-Monochrome .............. 14
Prosilica GX1660-Color......................... 16
Prosilica GX1660-Monochrome .............. 16
Prosilica GX1910-Color......................... 18
Prosilica GX1910-Monochrome .............. 18
Prosilica GX1920-Color......................... 20
Prosilica GX1920-Monochrome .............. 20
Prosilica GX2300-Monochrome .............. 22
Prosilica GX2750-Color......................... 24
Prosilica GX2750-Monochrome .............. 24
Prosilica GX3300-Color......................... 26
Prosilica GX Technical Manual V2.0.8
77
Loading...