Agilent E4445A TD-SCDMA Modulation Analysis Guide with HSPA/8PSK

TD-SCDMA Modulation Analysis Guide with
HSPA/8PSK
Agilent Technologies PSA Series
Options 212 and 213
This manual provides documentation for the following instruments:
Spectrum Analyzers: E4440A (3 Hz – 26.5 GHz) E4443A (3 Hz – 6.7 GHz) E4445A (3 Hz – 13.2 GHz) E4446A (3 Hz – 44.0 GHz) E4447A (3 Hz – 42.98 GHz) E4448A (3 Hz – 50.0 GHz)
Manufacturing Part Number: E4440-90623
Supersedes: E4440-90342
Printed in USA
June 2008
© Copyright 2006-2008 Agilent Technologies, Inc.
The information contained in this document is subject to change without notice.
Agilent Technologies makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.
2
Contents
1. Introduction
What Does the Agilent PSA Series Option 212 and 213 Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Installing Optional Measurement Personalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Do You Have Enough Memory to Load All Your Personality Options? . . . . . . . . . . . . . . . . . . . . . . . . . 18
How to Predict Your Memory Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Loading an Optional Measurement Personality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Obtaining and Installing a License Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Viewing a License Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Using the Delete License Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Ordering Optional Measurement Personalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2. Making Measurements
TD-SCDMA Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Setting up and Making a Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Making the Initial Signal Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Using Instrument Mode and Measurement Presets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
The 3 Steps to Set Up and Make Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Code Domain Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
One-Button MS Measurement Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
One-Button BTS Measurement Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Troubleshooting Hints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Modulation Accuracy (Composite EVM) Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
One-Button MS Measurements Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
One-Button BTS Measurement Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Troubleshooting Hints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Using Basic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Basic Mode in PSA Series Spectrum Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table of Contents

3. Key and SCPI Reference
Instrument Front Panel Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Selected PSA Front-Panel Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
FREQUENCY/Channel key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Center Freq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
CF Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Int Preamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
RF Input Ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Max Total Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Input Attenuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
MS Ext RF Attenuation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
BTS Ext RF Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Meas Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Pause/Resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Spectrum Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
TD-SCDMA Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3
Contents
Table of Contents
Instrument Selection by Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Instrument Selection by Number (Remote command only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Mode Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Radio Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Demod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Multi-Carrier Demod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
HSPA/8PSK Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Command Interactions: MEASure, CONFigure, FETCh, INITiate and READ. . . . . . . . . . . . . . . . . . . . 82
Mod Accuracy (Composite EVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Code Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Spectrum (Freq Domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
WaveForm (Time Domain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Code Domain Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Front Panel Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
SPAN/X Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
AMPLITUDE/Y Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Trace / View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Meas setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Modulation Accuracy Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Front Panel Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
SPAN X Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
AMPLITUDE Y Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Trace/View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Meas Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4. Concepts
What Is the TD-SCDMA Communications System?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
TD-SCDMA Frame Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
HSDPA Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
What is HSDPA?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Modulation Scheme Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Why Test HSPDPA User Equipment? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Digital Modulation Format Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Quadrature Phase Shift Keying (QPSK) Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Quadrature Amplitude Modulation (QAM) Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Modulation Bit State Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Modulation Quality Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Error Vector Magnitude (EVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Phase and Frequency Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Rho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Impairments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Code Domain Measurement Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
What is the Code Domain power? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Measurement Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Modulation Accuracy (Composite EVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4
Contents
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Measurement Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Spectrum (Frequency Domain) Measurement Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Measurement Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Troubleshooting Hints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Waveform (Time Domain) Measurement Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Measurement Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Other Sources of Measurement Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Instrument Updates at www.agilent.com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5. Menu Maps
Directions for Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Menu Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Table of Contents
5
Contents
Table of Contents
6

List of Commands

:CALCulate:EVM:LIMit[1]|2:FERRor <real> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
:CALCulate:EVM:LIMit[1]|2:FERRor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
:CALCulate:EVM:LIMit[1]|2:PCDE <rel_ampl> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
:CALCulate:EVM:LIMit[1]|2:PCDE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
:CALCulate:EVM:LIMit[1]|2:PEAK <real> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
:CALCulate:EVM:LIMit[1]|2:PEAK? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
:CALCulate:EVM:LIMit[1]|2:RHO <real> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
:CALCulate:EVM:LIMit[1]|2:RHO? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
:CALCulate:EVM:LIMit[1]|2:RMS<real> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
:CALCulate:EVM:LIMit[1]|2:RMS? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
:CONFigure:CDPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
:CONFigure:EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
:CONFigure:SPECtrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
:CONFigure:WAVeform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
:DISPlay:CDPower:COMPosite OFF|ON|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
:DISPlay:CDPower:DBITs:FORMat BINary|HEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
:DISPlay:CDPower:DBITs:FORMat? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
:DISPlay:CDPower:FVECtor[:STATe] OFF|ON|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
:DISPlay:CDPower:FVECtor[:STATe]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
:DISPlay:CDPower:INTerpolate OFF|ON|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
:DISPlay:CDPower:INTerpolate? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
:DISPlay:CDPower:IQPoint?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
List of Commands
:DISPlay:CDPower:IQPoints <integer>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
:DISPlay:CDPower:IQPoints:OFFSet <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
:DISPlay:CDPower:IQPoints:OFFSet? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
:DISPlay:CDPower:IQPType VCONstln|VECTor|CONStln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
:DISPlay:CDPower:IQPType? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
:DISPlay:CDPower:ROTation OFF|ON|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
:DISPlay:CDPower:ROTation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
:DISPlay:CDPower:SCLength <integer>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
:DISPlay:CDPower:VIEW? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7
List of Commands
List of Commands
:DISPlay:CDPower:VIEW[:SELect] CDPGraph|CDEGraph|IQERror|CDOMain|DBITs|RESMetrics . . . . . . . . 123
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:X[:SCALe]:COUPle 0|1|OFF|ON . . . . . . . . . . . . . . 114
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:X[:SCALe]:COUPle? . . . . . . . . . . . . . . . . . . . . . . . 114
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:X[:SCALe]:PDIVision . . . . . . . . . . . . . . . . . . . . . . 109
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:X[:SCALe]:PDIVision? . . . . . . . . . . . . . . . . . . . . . 109
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:X[:SCALe]:RLEVel <real>. . . . . . . . . . . . . . . . . . . 111
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:X[:SCALe]:RLEVel? . . . . . . . . . . . . . . . . . . . . . . . 111
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:X[:SCALe]:RPOSition LEFT|CENTer|RIGHt . . . . 113
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:X[:SCALe]:RPOSition? . . . . . . . . . . . . . . . . . . . . . 113
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:COUPle 0|1|OFF|ON . . . . . . . . . . . . . . 121
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:COUPle? . . . . . . . . . . . . . . . . . . . . . . . 121
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:PDIVision <real>. . . . . . . . . . . . . . . . . 116
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:PDIVision? . . . . . . . . . . . . . . . . . . . . . 116
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:RLEVel <real>. . . . . . . . . . . . . . . . . . . 118
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:RLEVel? . . . . . . . . . . . . . . . . . . . . . . . 118
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:RPOSition TOP|CENTer|BOTTom . . . 120
:DISPlay:CDPower[1]|2|3|4|5|6:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:RPOSition? . . . . . . . . . . . . . . . . . . . . . 120
:DISPlay:EVM:FVECtor[:STATe] OFF|ON|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
:DISPlay:EVM:FVECtor[:STATe]?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
:DISPlay:EVM:INTerpolate OFF|ON|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
:DISPlay:EVM:INTerpolate?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
:DISPlay:EVM:IQPoint? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
:DISPlay:EVM:IQPoints <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
:DISPlay:EVM:IQPoints:OFFSet <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
:DISPlay:EVM:IQPoints:OFFSet? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
:DISPlay:EVM:IQPType VCONstln|VECTor|CONStln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
:DISPlay:EVM:IQPType? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
:DISPlay:EVM:ROTation OFF|ON|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
:DISPlay:EVM:ROTation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
:DISPlay:EVM:VIEW[:SELect] POLar|ERRor|PGRaph|SUMMary|NRESults . . . . . . . . . . . . . . . . . . . . . . . . . . 142
:DISPlay:EVM:VIEW[:SELect]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8
List of Commands
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:X[:SCALe]:COUPle 0|1|OFF|ON . . . . . . . . . . . . . . . . . . . 135
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:X[:SCALe]:COUPle? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:X[:SCALe]:PDIVision <real>. . . . . . . . . . . . . . . . . . . . . . 131
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:X[:SCALe]:PDIVision?. . . . . . . . . . . . . . . . . . . . . . . . . . . 131
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:X[:SCALe]:RLEVel <real>. . . . . . . . . . . . . . . . . . . . . . . . 132
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:X[:SCALe]:RLEVel? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:X[:SCALe]:RPOSition LEFT|CENTer|RIGHt . . . . . . . . . 134
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:X[:SCALe]:RPOSition? . . . . . . . . . . . . . . . . . . . . . . . . . . 134
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:COUPle 0|1|OFF|ON . . . . . . . . . . . . . . . . . . . 140
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:COUPle? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:PDIVision <real>. . . . . . . . . . . . . . . . . . . . . . 136
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:PDIVision?. . . . . . . . . . . . . . . . . . . . . . . . . . . 136
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:RLEVel <real>. . . . . . . . . . . . . . . . . . . . . . . . 138
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:RLEVel? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:RPOSition TOP|CENTer|BOTTom . . . . . . . . 139
:DISPlay:EVM[1]|2|3|4|5:WINDow[1]|2|3|4:TRACe:Y[:SCALe]:RPOSition? . . . . . . . . . . . . . . . . . . . . . . . . . . 139
:FETCh:CDPower[n]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
:FETCh:EVM[n]?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
:INITiate:CDPower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
:INITiate:CONTinuous OFF|ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
:INITiate:EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
:INITiate:PAUSe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
List of Commands
:INITiate:RESTart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
:INITiate:RESume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
:INSTrument:NSELect 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
:INSTrument:NSELect? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
:INSTrument[:SELect] SA|TDDEMOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
:INSTrument[:SELect]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
:MEASure:CDPower[n]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
:MEASure:EVM[n]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
:READ:CDPower[n]?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9
List of Commands
List of Commands
:READ:EVM[n]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
[:SENSe]:CDPower:ANALysis:SUBFrame <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
[:SENSe]:CDPower:ANALysis:SUBFrame? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
[:SENSe]:CDPower:CDCHannel <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
[:SENSe]:CDPower:CDCHannel?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
[:SENSe]:CDPower:CINTerval <integer>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
[:SENSe]:CDPower:CINTerval? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
[:SENSe]:CDPower:SCLength <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
[:SENSe]:CDPower:SCLength? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
[:SENSe]:CDPower:TRIGger:SOURce IMMediate|IF|EXTernal[1]|EXTernal2|RFBurst . . . . . . . . . . . . . . . . . . 125
[:SENSe]:CDPower:TRIGger:SOURce?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
[:SENSe]:CORRection:BTS[:RF]:LOSS < real> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
[:SENSe]:CORRection:BTS[:RF]:LOSS?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
[:SENSe]:CORRection:MS[:RF]:LOSS <real>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
[:SENSe]:CORRection:MS[:RF]:LOSS? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
[:SENSe]:EVM:ANALysis:SUBFrame <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
[:SENSe]:EVM:ANALysis:SUBFrame? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
[:SENSe]:EVM:AVERage:COUNt <integer> [:SENSe]:EVM:AVERage:COUNt? . . . . . . . . . . . . . . . . . . . . . . 142
[:SENSe]:EVM:AVERage:TCONtrol REP|EXP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
[:SENSe]:EVM:AVERage:TCONtrol? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
[:SENSe]:EVM:AVERage[:STATe] OFF|ON|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
[:SENSe]:EVM:AVERage[:STATe]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
[:SENSe]:EVM:CINTerval <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
[:SENSe]:EVM:CINTerval? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
[:SENSe]:EVM:TRIGger:SOURce IMMediate|IF| EXTernal[1]|EXTernal2|RFBurst . . . . . . . . . . . . . . . . . . . . . 148
[:SENSe]:EVM:TRIGger:SOURce? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
[:SENSe]:FREQuency[:CENTer] <freq> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
[:SENSe]:FREQuency[:CENTer]:STEP <freq> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
[:SENSe]:FREQuency[:CENTer]:STEP:AUTO OFF|ON|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
[:SENSe]:FREQuency[:CENTer]:STEP:AUTO? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
[:SENSe]:FREQuency[:CENTer]:STEP? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10
List of Commands
[:SENSe]:FREQuency[:CENTer]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
[:SENSe]:POWer:RF:ATTenuation <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
[:SENSe]:POWer:RF:ATTenuation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
[:SENSe]:POWer:RF:GAIN[:STATe] ON|OFF|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
[:SENSe]:POWer:RF:GAIN[:STATe]?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
[:SENSe]:POWer:RF:RANGe:AUTO OFF|ON|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
[:SENSe]:POWer:RF:RANGe:AUTO? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
[:SENSe]:POWer[:RF]:RANGe[:UPPer] <power> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
[:SENSe]:POWer[:RF]:RANGe[:UPPer]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
[:SENSe]:RADio:CONFigure:HSDPa[:STATe] OFF|ON|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
[:SENSe]:RADio:CONFigure:HSDPa[:STATe]?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
[:SENSe]:RADio:DEVice BTS|MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
[:SENSe]:RADio:DEVice?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
[:SENSe]:TDEMod:ALPHa <real> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
[:SENSe]:TDEMod:ALPHa? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
[:SENSe]:TDEMod:CDCHannel <integer>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
[:SENSe]:TDEMod:CDCHannel:ACTive <integer>,<integer>,OFF|ON|0|1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
[:SENSe]:TDEMod:CDCHannel:DETection:AUTO 1|0|ON|OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
[:SENSe]:TDEMod:CDCHannel:DETection:AUTO? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
[:SENSe]:TDEMod:CDCHannel:SELect SINGle|ALL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
[:SENSe]:TDEMod:CDCHannel:SELect?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
[:SENSe]:TDEMod:CDCHannel? <integer>,<integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
List of Commands
[:SENSe]:TDEMod:CDCHannel? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
[:SENSe]:TDEMod:EVMResult:IQOFfset STANard|EXClude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
[:SENSe]:TDEMod:EVMResult:IQOFfset? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
[:SENSe]:TDEMod:MCARier OFF|ON|0|1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
[:SENSe]:TDEMod:MCARier? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
[:SENSe]:TDEMod:MODFormat <integer>,<integer>,AUTO|QPSK|PSK8|QAM16|QAM64 . . . . . . . . . . . . . . . 76
[:SENSe]:TDEMod:MODFormat? <integer>,<integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
[:SENSe]:TDEMod:MODScheme:AUTO 1|0|ON|OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
[:SENSe]:TDEMod:MODScheme:AUTO? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
11
List of Commands
List of Commands
[:SENSe]:TDEMod:MSHift:NUMBer <integer>,<integer>,<integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
[:SENSe]:TDEMod:MSHift:NUMBer? <integer>,<integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
[:SENSe]:TDEMod:MXUSer:TS0 <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
[:SENSe]:TDEMod:MXUSer:TS0?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
[:SENSe]:TDEMod:MXUSer:TS1 <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
[:SENSe]:TDEMod:MXUSer:TS1?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
[:SENSe]:TDEMod:MXUSer:TS2 <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
[:SENSe]:TDEMod:MXUSer:TS2?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
[:SENSe]:TDEMod:MXUSer:TS3 <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
[:SENSe]:TDEMod:MXUSer:TS3?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
[:SENSe]:TDEMod:MXUSer:TS4 <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
[:SENSe]:TDEMod:MXUSer:TS4?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
[:SENSe]:TDEMod:MXUSer:TS5 <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
[:SENSe]:TDEMod:MXUSer:TS5?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
[:SENSe]:TDEMod:MXUSer:TS6 <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
[:SENSe]:TDEMod:MXUSer:TS6?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
[:SENSe]:TDEMod:NORMalize 1|0|ON|OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
[:SENSe]:TDEMod:NORMalize? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
[:SENSe]:TDEMod:PHASe:SHIFt <integer>,<integer>,<float> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
[:SENSe]:TDEMod:PHASe:SHIFt? <integer>,<integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
[:SENSe]:TDEMod:SCLength <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
[:SENSe]:TDEMod:SCLength?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
[:SENSe]:TDEMod:SCODe <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
[:SENSe]:TDEMod:SCODe?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
[:SENSe]:TDEMod:SLOT TS0|TS1|TS2|TS3|TS4|TS5|TS6|UPTS|DPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
[:SENSe]:TDEMod:SLOT? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
[:SENSe]:TDEMod:SPECtrum:MIRRor NORMal|INVert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
[:SENSe]:TDEMod:SPECtrum:MIRRor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
[:SENSe]:TDEMod:SREFerence PILot|MIDamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
[:SENSe]:TDEMod:SREFerence? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
[:SENSe]:TDEMod:SYNC PILot|MIDamble|TRIGger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
12
List of Commands
[:SENSe]:TDEMod:SYNC?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
[:SENSe]:TDEMod:THReshold:CHANnel <float>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
[:SENSe]:TDEMod:THReshold:CHANnel:AUTO ON|OFF|0|1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
[:SENSe]:TDEMod:THReshold:CHANnel:AUTO? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
[:SENSe]:TDEMod:THReshold:CHANnel? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
[:SENSe]:TDEMod:THReshold:SLOT <float> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
[:SENSe]:TDEMod:THReshold:SLOT? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
[:SENSe]:TDEMod:TREFerence DPTS|UPTS|TRIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
[:SENSe]:TDEMod:TREFerence? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
[:SENSe]:TDEMod:ULSPoint <integer>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
[:SENSe]:TDEMod:ULSPoint? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
[:SENSe]:TDEMod:UPTS <integer> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
[:SENSe]:TDEMod:UPTS? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
List of Commands
13
List of Commands
List of Commands
14

1 Introduction

This chapter provides overall information on the TD-SCDMA communications system Options 212 and 213, and describes TD-SCDMA modulation analysis measurements made by the analyzer. Installation instructions for adding this option to your analyzer are provided in this section, in case you purchased this option separately.
Introduction
15
Introduction

What Does the Agilent PSA Series Option 212 and 213 Do?

What Does the Agilent PSA Series Option 212 and 213 Do?
This instrument can be used for testing a TD-SCDMA transmitter, including measuring HSPA/8PSK signals, adhering to the following standards documents:
— 3GPP TS 25.223 Spreading and modulation (TDD) (Release 7)
— 3GPP TS 25.308 High Speed Downlink Packet Access (HSDPA) (Release 7)
TD-SCDMA is a wireless multiple access technology, which combines aspects of code division multiple access (CDMA) and time division multiple access (TDMA).
The PSA Series Options 212 and 213 provides a one-analyzer solution to perform essential demodulation measurements on complex TD-SCDMA signals.
Option 212 performs modulation analysis measurements and quickly quantifies modulation quality and associated parameters. Results such as composite EVM, constellation diagram, and code domain power are available.
Introduction
Option 213 is a sub-option to Option 212 used to measure HSPA and 8PSK signals and requires Option 212. All the measurements, results, and views available in Option 212 are still available when Option 213 is enabled.
Option B7J (Digital Demodulation Hardware) is required and either Option 1DS (RF pre-amplifier, up to 3 GHz) or Option 110 (mw/mmw pre-amplifier, above 3 GHz) is highly recommended.
Using the PSA and Option 212 and 213, you can make the following measurements:
“Code Domain Measurements” on page 29
“Modulation Accuracy (Composite EVM) Measurements” on page 43
“Spectrum Analysis Measurement (Frequency Domain)” see PSA Basic Guide
“Waveform Measurement (Time Domain)” see PSA Basic Guide
and test signals that conform to the following standard formats:
QPSK
8PSK
16QAM
64QAM
You can use the PSA with Option 212 and 213 to automatically make measurements using the measurement methods and limits defined in the standards documents. You may perform measurements on both uplink and downlink signals. Using the Phase Shift functionality, the measurements display detailed results that allow you to better analyze TD-SCDMA system performance. You may alter the measurement parameters for specialized analysis.
16 Chapter 1
Introduction
What Does the Agilent PSA Series Option 212 and 213 Do?
For infrastructure test, the instrument will test transmitters of base stations in a non-interfering manner by means of a coupler or power splitter. For subscriber unit test, mobiles may be measured by way of a splitter or coupler when the mobile is actively linked to a base station or base station simulator. An alternative method of mobile measurement requires that the mobile be placed in a special test mode.
For more information on individual measurements, see Chapter 2 , “Making
Measurements,” on page 25.
Introduction
Chapter 1 17
Introduction

Installing Optional Measurement Personalities

Installing Optional Measurement Personalities
When you install a measurement personality, you need to follow a three step process:
1. Determine whether your memory capacity is sufficient to contain all the options you want to load. If not, decide which options you want to install now, and consider upgrading your memory. Details follow in “Do You Have Enough
Memory to Load All Your Personality Options?” on page 18.
2. Install the measurement personality firmware into the instrument memory. Details follow in “Loading an Optional Measurement Personality” on page 22.
3. Enter a license key that activates the measurement personality. Details follow in “Obtaining and Installing a License Key” on page 22.
Adding measurement personalities requires the purchase of an upgrade kit for the desired option. The upgrade kit contains the measurement personality firmware and an entitlement certificate that is used to generate a license key from the internet website. A separate license key is required for each option on a specific instrument serial number and host ID.
Introduction
For the latest information on Agilent Spectrum Analyzer options and upgrade kits, visit the following Internet URL:
http://www.agilent.com/find/sa_upgrades

Do You Have Enough Memory to Load All Your Personality Options?

If you do not have memory limitations then you can skip ahead to the next section
“Loading an Optional Measurement Personality” on page 22. If after installing
your options you get error messages relating to memory issues, you can return to this section to learn more about how to optimize your configuration.
If you have 64 MBytes of memory installed in your instrument, you should have enough memory to install at least four optional personalities, with plenty of memory for data and states.
The optional measurement personalities require different amounts of memory. So the number of personalities that you can load varies. This is also impacted by how much data you need to save. If you are having memory errors you must swap the applications in/out of memory as needed. If you only have 48 MBytes of memory, you can upgrade your hardware to 64 MBytes.
Additional memory can be added to any PSA Series analyzer by installing Option
115. With this option installed, you can install all currently available measurement
personalities in your analyzer and still have memory space to store more state and trace files than would otherwise be possible.
To see the size of your installed memory for PSA Series Spectrum Analyzers:
18 Chapter 1
Introduction
Installing Optional Measurement Personalities
1. Ensure that the spectrum analyzer is in spectrum analyzer mode because this can affect the screen size.
2. Press
System, More, Show Hdwr.
3. Read Flash Memory size in the table. If Option 115 is installed, the table will also show Compact Flash Type and Compact Flash Size.
PSA Flash Memory Size
64 Mbytes 32.5 MBytes 30.0 MBytes
48 Mbytes 16.9 MBytes 14.3 MBytes
PSA Compact Flash Memory Size
512 Mbytes (Opt. 115) 512 MBytes
Available Memory Without Option B7J and Option 122 or 140
Available Additional Memory for Measurement Personalities
Available Memory With Option B7J and Option 122 or 140
If you have 48 MBytes of memory, and you want to install more than 3 optional personalities, you may need to manage your memory resources. The following section, “How to Predict Your Memory Requirements” on page 20, will help you decide how to configure your installed options to provide optimal operation.
Introduction
Chapter 1 19
Introduction
Installing Optional Measurement Personalities

How to Predict Your Memory Requirements

If you plan to install many optional personalities, you should review your memory requirements, so you can determine whether you have enough memory (unless you have a Option 115). There is an Agilent “Memory Calculator” available online that can help you do this, or you can make a calculated approximation using the information that follows. You will need to know your instrument’s installed memory size as determined in the previous section and then select your desired applications.
NOTE If you have Option 115, there is adequate memory to install all of the available
optional personalities in your instrument.
See: http://www.agilent.com/find/psa_firmware
Select the “Memory Calculator” link. You can try any combination of available personalities to see if your desired configuration is compatible with your installed memory.
NOTE After loading all your optional measurement personalities, you should have a
reserve of ~2 MBytes memory to facilitate mode switching. Less available memory will increase mode switching time. For example, if you employ excessive free memory by saving files of states and/or data, your mode switching time can increase to more than a minute.
Introduction
You can manually estimate your total memory requirements by adding up the memory allocations described in the following steps. Compare the desired total with the available memory that you identified in the previous section.
1. Program memory - Select option requirements from the table “Measurement
Personality Options and Memory Required” on page 21.
2. shared libraries require 7.72 MBytes
3. recommended mode swap space is 2 MBytes
4. Screens - .gif files need 20-25 kB each
5. State memory - State file sizes range from 21 kB for SA mode to 40 kB for W-CDMA. The state of every mode accessed since power-on will be saved in the state file. File sizes can exceed 150 kB each when several modes are accessed, for each state file saved.
TIP State memory retains settings for all states accessed before the Save State
command. To reduce this usage to a minimum, reduce the modes accessed before
Save State is executed. You can set the PSA to boot into a selected mode by
the accessing the desired mode, then pressing the
System, Power On/Preset, Power On
keys and toggle the setting to Last.
20 Chapter 1
Installing Optional Measurement Personalities
Measurement Personality Options and Memory Required
Introduction
Personality Options
for PSA Series Spectrum Analyzers
a
Option File Size
(PSA Rev: A.10)
cdmaOne measurement personality BAC 1.91 Mbytes
NADC and PDC measurement personalities (not
BAE 2.43 Mbytes
available separately)
W-CDMA or W-CDMA, HSDPA, HSUPA
BAF, 210
5.38 Mbytes
measurement personality
cdma2000 or cdma2000 w/ 1xEV-DV measurement personality
1xEV-DO measurement personality 204
GSM (with EDGE) measurement personality 202
Shared measurement library
b
Phase Noise measurement personality 226
Noise Figure measurement personality 219
Basic measurement personality with digital demod hardware
Programming Code Compatibility Suited (8560
B78, 214
4.00 Mbytes
5.61 Mbytes
3.56 Mbytes
n/a 7.72 Mbytes
2.82 Mbytes
4.68 Mbytes
B7J Cannot be deleted
(2.64 Mbytes)
266
1.18 Mbytes
Series, 8590 Series, and 8566/8568)
b
b
b
b
c
c
c
TD-SCDMA Power measurement personality 211
TD-SCDMA Modulation Analysis or TD-SCDMA
212, 213 1.82 Mbytes
5.47 Mbytes
c
Modulation Analysis w/ HSPA measurement personality
Flexible Digital Modulation Analysis 241
WLAN measurement personality 217
External Source Control 215
Measuring Receiver Personality
233
2.11 Mbytes
3.24 Mbytes
0.72 Mbytes
2.91 Mbytes
b
b
c
b
(available with Option 23A - Trigger support for AM/FM/PM and Option 23B - CCITT filter)
EMC Analyzer
239
4.06 Mbytes
b
a. Available as of the print date of this guide. b. Many PSA Series personality options use a 7.72 Mbyte shared measurement library. If
you are loading multiple personalities that use this library, you only need to add this
memory allocation once. c. Shared measurement library allocation not required. d. This is a no charge option that does not require a license key.
Introduction
Chapter 1 21
Introduction
Installing Optional Measurement Personalities
Memory Upgrade Kits
The PSA 64 MByte Memory Upgrade kit part number is E4440AU-ANE. The PSA Compact Flash Upgrade kit part number is E4440AU-115.
For more information about memory upgrade kits contact your local sales/service office, or see:
http://www.agilent.com/find/sa_upgrades

Loading an Optional Measurement Personality

You must use a PC to load the desired personality option into the instrument memory. Loading can be done from a firmware CD-ROM or by downloading the update program from the internet. An automatic loading program comes with the files and runs from your PC.
You can check the Agilent internet website for the latest firmware versions available for downloading:
For PSA, see http://www.agilent.com/find/psa_firmware
Introduction
NOTE When you add a new option, or update an existing option, you will get the updated
versions of all your current options as they are all reloaded simultaneously. This process may also require you to update the instrument core firmware so that it is compatible with the new option.
Depending on your installed hardware memory, you may not be able to fit all of the available measurement personalities in instrument memory at the same time. You may need to delete an existing option file from memory and load the one you want. Use the automatic update program that is provided with the files. Refer to the table showing “Measurement Personality Options and Memory Required” on
page 21. The approximate memory requirements for the options are listed in this
table. These numbers are worst case examples. Some options share components and libraries, therefore the total memory usage of multiple options may not be exactly equal to the combined total.

Obtaining and Installing a License Key

If you purchase an optional personality that requires installation, you will receive an “Entitlement Certificate” which may be redeemed for a license key specific to one instrument. Follow the instructions that accompany the certificate to obtain your license key.
To install a license key for the selected personality option, use the following procedure:
NOTE You can also use this procedure to reinstall a license key that has been deleted
during an uninstall process, or lost due to a memory failure.
1. Press
System, More, More, Licensing, Option to accesses the alpha editor. Use
this alpha editor to enter letters (upper-case), and the front-panel numeric keys
22 Chapter 1
Introduction
Installing Optional Measurement Personalities
to enter numbers for the option designation. You will validate your option entry in the active function area of the display. Then, press the
Enter key.
2. Press
License Key to enter the letters and digits of your license key. You will
validate your license key entry in the active function area of the display. Then, press the
3. Press the
Enter key.
Activate License key.

Viewing a License Key

Measurement personalities purchased with your instrument have been installed and activated at the factory before shipment. The instrument requires a License Key unique to every measurement personality purchased. The license key is a hexadecimal number specific to your measurement personality, instrument serial number and host ID. It enables you to install, or reactivate that particular personality.
Use the following procedure to display the license key unique to your personality option that is already installed in your instrument:
System, More, More, Licensing, Show License. The System, Personality
Press key displays the personalities loaded, version information, and whether the personality is licensed.
NOTE You will want to keep a copy of your license key in a secure location. Press System,
More, then Licensing, Show License, and print out a copy of the display that shows
the license numbers. If you should lose your license key, call your nearest Agilent Technologies service or sales office for assistance.

Using the Delete License Key

This key will make the option unavailable for use, but will not delete it from memory. Write down the 12-digit license key for the option before you delete it. If you want to use that measurement personality later, you will need the license key to reactivate the personality firmware.
NOTE Using the Delete License key does not remove the personality from the instrument
memory, and does not free memory to be available to install another option. If you need to free memory to install another option, refer to the instructions for loading firmware updates located at the URL: http://www.agilent.com/find/psa/
1. Press
2. Press
System, More, More, Licensing, Option. Pressing the Option key will
activate the alpha editor menu. Use the alpha editor to enter the letters (upper-case) and the front-panel numeric keyboard to enter the digits (if required) for the option, then press the
Enter key. As you enter the option, you
will see your entry in the active function area of the display.
Delete License to remove the license key from memory.
Introduction
Chapter 1 23
Introduction
Installing Optional Measurement Personalities

Ordering Optional Measurement Personalities

When you order a personality option, you will receive an entitlement certificate. Then you will need to go to the web site to redeem your entitlement certificate for a license key. You will need to provide your instrument serial number and host ID, and the entitlement certificate number.
Required Information: Front Panel Key Path:
Model #: (Ex. E4440A)
Introduction
Host ID: __________________
Instrument Serial Number: __________________
System, Show System
System, Show System
24 Chapter 1

2 Making Measurements

This chapter describes procedures used for making measurements of TD-SCDMA (3GPP) signals from either a base station (BTS) or a mobile station (MS). Instructions to set up and perform the measurements are provided, and examples of TD-SCDMA Modulation Analysis measurement results are shown.
Making Measurements
25
Making Measurements

TD-SCDMA Measurements

TD-SCDMA Measurements
This chapter begins with instructions common to all measurements, and then details TD-SCDMA Modulation Analysis measurements available by pressing the
MEASURE key.
For more information on front panel keys specific to this measurement personality, refer to “Key and SCPI Reference” on page 55, and for keys not described in this manual, refer to the PSA User’s and Programmer’s Reference manual.
For information specific to individual measurements refer to “Concepts” on
page 149 or the sections at the page numbers below.
“Code Domain Measurements” on page 29
“Modulation Accuracy (Composite EVM) Measurements” on page 42
The measurements described in this chapter are referred to as one-button measurements. When you press the key to select a measurement, it becomes the active measurement, using settings and a display unique to that measurement. Data acquisition automatically begins when trigger requirements, if any, are met.
Making Measurements
26 Chapter 2
Making Measurements

Setting up and Making a Measurement

Setting up and Making a Measurement

Making the Initial Signal Connection

CAUTION Before connecting a signal to the instrument, make sure the instrument can safely
accept the signal level provided. The signal level limits are marked next to the connectors on the front panel.
See the menu map, “Mode Setup Input Key Flow (1 of 2)” on page 185, and key descriptions, “Input” on page 60, for details on selecting input ports and setting internal attenuation to prevent overloading the instrument.
The “Input” on page 60 also provides details of
Int Preamp operation.

Using Instrument Mode and Measurement Presets

If you want to set your current measurement personality to a known, factory default state, press
Preset. This initializes the instrument by returning the mode
setup and all of the measurement setups in the mode to the factory default parameters.
NOTE Pressing the Preset key may switch instrument modes if you have set the Power
On/Preset function Preset Type to User or Factory.
To preset only the parameters that are specific to an active, selected measurement, press
Meas Setup, then Restore Meas Defaults. Restore Meas Defaults will return all
the measurement setup parameters to the factory defaults, but only for the currently selected measurement. This key may not appear on the first page of the Meas Setup menu. If it is not visible on the first page of the menu, press
More until
the key is available.

The 3 Steps to Set Up and Make Measurements

All measurements need to be set up in 3 steps: first at the Mode level, second at the Measurement level, then finally the result display may be adjusted.
1. Select and Set Up the Mode
MODE - All licensed, installed Modes available are shown.
Press Press
TD-SCDMA Modulation, or to make measurements of signals with
non-standard formats, select
Press
Mode Setup - Make any required adjustments to the mode settings. These
Basic mode.
settings apply to all measurement in the mode.
2. Select and Set Up the Measurement
Press
MEASURE - Select a specific measurement to be performed (e.g. Mod
Chapter 2 27
Making Measurements
Making Measurements
Setting up and Making a Measurement
Accuracy (Composite EVM), or Code Domain. The measurement begins as soon
as any required trigger conditions are met. The resulting data is shown on the display or is available for export.
Press
Meas Setup - Make any adjustments as required to the selected
measurement settings. The settings only apply to this measurement.
3. Select and Set Up a View of the Results
Press
Trace/View - Select a display format for the current measurement data.
Depending on the mode and measurement selected, other graphical and tabular data presentations may be available.
AMPLITUDE Y-Scale adjustments may
also be made now.
NOTE A setting may be reset at any time, and will be in effect on the next measurement
cycle or View.
Step Primary Key Setup Keys Related Keys
1. Select & set up a Mode
2. Select & set up a Measurement
3. Select & set up a View of the Results
MODE Mode Setup,
Input/Output, FREQUENCY Channel
MEASURE Meas Setup Meas Control, Restart
Trace/View AMPLITUDE Y Scale,
Display
,
Next Window, Zoom
System
File
, Save, Print, Print
Setup
, Marker
Making Measurements
28 Chapter 2
Making Measurements

Code Domain Measurements

Code Domain Measurements
This section explains how to make a code domain measurement on TD-SCDMA (3GPP) MS and BTS. This is the measurement of the spread code channels across composite RF channels. The code power may be measured relative to the total power within the 1.28 MHz channel bandwidth, or absolutely, in units of power.
Code Domain measurement examples using a TD-SCDMA (UL) signal are shown in this section.
NOTE Before activating a measurement, make sure the mode setup and frequency
channel parameters are set to the desired settings. Refer to the sections “Mode” on
page 65 and “FREQUENCY/Channel key” on page 58.

One-Button MS Measurement Procedure

Step 1. Configure the Unit Under Test (UUT) as follows.
The mobile station (MS) under test has to be set to transmit the one RF carrier remotely through the system controller. This transmitting signal is connected to the instrument’s RF input port. Connect the equipment as shown.
Figure 2-1 Code Domain Measurement System
a. Using the appropriate cables, adapters, and circulator, connect the output signal
of the MS to the RF input of the instrument.
Making Measurements
b. Connect the base transmission station simulator or signal generator to the MS
through the circulator to initiate a link constructed with the sync and pilot channels, if required.
c. Connect a BNC cable between the 10 MHz OUT port of the signal generator
Chapter 2 29
Making Measurements
Code Domain Measurements
and the EXT REF IN port of the instrument.
d. Connect the system controller to the MS through the serial bus cable to control
the MS operation.
Step 2. From the base transmission station simulator and/or the system controller, perform
all of the call acquisition functions required for the MS to transmit the RF signal as follows:
Frequency: 2017.2 MHz
Switch Point: 1, Uplink
Scramble Code: 0
Spread Code Length: 8
Signal Amplitude: -20 dBm
Step 3. If you want to set the current measurement personality mode to a known, factory
default state, ensure that the preset type is set to Mode and press
Preset.
NOTE To preset only the parameter settings that are specific to the selected measurement,
Meas Setup and Restore Meas Defaults. (The Restore Meas Defaults key may
press not be on the first page of the menu. If not, press More until the key is available.)
Step 4. Press
MODE, TD-SCDMA Modulation to enable the TD-SCDMA modulation
analysis measurements.
NOTE If you have installed Option 213, you need to press MODE, TD-SCDMA
Modulation with HSPA
to enable the TD-SCDMA modulation analysis with
HSPA/8PSK measurements.
The desired mode key may not be on the first page of the menu. If not, press
More
until the key is available.
Step 5. Press
Step 6. Press
Step 7. Press
Mode Setup, Radio, Device to toggle the device to MS.
Mode Setup, Demod, Analysis TimeSlot to select a timeslot to be measured.
Mode Setup, Demod, More, Timing Ref to select a timing reference.
For downlink signals, select
For uplink signals, select
You can also select
Trigger for either downlink or uplink signals. Make sure the
DwPTS;
UwPTS;
trigger source has been correctly set up.
Making Measurements
Step 8. Press
frequency.
Step 9. Press
Depending on the current settings of
30 Chapter 2
FREQUENCY Channel, then use the numeric keypad to set the center
MEASURE, Code Domain to initiate the code domain measurement.
Meas Control, the instrument will begin
making the selected measurements.
Making Measurements
Code Domain Measurements
To make measurements repeatedly, press Meas Control from
Single to Cont.
Meas Control, Measure to change the
The Code Domain Power measurement result should look like Figure 2-2. The graphical window is displayed with a text window below it. The text window shows the total power level along with the relative power levels of the various channels.
Figure 2-2 Code Domain Measurement Result - CDP Graph & Metrics (Default) View
Step 10. Press
domain error with a summary results window as shown below:
Trace/View, CDE Graph & Metrics to display a combination view of the code
Making Measurements
Chapter 2 31
Making Measurements
Code Domain Measurements
Figure 2-3 Code Domain Measurement Result - CDE Graph & Metrics View
Step 11. Press
Trace/View, I/Q Error (Quad View) to display a combination view of the
magnitude error vs. time, phase error vs. time, and EVM vs. time, together with the modulation summary results window as shown below:
Figure 2-4 Code Domain Measurement Result - I/Q Error Quad View
Making Measurements
Step 12. Press
power, symbol power, and I/Q polar vector, together with a summary results window as shown below:
32 Chapter 2
Trace/View, Code Domain to display a combination view of the code domain
Figure 2-5 Code Domain Measurement Result - Code Domain
Making Measurements
Code Domain Measurements
Step 13. Press
Trac e/ Vie w, Demod Bits to display a combination view of the code domain
power, symbol power, and the I/Q demodulated bit stream data for the symbol power slots selected by the measurement interval and measurement offset parameters.
Figure 2-6 Code Domain Measurement Result - Demod Bits View
Making Measurements
The Demod Bits View displays the same Code Domain Power and Symbol Power windows shown in Figure 2-5 on page 33
The demodulated bit stream displayed is the data contained in the Measurement Interval, slot number. For more details of these adjustments see “Code Domain
Measurement” on page 103
Chapter 2 33
Making Measurements
Code Domain Measurements
Step 14. Press Trace/View, Results Metrics to display a numeric result metrics window.
Figure 2-7 Code Domain Measurement Result - Numeric Results
Step 15. You may need to change some of the display settings. These changes should not
affect the measurement results, but will affect how you view the measurement results on the instrument display.
AMPLITUDE Y Scale key accesses the menu to set the desired horizontal scale
The and associated settings:
Scale/Div, Ref Value, Ref Position and Scale Coupling
The X/Scale key accesses the menu to set the desired vertical scale and associated settings:
The
Scale/Div, Ref Value and Ref Position.
Display key accesses the menu to set the desired settings. For more
information, refer to “Code Domain Display Selection Key Flow” on page 188.
Step 16. If you want to change the measurement parameters from their default condition so
that you can make a customized measurement, press
Meas Setup to see the
available keys. Then, for additional information on using the available keys and customizing your measurement, refer to “Code Domain Measurement” on page
103. For additional information on the measurement concepts, refer to “Code Domain Measurement Concepts” on page 162.
If you have a problem, and get an error message, see the “Instrument Messages and Functional Tests” manual.

One-Button BTS Measurement Procedure

Making Measurements
Step 1. Configure the Unit Under Test (UUT) as follows.
The base transmission station (BTS) under test has to be set to transmit one RF carrier remotely through the system controller. This transmitting signal is connected to the instrument’s RF input port. Connect the equipment as shown.
34 Chapter 2
Figure 2-8 Code Domain Measurement System
Making Measurements
Code Domain Measurements
a. Using the appropriate amplifier, circulator, bandpass filter, combiner, cables,
and adapters, connect the unmodulated carrier signal from the signal generator to the output connector of the BTS.
b. Connect the circulator output signal to the RF input port of the instrument
through the attenuator.
c. Connect a BNC cable between the 10 MHz OUT port of the signal generator
and the EXT REF IN port of the instrument.
d. Connect the system controller to the BTS through the serial bus cable.
Step 2. From the base transmission station simulator and/or the system controller, perform
all of the call acquisition functions required for the BTS to transmit the RF signal as follows:
Frequency: 2017.2 MHz
Switch Point: 1, Downlink
Scramble Code: 0
Spread Code Length: 8
Signal Amplitude: -20 dBm
Step 3. Enable the TD-SCDMA measurement personality mode by pressing
TD-SCDMA Modulation. The desired mode key may not be on the first page of the
menu. If not, press
More until the key is available.
MODE and
Making Measurements
NOTE If you have installed Option 213, you need to press MODE, TD-SCDMA
Chapter 2 35
Making Measurements
Code Domain Measurements
Modulation with HSPA keys to enable the TD-SCDMA modulation analysis with
HSPA/8PSK measurements.
Step 4. If you want to set the current measurement personality mode to a known, factory
default state, ensure that the preset type is set to Mode, and press
NOTE To preset only the parameter settings that are specific to the selected measurement,
press
Meas Setup and Restore Meas Defaults. (The Restore Meas Defaults key may
Preset.
not be on the first page of the menu. If not, press More until the key is available.)
Step 5. Toggle the device to
Step 6. Press the
Mode Setup, Demod, Analysis TimeSlot to select a timeslot to be
BTS by pressing Mode Setup, Radio, Device.
measured.
Step 7. Press the
For downlink signals, select
For uplink signals, select
You can also select
Mode Setup, Demod, More, Timing Ref to select a timing reference.
DwPTS;
UwPTS;
Trigger for either downlink or uplink signals. Make sure the
trigger source has been correctly setup.
Step 8. Set the desired center frequency by pressing
Freq
, then use the numeric keypad to enter the frequency of interest.
Step 9. Press
MEASURE, Code Domain to initiate the code domain measurement.
Depending on the current settings of
Meas Control, the instrument will begin
making the selected measurements.
To make measurements repeatedly, press the change the Meas Control from
Single to Cont.
The Code Domain Power measurement result should look like Figure 2-9. The graphical window is displayed with a text window below it. The text window shows the total power level along with the relative power levels of the various channels.
FREQUENCY Channel and Center
Meas Control, Measure keys to
Making Measurements
36 Chapter 2
Making Measurements
Code Domain Measurements
Figure 2-9 Code Domain Measurement Result - CDP Graph & Metrics (Default) View
Step 10. Press the
Trace/View, CDE Graph & Metrics key to display a combination view of
the code domain error with a summary results window as shown below:
Figure 2-10 Code Domain Measurement Result - CDE Graph & Metrics View
Making Measurements
Chapter 2 37
Making Measurements
Code Domain Measurements
Step 11. Press the Trace/View, I/Q Error (Quad View) keys to display a combination view of
the magnitude error vs. time, phase error vs. time, and EVM vs. time, together with the modulation summary results window as shown below:
Figure 2-11 Code Domain Measurement Result - I/Q Error Quad View
Step 12. Press
Trace/View, Code Domain to display a combination view of the code domain
power, symbol power, and I/Q polar vector, with a summary results window as shown below:
Figure 2-12 Code Domain Measurement Result - Code Domain
Making Measurements
Step 13. Press
power, symbol power, and the I/Q demodulated bit stream data for the symbol
38 Chapter 2
Trac e/ Vie w, Demod Bits to display a combination view of the code domain
Code Domain Measurements
power slots selected by the measurement interval and measurement offset parameters.
Figure 2-13 Code Domain Measurement Result - Demod Bits View
Making Measurements
The Demod Bits View displays the same Code Domain Power and Symbol Power windows shown in Figure 2-12 on page 38
The demodulated bit stream displayed is the data contained in the Measurement Interval, slot number. For more details of these adjustments see “Code Domain
Measurement” on page 103
Making Measurements
Chapter 2 39
Making Measurements
Code Domain Measurements
Step 14. Press Trace/View, Results Metrics to display a numeric result metrics window.
Figure 2-14 Code Domain Measurement Result - Numeric Results
Step 15. You may need to change some of the display settings. These changes should not
affect the measurement results, but will affect how you view the measurement results on the instrument display.
AMPLITUDE Y Scale key accesses the menu to set the desired vertical scale
The and associated settings:
Scale/Div, Ref Value, Ref Position and Scale Coupling
The X/Scale key accesses the menu to set the desired vertical scale and associated settings:
The
Scale/Div, Ref Value and Ref Position.
Display key accesses the menu to set the desired settings. For more
information, refer to “Code Domain Display Selection Key Flow” on page 188.
Step 16. If you want to change the measurement parameters from their default condition so
that you can make a customized measurement, press
Meas Setup to see the
available keys. Then, for additional information on using the available keys and customizing your measurement, refer to “Code Domain Measurement” on page
103. For additional information on the measurement concepts, refer to “Code Domain Measurement Concepts” on page 162.
If you have a problem and get an error message, refer to the “Instrument Messages and Functional Tests” manual.

Troubleshooting Hints

Making Measurements
Uncorrelated interference may cause CW interference like local oscillator feedthrough or spurs. Another cause of uncorrelated noise can be I/Q modulation impairments.
Correlated impairments can be due to the phase noise on the local oscillator in the
40 Chapter 2
Making Measurements
Code Domain Measurements
upconverter or I/Q modulator of the UUT. These will be analyzed by the code domain measurements along with the QPSK EVM measurements and others.
Poor phase error indicates a problem with one or more of the following: I/Q baseband generator, the filters, or the modulator in the transmitter circuitry of the UUT. The output amplifier in the transmitter can also create distortion that causes unacceptably high phase error. In a real system, poor phase error will reduce the ability of a receiver to correctly demodulate the received signal, especially in marginal signal conditions.
If the error code “No Pilot burst found” is shown, it means that your measurement has failed to find any active channels due to the lack of a pilot when you select
Sync Type as Pilot. The input signal may need to be adjusted to enable a
pilot.
If the error code “No active channel found” is shown, it means that no active channel is found on the analyzed timeslot, the possible reason is the power of code channels is below the Active Channel Threshold.
If the error code “Not an active slot” is shown, it means that the selected timeslot is inactive and the input signal may need to be adjusted to enable the timeslot under test.
If the error code “No sync code is found in the selected” is shown, it means that no midamble code is detected in the selected timeslot, so it fails to synchronize. Check whether the settings are correct, especially the scramble code.
If the error code “Frequency reference pilot burst not active” is shown, it means that Pilot is selected to be used as the frequency and phase reference for a specified timeslot, but the appropriate pilot timeslot (UpPTS for an uplink timeslot) is not present and the recommendation is to use Midamble as the Slot Freq Ref.
If the error code “Input overload” is shown, it means that the level of the input signal is too high, thus causing the ADC to overload. You can set the RF Input Range under the Input menu to AUTO, and then restart the measurement.
If the error code “Sync with midamble fail due to not find uplink slot” is shown, it means that no uplink timeslot is detected when you select Midamble as the Sync Ref. Midamble synchronization searches for the first Uplink traffic burst, positioning it as timeslot TS1. Synchronization will fail if there are Pilot bursts present, if TS0 is present, if there are no traffic bursts present or if the incorrect Basic Midamble Code ID is set. The synchronization algorithm may, at times, have difficulty identifying which burst is TS1 when non-contiguous traffic bursts are present.
Making Measurements
Chapter 2 41
Making Measurements

Modulation Accuracy (Composite EVM) Measurements

Modulation Accuracy (Composite EVM) Measurements
This section explains how to make the modulation accuracy (composite EVM) measurement on a TD-SCDMA (3GPP) mobile station.
NOTE Before activating a measurement, make sure the mode setup and frequency
channel parameters are set to the desired settings. Refer to the sections “Mode” on
page 65 and “FREQUENCY/Channel key” on page 58.

One-Button MS Measurements Procedure

Step 1. Configure the Unit Under Test (UUT) as follows.
The mobile station (MS) under test has to be set to transmit one RF carrier remotely through the system controller. This transmitting signal is connected to the instrument’s RF input port. Connect the equipment as shown.
Figure 2-15 Modulation Accuracy Measurement System
a. Using the appropriate cables, adapters, and circulator, connect the output signal
of the MS to the RF input of the instrument.
b. Connect the base transmission station simulator or signal generator to the MS
through the circulator to initiate a link constructed with the sync and pilot channels, if required.
Making Measurements
c. Connect a BNC cable between the 10 MHz OUT port of the signal generator
and the EXT REF IN port of the instrument.
d. Connect the system controller to the MS through the serial bus cable to control
the MS operation.
42 Chapter 2
Making Measurements
Modulation Accuracy (Composite EVM) Measurements
Step 2. Setting the MS: On either the base transmission station simulator or the system
controller, or on both, perform all of the call acquisition functions required for the MS to transmit the RF signal as follows:
Frequency: 2017.2 MHz
Switch Point: 1, Uplink
Scramble Code: 0
Spread Code Length: 8
Signal Amplitude: -20 dBm
Step 3. If you want to set the current measurement personality mode to a known, factory
default state, ensure that the preset type is set to Mode, and press
NOTE To preset only the parameter settings that are specific to the selected measurement,
Meas Setup and Restore Meas Defaults. (The Restore Meas Defaults key may
press
Preset.
not be on the first page of the menu. If not, press More until the key is available.)
Step 4. Press the
MODE, TD-SCDMA Modulation keys to enable the TD-SCDMA
modulation analysis measurements.
NOTE If you have installed Option 213, you need to press MODE, TD-SCDMA
Modulation with HSPA
to enable the TD-SCDMA modulation analysis with
HSPA/8PSK measurements.
The desired mode key may not be on the first page of the menu. If not, press until the key is available.
Step 5. Press
Step 6. Press
Step 7. Press
Mode Setup, Radio, Device to toggle the device to MS.
Mode Setup, Demod, Analysis TimeSlot to select a timeslot to be measured.
Mode Setup, Demod, More, Timing Ref to select a timing reference.
For downlink signals, select
For uplink signals, select
You can also select
Trigger for either downlink or uplink signals. Make sure the
DwPTS.
UwPTS.
trigger source has been correctly set up.
Step 8. Press
FREQUENCY Channel, then use the numeric keypad to set the center
frequency.
Step 9. Press
MEASURE, Mod Accuracy (Composite EVM) to initiate the modulation
accuracy (composite EVM) measurement.
More
Making Measurements
Depending on the current settings of
Meas Control, the instrument will begin
making the selected measurements.
To make measurements repeatedly, press
Chapter 2 43
Meas Control, Measure to change the
Making Measurements
Modulation Accuracy (Composite EVM) Measurements
Meas Control from Single to Cont.
The Mod Accuracy: I/Q Measured Polar Vector measurement result should look like Figure 2-16.
Figure 2-16 Modulation Accuracy Measurement Result - Polar Graph (Default) View
The modulation constellation is shown, along with summary data for Rho, EVM, Peak Code Domain Error, and phase and magnitude errors. For more information see “Modulation Accuracy (Composite EVM)” on page 166 in the Concepts section of this manual.
Making Measurements
44 Chapter 2
Making Measurements
Modulation Accuracy (Composite EVM) Measurements
Step 10. Press Trace/View, I/Q Error (Quad View) to display a combination view of the
magnitude error, phase error, and EVM, and the modulation results summary.
Figure 2-17 Modulation Accuracy Measurement Result - I/Q Error (Quad View)
Step 11. Press
Trace/View, Code Domain Power to display a combination view of the code
domain power graph and the metrics windows.
Figure 2-18 Modulation Accuracy Measurement Result - Code Domain Power
Making Measurements
Chapter 2 45
Making Measurements
Modulation Accuracy (Composite EVM) Measurements
Step 12. Press Trace/View, Capture Time Summary to display a combination view of the
captured data trace and metrics windows.
Figure 2-19 Modulation Accuracy Measurement Result - Capture Time Summary
Step 13. Press
Trace/View, Numeric Results to display a numeric result metrics window.
Figure 2-20 Modulation Accuracy Measurement Result - Numeric Results
Step 14. You may need to change some of the display settings. These changes should not
affect the measurement results, but will affect how you view the measurement results on the instrument display.
Making Measurements
The
AMPLITUDE Y Scale key accesses the menu to set the desired horizontal scale
46 Chapter 2
Making Measurements
Modulation Accuracy (Composite EVM) Measurements
and associated settings: Scale/Div, Ref Value, Ref Position and Scale Coupling
The X/Scale key accesses the menu to set the desired vertical scale and associated settings:
The
Scale/Div, Ref Value and Ref Position.
Display key accesses the menu to set the desired settings. For more
information, refer to “Modulation Accuracy Display Selection Key Flow” on
page 193.
Step 15. If you want to change the measurement parameters from their default condition so
that you can make a customized measurement, press
Meas Setup to see the
available keys. Then, for additional information on using the available keys and customizing your measurement, refer to “Modulation Accuracy Measurement” on
page 127. For additional information on the measurement concepts, refer to “Modulation Accuracy (Composite EVM)” on page 166.
If you have a problem, and get an error message, see the “Instrument Messages and Functional Tests” manual.

One-Button BTS Measurement Procedure

Step 1. Configure the Unit Under Test (UUT) as follows.
The base transmission station (BTS) under test has to be set to transmit one RF carrier remotely through the system controller. This transmitting signal is connected to the instrument’s RF input port. Connect the equipment as shown.
Figure 2-21 Modulation Accuracy Measurement System
Making Measurements
a. Using the appropriate amplifier, circulator, bandpass filter, combiner, cables,
and adapters, connect the unmodulated carrier signal from the signal generator to the output connector of the BTS.
b. Connect the circulator output signal to the RF input port of the instrument
through the attenuator.
Chapter 2 47
Making Measurements
Modulation Accuracy (Composite EVM) Measurements
c. Connect a BNC cable between the 10 MHz OUT port of the signal generator
and the EXT REF IN port of the instrument.
d. Connect the system controller to the BTS through the serial bus cable.
Step 2. From the base transmission station simulator and/or the system controller, perform
all of the call acquisition functions required for the BTS to transmit the RF signal as follows:
Frequency: 2017.2 MHz
Switch Point: 1, Downlink
Scramble Code: 0
Spread Code Length: 8
Signal Amplitude: -20 dBm
Step 3. If you want to set the current measurement personality mode to a known, factory
default state, ensure that the preset type is set to Mode, and then press
Preset.
NOTE To preset only the parameter settings that are specific to the selected measurement,
Meas Setup and Restore Meas Defaults. (The Restore Meas Defaults key may
press not be on the first page of the menu. If not, press More until the key is available.)
Step 4. Press
MODE, TD-SCDMA Modulation to enable the TD-SCDMA modulation
analysis measurements.
NOTE If you have installed Option 213, you need to press MODE, TD-SCDMA
Modulation with HSPA
keys to enable the TD-SCDMA modulation analysis with
HSPA/8PSK measurements.
The desired mode key may not be on the first page of the menu. If not, press
More
until the key is available.
Step 5. Press
Step 6. Press
Step 7. Press
Mode Setup, Radio, Device to toggle the device to BTS.
Mode Setup, Demod, Analysis TimeSlot to select a timeslot to be measured.
Mode Setup, Demod, More, Timing Ref to select a timing reference.
For downlink signals, select
For uplink signals, select
You can also select
Trigger for either downlink or uplink signals. Make sure the
DwPTS;
UwPTS;
trigger source has been correctly setup.
Making Measurements
Step 8. Press
frequency.
Step 9. Press
accuracy (composite EVM) measurement.
48 Chapter 2
FREQUENCY Channel, then use the numeric keypad to set the center
MEASURE, Mod Accuracy (Composite EVM) to initiate the modulation
Making Measurements
Modulation Accuracy (Composite EVM) Measurements
Depending on the current settings of Meas Control, the instrument will begin making the selected measurements.
To make measurements repeatedly, press Meas Control from
Single to Cont.
Meas Control, Measure to change the
The Mod Accuracy: I/Q Measured Polar Vector measurement result should look like Figure 2-22.
Figure 2-22 Modulation Accuracy Measurement Result - Polar Graph (Default) View
The modulation constellation is shown, along with summary data for Rho, EVM, Peak Code Domain Error, and phase and magnitude errors. For more information, see “Modulation Accuracy (Composite EVM)” on page 166 in the Concepts section of this manual.
Making Measurements
Chapter 2 49
Making Measurements
Modulation Accuracy (Composite EVM) Measurements
Step 10. Press Trace/View, I/Q Error (Quad View) to display a combination view of the
magnitude error, phase error, and EVM, and the modulation results summary.
Figure 2-23 Modulation Accuracy Measurement Result - I/Q Error (Quad View)
Step 11. Press
Trace/View, Code Domain Power to display a combination view of the code
domain power graph and the metrics windows.
Figure 2-24 Modulation Accuracy Measurement Result - Code Domain Power
Making Measurements
50 Chapter 2
Making Measurements
Modulation Accuracy (Composite EVM) Measurements
Step 12. Press Trace/View, Capture Time Summary to display a combination view of the
captured data trace and metrics windows.
Figure 2-25 Modulation Accuracy Measurement Result - Capture Time Summary
Step 13. Press
Trace/View, Numeric Results to display a numeric result metrics window.
Figure 2-26 Modulation Accuracy Measurement Result - Numeric Results
Step 14. You may need to change some of the display settings. These changes should not
affect the measurement results, but will affect how you view the measurement results on the instrument display.
Making Measurements
The
AMPLITUDE Y Scale key accesses the menu to set the desired horizontal scale
Chapter 2 51
Making Measurements
Modulation Accuracy (Composite EVM) Measurements
and associated settings: Scale/Div, Ref Value, Ref Position and Scale Coupling
The X/Scale key accesses the menu to set the desired vertical scale and associated settings:
The
Scale/Div, Ref Value and Ref Position.
Display key accesses the menu to set the desired settings. For more
information, refer to “Modulation Accuracy Display Selection Key Flow” on
page 193.
Step 15. If you want to change the measurement parameters from their default condition so
that you can make a customized measurement, press
Meas Setup to see the
available keys. Then, for additional information on using the available keys and customizing your measurement, refer to “Modulation Accuracy Measurement” on
page 127. For additional information on the measurement concepts, refer to “Modulation Accuracy (Composite EVM)” on page 166.
If you have a problem, and get an error message, see the “Instrument Messages and Functional Tests” manual.

Troubleshooting Hints

A poor phase error often indicates a problem with one or more of the following: I/Q baseband generator, the filters, or modulator in the transmitter circuitry of the UUT. The output amplifier in the transmitter can also create distortion that causes unacceptably high phase error. In a real system, a poor phase error will reduce the ability of a receiver to correctly demodulate the received signal, especially in marginal signal conditions.
If the error code “No Pilot burst found” is shown, it means that your measurement has failed to find any active channels due to the lack of a pilot when you select
Sync Type as Pilot. The input signal may need to be adjusted to enable a
pilot.
If the error code “No active channel found” is shown, it means that no active channel is found on the analyzed timeslot, the possible reason is the power of code channels are below the Active Channel Threshold.
If the error code “Not an active slot” is shown, it means that the selected timeslot is inactive and the input signal may need to be adjusted to enable the timeslot under test.
If the error code “No sync code is found in the selected” is shown, it means that no midamble code is detected in the selected timeslot, so it fails to synchronize. Please check whether the settings are correct, especially the scramble code.
Making Measurements
If the error code “Frequency reference pilot burst not active” is shown, it means that Pilot is selected to be used as the frequency and phase reference for a specified timeslot, but the appropriate pilot timeslot (UpPTS for an uplink timeslot) is not present and the recommendation is to use Midamble as Slot Freq Ref.
If the error code “Input overload” is shown, it means that the level of the input
52 Chapter 2
Making Measurements
Modulation Accuracy (Composite EVM) Measurements
signal is too high, thus causing the ADC to overload. You can set the RF Input Range under the Input menu to AUTO, and then restart the measurement.
If the error code “Sync with midamble fail due to not find uplink slot” is shown, it means that no uplink timeslot is detected when you select Midamble as Sync Ref. Midamble synchronization searches for the first Uplink traffic burst, positioning it as timeslot TS1. Synchronization will fail if there are Pilot bursts present, if TS0 is present, if there are no traffic bursts present or if the incorrect Basic Midamble Code ID is set. The synchronization algorithm may at times have difficulty identifying which burst is TS1 when non-contiguous traffic bursts are present.
Chapter 2 53
Making Measurements
Making Measurements

Using Basic Mode

Using Basic Mode
Basic mode is part of Option B7J for the PSA Series Spectrum Analyzers. Basic mode is not related to a particular communications standard. That is, it does not default to measurement settings that are for any specific standard. You may want to use Basic Mode if you are making measurements on a signal that is not based on a specific digital communications standard.

Basic Mode in PSA Series Spectrum Analyzers

There are three generic measurements available under the MEASURE key in Basic mode:
Spectrum measurement (frequency domain).
Waveform measurement (time domain)
Power Statistics CCDF
These Spectrum, Waveform, and CCDF measurements are also available in this mode, with the same functionality, so you can refer to the sections included in this chapter for information about using them.
For additional information on these measurements in the Basic mode, refer to the PSA Basic Mode Guide.
Making Measurements
54 Chapter 2
Key and SCPI Reference
Chapter 3

3 Key and SCPI Reference

NOTE Only front panel keys affected by the selection of TD-SCDMA Modulation
mode are described here. For a complete description of all front panel keys see the PSA Series User’s Guide.
55
Key and SCPI Reference
Instrument Front Panel Highlights

3.1 Instrument Front Panel Highlights

The most commonly used function keys on the PSA front panel are located as shown in the illustrations below.
Key and SCPI Reference
The operation of the keys is briefly explained on the following pages. Refer to your User’s Guide for complete details on all keys.
Figure 3-1 Selected PSA Series Front Panel Feature Locations

3.1.1 Selected PSA Front-Panel Features

1. The On/Off switch toggles the AC Line power between On and Standby. A green LED will light when the
56
Chapter 3
Key and SCPI Reference
Instrument Front Panel Highlights
instrument is On. When energized in the standby mode, a yellow LED is lit above the switch.
2. FREQUENCY Channel accesses a key menu to set the analyzer center frequency in units of Hz, kHz, MHz,
or GHz, or by channel number. These parameters apply to all measurements in the current mode.
3. MODE accesses a key menu to select one of the measurement personalities installed in the instrument. Each
mode is independent from all other modes.
4. Mode Setup accesses a key menu that sets parameters specific to the current mode and can affect all
measurements within that mode.
5. MEASURE accesses a display key menu to initiate one of the various measurements that are specific to the
current mode.
6. Meas Setup accesses the menus of test parameters that are specific to the current measurement.
7. Restart causes a measurement to start again from the initial process according to the current measurement
setup parameters.
8. RF INPUT port: Type N connector for the E4443A, E4445A, and E4440A. It is 2.4mm on the E4446A,
E4447A, and E4448A. It is a 3.5mm connector on the E4440A with Opt BAB. The maximum input power level is shown next to the port.
Key and SCPI Reference
9. The Data Entry keypad is used to enter numeric values. Keypad entries are displayed in the active function
area of the screen and become valid for the current measurement upon pressing the
Enter key or selecting a
unit of measurement, depending on the parameter.
10. The Display Menu keys allow you either to activate a feature or to access a more detailed sub-menu. An
arrow on the right side of a softkey label indicates that the key has a further selection menu. The active menu key is highlighted, however, grayed-out keys are currently unavailable for use or only show information. If a menu has multiple pages, successive pages are accessed by pressing the
More key located at the bottom of the
menu.
11. Pressing the Return key allows you to exit the current menu and display the previous menu. Often, pressing a
menu key will invoke a multi-page sub-menu. Pressing the previous page. When you activate another measurement, the return list is cleared. The
Return key will show the menu “above” it, not a
Return key will not
return you to a previously activated mode, nor will it alter any values you have entered in previous menus.
Chapter 3
57
Key and SCPI Reference
FREQUENCY/Channel key

3.2 FREQUENCY/Channel key

Accesses a menu allowing you to set Frequency parameters for the current measurement. All measurements in
Key and SCPI Reference
TD-SCDMA Demod mode have same menu structure.

3.2.1 Center Freq

Sets and gets the center frequency to be measured for the selected band.
Key Path: FREQUENCY/Channel
Remote Command: [:SENSe]:FREQuency[:CENTer] <freq>
Unit: Hz | kHz | MHz | GHz
Preset: 1.0 GHz
[:SENSe]:FREQuency[:CENTer]?
State Saved: Saved in instrument state.
Range: Hardware Dependent
Remote Command Notes: You must be in the TD-SCDMA Modulation mode to use this command.
Changing Center Frequency will affect all measurements in the selected mode.
Example: :FREQ 1.0MHZ
:FREQ?
Table 3-1 Center Frequency Range
Model Center Frequency Range:
E4440A 1 kHz ~ 26.5 GHz
E4443A 1 kHz ~ 6.7 GHz
E4445A 1 kHz ~ 13.2 GHz
E4446A 1 kHz ~ 44 GHz
E4447A 1 kHz ~ 42.98 GHz
E4448A 1 kHz ~ 50 GHz

3.2.2 CF Step

Sets and gets the step value for the Center Frequency. When CF Step State is set to Manual, the Step value is determined by this setting. Once the value of the CF Step State is changed to Auto, the Step value will be
58
Chapter 3
Key and SCPI Reference
FREQUENCY/Channel key
changed to 1.6 MHz automatically.
Key Path: FREQUENCY/Channel
Remote Command: [:SENSe]:FREQuency[:CENTer]:STEP <freq>
[:SENSe]:FREQuency[:CENTer]:STEP?
[:SENSe]:FREQuency[:CENTer]:STEP:AUTO OFF|ON|0|1
[:SENSe]:FREQuency[:CENTer]:STEP:AUTO?
Unit: Hz | kHz | MHz | GHz
Preset: 1.6 MHz, ON
State Saved: Saved in instrument state.
Range: 1.0 Hz to 1.0 GHz
Remote Command Notes: You must be in the TD-SCDMA Modulation mode to use this command.
Changing this parameter will affect all measurements in the selected mode.
Key and SCPI Reference
Example: :FREQ:STEP 100KHZ
:FREQ:STEP?
:FREQ:STEP:AUTO OFF
:FREQ:STEP:AUTO?
Chapter 3
59
Key and SCPI Reference
Input

3.3 Input

This key provides the same behavior as that of Input hardkey of the base instrument.
Key and SCPI Reference

3.3.1 Int Preamp

Sets and gets the state of the Internal Preamplifier. If the current measurement is not either EVM or Code Domain, this key will be disabled.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:POWer:RF:GAIN[:STATe] ON|OFF|0|1
Preset: OFF
State Saved: Saved in instrument state.
Range: On | Off
Remote Command Notes: You must be in the TD-SCDMA Modulation mode to use this command.
Example: :POW:RF:GAIN ON
Input
[:SENSe]:POWer:RF:GAIN[:STATe]?
Changing this parameter will affect all measurements in the selected mode.
:POW:RF:GAIN?

3.3.2 RF Input Ranging

Sets and gets the power input range of the PSA.
Mode: TDDEMOD
Key Path:
Input
Remote Command: [:SENSe]:POWer:RF:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer:RF:RANGe:AUTO?
Preset: ON
State Saved: Saved in instrument state.
Remote Command Notes: You must be in the TD-SCDMA Modulation mode to use this command.
Changing this parameter will affect all measurements in the selected mode.
Example: :POW:RF:RANG:AUTO ON
:POW:RF:RANG:AUTO?
60
Chapter 3
Key and SCPI Reference

3.3.3 Max Total Power

Sets and gets the value of the maximum total power. The default unit for this parameter is dBm.
Mode: TDDEMOD
Input
Key and SCPI Reference
Key Path:
Remote Command: [:SENSe]:POWer[:RF]:RANGe[:UPPer] <power>
Preset: –15.0
State Saved: Saved in instrument state.
Min: –200
Max: 50
Dependencies/Couplings: Coupled with Input Attenuation.
Remote Command Notes: You must be in the TD-SCDMA Modulation mode to use this command.
Example: :POW:RANG 10
Input
[:SENSe]:POWer[:RF]:RANGe[:UPPer]?
Changing this parameter will affect all measurements in the selected mode.
:POW:RANG?

3.3.4 Input Attenuation

Sets and gets the value of the Input Attenuation.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:POWer:RF:ATTenuation <integer>
Preset: 0 dB
State Saved: Saved in instrument state.
Min: 0 dB
Max: Elec: 40 dB, Mech: 70 dB
Dependencies/Couplings: Coupled with Max Total Power when Int Preamp is set to OFF. When Int
Remote Command Notes: You must be in the TD-SCDMA Modulation mode to use this command.
Example: :POW:RF:ATT 30
Input
[:SENSe]:POWer:RF:ATTenuation?
Preamp is set to ON, only even numbers are allowed.
Changing this parameter will affect all measurements in the selected mode.
:POW:RF:ATT?
Chapter 3
61
Key and SCPI Reference
Input

3.3.5 MS Ext RF Attenuation

Sets and gets the value of the external RF input attenuation for the MS.
Key and SCPI Reference
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:CORRection:MS[:RF]:LOSS <real>
Unit: dB
Preset: 0
State Saved: Saved in instrument state.
Min: –100 dB
Max: 100 dB
Remote Command Notes: You must be in the TD-SCDMA Modulation mode to use this command.
Example: :CORR:MS:LOSS 10
Input, Ext RF Atten
[:SENSe]:CORRection:MS[:RF]:LOSS?
Changing this parameter will affect all measurements in the selected mode.
:CORR:MS:LOSS?

3.3.6 BTS Ext RF Attenuation

Sets and gets the value of the external RF input attenuation for the BTS.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:CORRection:BTS[:RF]:LOSS < real>
Unit: dB
Preset: 0
State Saved: Saved in instrument state.
Min: –100 dB
Max: 100 dB
Remote Command Notes: You must be in the TD-SCDMA Modulation mode to use this command.
Example: :CORR:BTS:LOSS 10
Input, Ext RF Atten
[:SENSe]:CORRection:BTS[:RF]:LOSS?
Changing this parameter will affect all measurements in the selected mode.
:CORR:BTS:LOSS?
62
Chapter 3
Key and SCPI Reference
Meas Control

3.4 Meas Control

These functions allow you to pause and resume the currently selected measurement and to select between continuous or single measurements.

3.4.1 Measure

Press this key to toggle the measurement state between Single and Cont (continuous).
NOTE This key has a different function from the MEASURE front panel key. When set to Single, the
measurement will continue until it has reached the specified number of averages set by the average counter. When set to according to the current average mode, either repeat or exponential.
Key Path Meas Control
Factory Preset Cont
Cont, the measurement will run continuously and execute averaging
Key and SCPI Reference
State Saved Saved in instrument state.
Remote Command :INITiate:CONTinuous OFF|ON
Remote Command Notes When ON, at the completion of each trigger cycle, the trigger system
immediately initiates another trigger cycle.
When OFF, the trigger system remains in an “idle” state until CONTinuous is set to ON or an :INITiate[:IMMediate] command is received. On receiving the :INITiate[:IMMediate] command, it will go through a single trigger cycle, and then return to the “idle” state.
The query INIT:CONT? returns 1 or 0.
A “1” is returned when the instrument is continuous triggering. “0” is returned when it is single triggering.
Example :INIT:CONT OFF

3.4.2 Pause/Resume

Press this key to pause the current measurement Once toggled, the label of the Pause key changes to read
Resume. The Resume key, once pressed, continues the active measurement from the point at which it was paused.
Key Path:
Meas Control
Remote Command: :INITiate:PAUSe
:INITiate:RESume
Example: :INIT:PAUS
Chapter 3
63
Key and SCPI Reference
Meas Control

3.4.3 Restart

Press this key to repeat the current measurement from the beginning, while retaining the current measurement settings. This is equivalent to the
Key and SCPI Reference
Key Path: Meas Control
Remote Command: :INITiate:RESTart
Remote Command Notes: This command is equivalent to sending an :ABORt command followed
Example: :INIT:REST
Restart front panel key.
by an :INITiate[:IMMediate] command.
64
Chapter 3
Key and SCPI Reference
Mode

3.5 Mode

Accesses any installed personality modes. The minimum set of available modes will be Spectrum Analysis, and TD-SCDMA Modulation. This menu will have additional entries if other personalities have been installed, for example, WLAN.

3.5.1 Spectrum Analysis

For information related to the operation of the Spectrum Analysis mode, refer to the PSA User's and Programmer's Guide.

3.5.2 TD-SCDMA Modulation

The TD-SCDMA Modulation mode provides you with the ability to set up your own measurement environment to perform modulation analysis on signals complying with TD-SCDMA standards.

3.5.3 Instrument Selection by Name

Key and SCPI Reference
This remote command allows you to use SCPI commands to change from the current mode to TD-SCDMA Modulation mode. This has the same effect as pressing the
TD-SCDMA Modulation key.
NOTE When you have installed both Option 212 and Option 213, press TD-SCDMA Modulation with
HSPA key to select the TD-SCDMA Modulation mode.
Key Path: Mode
Remote Command: :INSTrument[:SELect] SA|TDDEMOD
:INSTrument[:SELect]?
Example: :INST TDDEMOD
:INST?

3.5.4 Instrument Selection by Number (Remote command only)

This remote command allows you to use SCPI commands to change from the current mode to TD-SCDMA Modulation mode (Option 212). This has the same effect as pressing the
Key Path:
Mode
TD-SCDMA Modulation key.
Remote Command: :INSTrument:NSELect 212
:INSTrument:NSELect?
Example: :INST:NSEL 212
:INST:NSEL?
Chapter 3
65
Key and SCPI Reference
Mode Setup

3.6 Mode Setup

Opens menu keys that allow you to specify parameters of the mode.
Key and SCPI Reference

3.6.1 Radio Device

Sets and gets the type of radio device.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:RADio:DEVice BTS|MS
Preset: BTS
State Saved: Saved in instrument state.
Range: BTS | MS
Example: :RAD:DEV BTS
Mode Setup, Radio
[:SENSe]:RADio:DEVice?
:RAD:DEV?

3.6.2 Demod

Allows you to specify the demodulation parameters.
3.6.2.1 Scramble Code
Sets and gets the scramble code.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:SCODe <integer>
Preset: 0
State Saved: Saved in instrument state.
Min: 0
Max: 127
Example: :TDEM:SCOD 0
66
Mode Setup, Demod
[:SENSe]:TDEMod:SCODe?
:TDEM:SCOD?
Chapter 3
3.6.2.2 Uplink Pilot
Lets you specify the Uplink Pilot synchronization ID sequence (SYNC-UL).
Mode: TDDEMOD
Key and SCPI Reference
Mode Setup
Key and SCPI Reference
Key Path:
Remote Command: [:SENSe]:TDEMod:UPTS <integer>
Preset: 0
State Saved: Saved in instrument state.
Min: 0
Max: 255
Dependencies/Couplings: Value Range:
Example: :TDEM:UPTS 0
Mode Setup, Demod
[:SENSe]:TDEMod:UPTS?
(dint(Scramble Code/4))*8) to (dint(Scramble Code/4)+1)*8) – 1
Note: dint(x) returns the largest integer which is no greater than x
:TDEM:UPTS?
3.6.2.3 Analysis Timeslot
Sets and gets the analysis timeslot. Analysis Timeslot specifies which sub-frames timeslot, within the selected Analysis Sub-frame, is used for analysis and trace data measurement results. The available selections include timeslots 0 through 6, the DwPTS and UpPTS timeslots.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:SLOT
Preset: TS0
State Saved: Saved in instrument state.
Range: TS0 | TS1 | TS2 | TS3 | TS4 | TS5 | TS6 | DwPTS | UpPTS
Example: :TDEM:SLOT TS0
Chapter 3
Mode Setup, Demod
TS0|TS1|TS2|TS3|TS4|TS5|TS6|UPTS|DPTS
[:SENSe]:TDEMod:SLOT?
:TDEM:SLOT?
67
Key and SCPI Reference
Mode Setup
3.6.2.4 Sync Type
Sets and gets the Sync Type to Pilot, Midamble or Trigger.
Pilot synchronization searches for either the Uplink Pilot or Downlink Pilot burst and then uses the location of
Key and SCPI Reference
that burst to position all of the rest of the time slots. Synchronization will fail if neither pilot burst is found, or if the incorrect Uplink or Downlink Pilot Code ID is set for the Pilot burst present.
Midamble synchronization searches for the first Uplink traffic burst, positioning it as timeslot TS1. Synchronization will fail if there are Pilot bursts present, if TS0 is present, if there are no traffic bursts present, or if the incorrect Basic Midamble Code ID is set.
Trigger synchronization will position the first sample of the acquired data as the start point of a frame. You should set the appropriate Trigger Source for the measurements.
NOTE When measuring a sub-carrier of a multi-carrier TD-SCDMA signal, where no Pilot is available,
you need to set Sync Type to Trigger and then perform the measurement.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:SYNC PILot|MIDamble|TRIGger
Preset: PILot
State Saved: Saved in instrument state.
Range: Pilot | Midamble | Trigger
Example: :TDEM:SYNC PIL
Mode Setup, Demod
[:SENSe]:TDEMod:SYNC?
:TDEM:SYNC?
68
Chapter 3
Key and SCPI Reference
Mode Setup
3.6.2.5 Uplink Switch Point
Sets and gets the Uplink Switch Point. The Uplink Switch Point is the timeslot number of the last uplink traffic timeslot. Timeslots from the following (next higher numbered) traffic timeslot through the end of the sub-frame are treated as downlink timeslots.
Mode: TDDEMOD
Key and SCPI Reference
Key Path:
Remote Command: [:SENSe]:TDEMod:ULSPoint <integer>
Preset: 1
State Saved: Saved in instrument state.
Min: 0
Max: 6
Example: :TDEM:ULSP 0
Mode Setup, Demod
[:SENSe]:TDEMod:ULSPoint?
:TDEM:ULSP?
3.6.2.6 Max User(K) for Traffic Timeslots
Sets and gets the maximum user value for TS0 to TS6. Lets you specify the number of Maximum Users (K) that will be associated with the timeslots specified by the Traffic Timeslots parameter.
3.6.2.6.1 TS0
Sets and gets the maximum user value for TS0. Lets you specify the number of Maximum Users (K) that will be associated with Timeslot 0.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:MXUSer:TS0 <integer>
Preset: 16
State Saved: Saved in instrument state.
Min: 2
Max: 16
Example: :TDEM:MXUS:TS0 2
Chapter 3
Mode Setup, Demod, Max User(K) for Traffic Timeslots
[:SENSe]:TDEMod:MXUSer:TS0?
:TDEM:MXUS:TS0?
69
Key and SCPI Reference
Mode Setup
3.6.2.6.2 TS1
Sets and gets the maximum user value for TS1. Lets you specify the number of Maximum Users (K) that will be associated with Timeslot 1.
Key and SCPI Reference
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:MXUSer:TS1 <integer>
Preset: 16
State Saved: Saved in instrument state.
Min: 2
Max: 16
Example: :TDEM:MXUS:TS1 2
Mode Setup, Demod, Max User(K) for Traffic Timeslots
[:SENSe]:TDEMod:MXUSer:TS1?
:TDEM:MXUS:TS1?
3.6.2.6.3 TS2
Sets and gets the maximum user value for TS2. Lets you specify the number of Maximum Users (K) that will be associated with Timeslot 2.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:MXUSer:TS2 <integer>
Preset: 16
State Saved: Saved in instrument state.
Min: 2
Max: 16
Example: :TDEM:MXUS:TS2 2
70
Mode Setup, Demod, Max User(K) for Traffic Timeslots
[:SENSe]:TDEMod:MXUSer:TS2?
:TDEM:MXUS:TS2?
Chapter 3
Key and SCPI Reference
Mode Setup
3.6.2.6.4 TS3
Sets and gets the maximum user value for TS3. Lets you specify the number of Maximum Users (K) that will be associated with Timeslot 3.
Mode: TDDEMOD
Key and SCPI Reference
Key Path:
Remote Command: [:SENSe]:TDEMod:MXUSer:TS3 <integer>
Preset: 16
State Saved: Saved in instrument state.
Min: 2
Max: 16
Example: :TDEM:MXUS:TS3 2
Mode Setup, Demod, Max User(K) for Traffic Timeslots
[:SENSe]:TDEMod:MXUSer:TS3?
:TDEM:MXUS:TS3?
3.6.2.6.5 TS4
Sets and gets the maximum user value for TS4. Lets you specify the number of Maximum Users (K) that will be associated with Timeslot 4.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:MXUSer:TS4 <integer>
Preset: 16
State Saved: Saved in instrument state.
Min: 2
Max: 16
Example: :TDEM:MXUS:TS4 2
Chapter 3
Mode Setup, Demod, More, Max User(K) for Traffic Timeslots
[:SENSe]:TDEMod:MXUSer:TS4?
:TDEM:MXUS:TS4?
71
Key and SCPI Reference
Mode Setup
3.6.2.6.6 TS5
Sets and gets the maximum user value for TS5. Lets you specify the number of Maximum Users (K) that will be associated with Timeslot 5.
Key and SCPI Reference
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:MXUSer:TS5 <integer>
Preset: 16
State Saved: Saved in instrument state.
Min: 2
Max: 16
Example: :TDEM:MXUS:TS5 2
Mode Setup, Demod, Max User(K) for Traffic Timeslots
[:SENSe]:TDEMod:MXUSer:TS5?
:TDEM:MXUS:TS5?
3.6.2.6.7 TS6
Sets and gets the maximum user value for TS6. Lets you specify the number of Maximum Users (K) that will be associated with Timeslot 6.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:MXUSer:TS6 <integer>
Preset: 16
State Saved: Saved in instrument state.
Min: 2
Max: 16
Example: :TDEM:MXUS:TS6 2
72
Mode Setup, Demod, Max User(K) for Traffic Timeslots
[:SENSe]:TDEMod:MXUSer:TS6?
:TDEM:MXUS:TS6?
Chapter 3
Key and SCPI Reference
Mode Setup
3.6.2.7 Code Channel Detection
Sets and gets the mode of code channel detection. If the mode is set to Man, you need to access the Channel Configuration Menu to manually set the active status and specify the midamble shift for each code channel. If the mode is set to Auto, the active status and midamble shift of each code channel are automatically detected by the measurement.
Mode: TDDEMOD
Key and SCPI Reference
Key Path:
Remote Command: [:SENSe]:TDEMod:CDCHannel:DETection:AUTO 1|0|ON|OFF
Preset: ON
State Saved: Saved in instrument state.
Dependencies/Couplings: When both Code Channel Detection mode and Mod Scheme mode are Auto,
Range: Auto | Man
Example: :TDEM:CDCH:DET:AUTO ON
Mode Setup, Demod, More
[:SENSe]:TDEMod:CDCHannel:DETection:AUTO?
the Mod Scheme key will be grayed out.
:TDEM:CDCH:DET:AUTO?
3.6.2.8 Mod Scheme
Sets and gets the modulation scheme. If Mod Scheme is set to Man, you can specify the modulation format for each channel. If the Mod Scheme is set to Auto, the measurement will automatically detect the channel’s modulation format.
NOTE The Mod Scheme key is only available when Option 213 is installed and Enable HSPA/8PSK is set
to ON. Otherwise, this key is grayed out and the Mod Scheme will be set to Auto.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:MODScheme:AUTO 1|0|ON|OFF
Preset: ON
State Saved: Saved in instrument state.
Dependencies/Couplings: When both the Mod Scheme mode and Code Channel Detection mode are Auto, the Mod
Range: Auto | Man
Example: :TDEM:MODS:AUTO ON
Chapter 3
Mode Setup, Demod, More
[:SENSe]:TDEMod:MODScheme:AUTO?
Scheme key will be grayed out. The modulation formats of QPSK, 8PSK and 16QAM support both AUTO and MAN mode. 64QAM only support MAN mode.
:TDEM:MODS:AUTO?
73
Key and SCPI Reference
Mode Setup
3.6.2.9 Channel Configuration
Allows you to specify the parameters for channel.
Key and SCPI Reference
NOTE When both Mod Scheme and Code Channel Detection are set to Auto, this key will be grayed out.
3.6.2.9.1 Spread Code Length
Sets and gets the spread code length of the desired code channel for configuration.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:SCLength <integer>
Preset: 16
State Saved: Saved in instrument state.
Min: 1
Max: 16
Dependencies/Couplings: Only 1, 2, 4, 8, and 16 are valid Spread Code Lengths. Any other number will
Example: :TDEM:SCL 1
Mode Setup, Demod, More, Channel Configuration
[:SENSe]:TDEMod:SCLength?
be clipped to the nearest valid number.
:TDEM:SCL?
3.6.2.9.2 Code Channel
Sets and gets the Code Channel. The maximum value for the Code Channel should be (Spread Code length – 1). The Code Channel is used, along with the Spread Code Length, to specify the desired channel to be configured. If the Code Channel Selection State Value is All, by modifying the modulation format, active status and midamble shift, you can change the values of all code channels which correspond to the current spread code length.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:CDCHannel <integer>
Preset: 0, SINGle
State Saved: Saved in instrument state.
Min: 0
Mode Setup, Demod, More, Channel Configuration
[:SENSe]:TDEMod:CDCHannel?
[:SENSe]:TDEMod:CDCHannel:SELect SINGle|ALL
[:SENSe]:TDEMod:CDCHannel:SELect?
74
Chapter 3
Key and SCPI Reference
Mode Setup
Max: Equals (Spread Code length – 1)
Example: :TDEM:CDCH 0
:TDEM:CDCH?
Example: :TDEM:CDCH:SEL ALL
:TDEM:CDCH:SEL?
3.6.2.9.3 Code Channel Status
Sets and gets the active status of the specified code channel. ON means the code channel is active, OFF means it is inactive.
Mode: TDDEMOD
Key and SCPI Reference
Key Path:
Remote Command: [:SENSe]:TDEMod:CDCHannel:ACTive <integer>,<integer>,OFF|ON|0|1
Restriction and Notes: The first integer is the spread code length and the second integer is the code channel.
Preset: OFF
State Saved: Saved in instrument state.
Range: OFF|ON|0|1
Example: :TDEM:CDCH:ACT 16,0,AUTO
Mode Setup, Demod, More, Channel Configuration
[:SENSe]:TDEMod:CDCHannel? <integer>,<integer>
:TDEM:CDCH? 16,0
3.6.2.9.4 Midamble Shift
Sets and gets the midamble shift for the specified code channel.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:MSHift:NUMBer
Mode Setup, Demod, More, Channel Configuration
<integer>,<integer>,<integer>
[:SENSe]:TDEMod:MSHift:NUMBer? <integer>,<integer>
Restriction and Notes: The first integer is the spread code length, the second integer is the code
channel and the third integer is the specified midamble shift.
Preset: OFF
State Saved: Saved in instrument state.
Range: OFF|ON|0|1
Example: :TDEM:MSH:NUMB 16,0,1
:TDEM:MSH:NUMB? 16,0
Chapter 3
75
Key and SCPI Reference
Mode Setup
3.6.2.9.5 Modulation Format
Sets and gets the modulation format. If Auto is assigned to a code channel with a specified spread code length, the modulation format on this code channel will be determined by the measurement. The modulation format of 64QAM cannot be detected automatically.
Key and SCPI Reference
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:MODFormat
Preset: AUTO
State Saved: Saved in instrument state.
Range: Auto | QPSK | 8PSK | 16QAM| 64QAM
Restriction and Notes: The first integer is the spread code length and the second integer is the code
Example: :TDEM:MODF 16,0,AUTO
Mode Setup, Demod, More, Channel Configuration
<integer>,<integer>,AUTO|QPSK|PSK8|QAM16|QAM64
[:SENSe]:TDEMod:MODFormat? <integer>,<integer>
channel.
:TDEM:MODF? 16,0
3.6.2.9.6 Phase Shift
Sets and gets the phase shift for the specified code channel.
Mode TDDEMOD
Key Path
Mode Setup, Demod, More, Channel Configuration
Remote Command [:SENSe]:TDEMod:PHASe:SHIFt <integer>,<integer>,<float>
[:SENSe]:TDEMod:PHASe:SHIFt? <integer>,<integer>
Restriction and Notes: The first integer is the spread code length, the second integer is the code
channel and the third parameter is the specified phase shift.
Preset 0.00
State Saved Saved in instrument state.
Min –360.00
Max 360.00
Example :TDEM:PHAS:SHIF 16,0,45.00
:TDEM:PHAS:SHIF? 16,0
76
Chapter 3
Key and SCPI Reference
Mode Setup
3.6.2.9.7 Show Configuration Setup
Shows all values of the modulation format, code channel status, midamble shift and phase shift. If any other menu is displayed, this window will exit.
Mode: TDDEMOD
Key and SCPI Reference
Key Path:
Mode Setup, Demod, More, Channel Configuration
3.6.2.10 Slot Frequency Reference
Sets and gets the slot frequency reference. Allows you to specify whether the appropriate pilot timeslot or the midamble section of the timeslot will be used as the frequency and phase reference for an individual traffic timeslot.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:SREFerence PILot|MIDamble
Preset: MIDamble
State Saved: Saved in instrument state.
Range: Pilot | Midamble
Example: :TDEM:SREF PIL
Mode Setup, Demod, More
[:SENSe]:TDEMod:SREFerence?
:TDEM:SREF?
3.6.2.11 Timing Reference
Sets and gets the timing reference.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:TREFerence DPTS|UPTS|TRIG
Preset: DPTS
State Saved: Saved in instrument state.
Range: DwPTS | UpPTS | Trigger
Example: :TDEM:TREF DWPTS
Chapter 3
Mode Setup, Demod, More
[:SENSe]:TDEMod:TREFerence?
:TDEM:TREF?
77
Key and SCPI Reference
Mode Setup
3.6.2.12 Advanced
Allows you to specify the advanced configuration parameters.
3.6.2.12.1 Filter Alpha
Key and SCPI Reference
Sets and gets the measurement filter (Root-raised Cosine) alpha value.
Key Path: Mode Setup, Demod, More, Advanced
Remote Command: [:SENSe]:TDEMod:ALPHa <real>
Preset: 0.22
State Saved: Saved in instrument state.
Range: 0.05 to 1.0
Remote Command Notes: You must be in the TD-SCDMA Modulation mode to use this command.
Example: :TDEM:ALPH 0.22
[:SENSe]:TDEMod:ALPHa?
Changing this parameter will affect all measurements in the selected mode.
:TDEM:ALPH?
3.6.2.12.2 Active Slot Threshold
Sets and gets the Active Slot Detection Threshold. The Active Slot Detection Threshold is specified in dB below the slot with the highest measured power.
Key Path:
Remote Command: [:SENSe]:TDEMod:THReshold:SLOT <float>
Preset: –30
Front-Panel Unit: dBc
State Saved: Saved in instrument state.
Range: –120 dBc to 0 dBc
Remote Command Notes: You must be in the TD-SCDMA Modulation mode to use this command.
Example: :TDEM:THR:SLOT –30
Mode Setup, Demod, More, Advanced
[:SENSe]:TDEMod:THReshold:SLOT?
Changing this parameter will affect all measurements in the selected mode.
:TDEM:THR:SLOT?
3.6.2.12.3 Active Channel Threshold
Sets and gets the Active Channel Threshold. Allows you to set the threshold above which a channel is deemed to be active, and is included in the Composite Reference waveform. The units are dBc (dB below the total power within the Analysis Timeslot).
Key Path:
78
Mode Setup, Demod, More, Advanced
Chapter 3
Key and SCPI Reference
Remote Command: [:SENSe]:TDEMod:THReshold:CHANnel <float>
[:SENSe]:TDEMod:THReshold:CHANnel?
[:SENSe]:TDEMod:THReshold:CHANnel:AUTO ON|OFF|0|1
[:SENSe]:TDEMod:THReshold:CHANnel:AUTO?
Preset: –30, ON
Front-Panel Unit: dBc
State Saved: Saved in instrument state.
Range: –120 dBc to 0 dBc
Remote Command Notes: You must be in the TD-SCDMA Modulation mode to use this command.
Changing this parameter will affect all measurements in the selected mode.
Example: :TDEM:THR:CHAN –30
:TDEM:THR:CHAN?
:TDEM:THR:CHAN:AUTO OFF
Mode Setup
Key and SCPI Reference
:TDEM:THR:CHAN:AUTO?
3.6.2.12.4 EVM Result IQ Offset
Sets and gets the EVM result IQ offset.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:EVMResult:IQOFfset STANard|EXClude
Preset: STAN
State Saved: Saved in instrument state.
Range: Std | Exclude
Example: :TDEM:EVMR:IQOF STAN
Mode Setup, Demod, More, Advanced
[:SENSe]:TDEMod:EVMResult:IQOFfset?
:TDEM:EVMR:IQOF?
3.6.2.12.5 Mirror Frequency Spectrum
Sets and gets the Mirror Frequency Spectrum value. Lets you correctly demodulate frequency spectrums that are mirrored (flipped) about the center frequency.
Mode: TDDEMOD
Key Path:
Remote Command: [:SENSe]:TDEMod:SPECtrum:MIRRor NORMal|INVert
Chapter 3
Mode Setup, Demod, More, Advanced
[:SENSe]:TDEMod:SPECtrum:MIRRor?
79
Key and SCPI Reference
Mode Setup
Preset: NORMal
State Saved: Saved in instrument state.
Range: Normal | Invert
Key and SCPI Reference
Example: :TDEM:SPEC:MIRR NORM
3.6.2.12.6 Normalize
Sets and gets the Normalize value. When this key is set to ON, the analyzer applies trace data normalization to the trace data results.
Mode: TDDEMOD
:TDEM:SPEC:MIRR?
Key Path:
Remote Command: [:SENSe]:TDEMod:NORMalize 1|0|ON|OFF
Preset: ON
State Saved: Saved in instrument state.
Range: On | Off
Example: :TDEM:NORM ON
Mode Setup, Demod, More, Advanced
[:SENSe]:TDEMod:NORMalize?
:TDEM:NORM?

3.6.3 Multi-Carrier Demod

Allows you to disable or enable the Multi-Carrier functionality. When this key is set to ON, a low pass filter is applied to the baseband signal to reject the interference from the adjacent carriers, thus giving more accurate results.
Key Path:
Remote Command: [:SENSe]:TDEMod:MCARier OFF|ON|0|1
Mode Setup
[:SENSe]:TDEMod:MCARier?
Preset: OFF
State Saved: Saved in instrument state.
Range: Off | On| 0 | 1
Dependencies/Couplings: No Coupling.
Example: :TDEM:MCAR OFF
:TDEM:MCAR?
80
Chapter 3
Key and SCPI Reference
Mode Setup

3.6.4 HSPA/8PSK Enable

Allows you to disable or enable the HSPA/8PSK (Option 213) functionality manually. Option 213 is required to enable this function.
When this key is set to OFF, the Modulation Scheme is switched to AUTO and both the Modulation Scheme key and the Channel Configuration key are disabled.
Key Path: Mode Setup
Remote Command: [:SENSe]:RADio:CONFigure:HSDPa[:STATe] OFF|ON|0|1
[:SENSe]:RADio:CONFigure:HSDPa[:STATe]?
Preset: OFF
State Saved: Saved in instrument state.
Range: Off | On
Dependencies/Couplings: No Coupling.
Restriction and Notes: This key is active when Option 213 (TD-SCDMA HSPA/8PSK option)
license is installed. This key will be disabled when Option 213 license is not installed.
Key and SCPI Reference
Example: :RAD:CONF:HSDP:STAT OFF
:RAD:CONF:HSDP:STAT?
Chapter 3
81
Key and SCPI Reference
Measure

3.7 Measure

Accesses the Measure menus.
Key and SCPI Reference

3.7.1 Command Interactions: MEASure, CONFigure, FETCh, INITiate and READ

Figure 3-2 Measurement Group of Commands
82
Chapter 3
Key and SCPI Reference
Measure
Measure Commands:
:MEASure:<measurement>[n]?
This is a fast single-command way to make a measurement using the factory default instrument settings. These are the settings and units that conform to the Mode Setup settings (e.g. radio standard) that you have currently selected.
Stops the current measurement (if any) and sets up the instrument for the specified measurement using the factory defaults
Initiates the data acquisition for the measurement
Blocks other SCPI communication, waiting until the measurement is complete before returning results.
After the data is valid it returns the scalar results, or the trace data, for the specified measurement. The type of data returned may be defined by an [n] value that is sent with the command.
The scalar measurement results will be returned if the optional [n] value is not included, or is set to 1. If the [n] value is set to a value other than 1, the selected trace data results will be returned. See each command for details of what types of scalar results or trace data results are available.
Key and SCPI Reference
ASCII is the default format for the data output. (Older versions of Spectrum Analysis and Phase Noise mode measurements only use ASCII.) The binary data formats should be used for handling large blocks of data since they are smaller and faster than the ASCII format. Refer to the FORMat:DATA command for more information.
If you need to change some of the measurement parameters from the factory default settings you can set up the measurement with the CONFigure command. Use the commands in the SENSe:<measurement> and CALCulate:<measurement> subsystems to change the settings. Then you can use the READ? command to initiate the measurement and query the results. See Figure 3-2.
If you need to repeatedly make a given measurement with settings other than the factory defaults, you can use the commands in the SENSe:<measurement> and CALCulate:<measurement> subsystems to set up the measurement. Then use the READ? command to initiate the measurement and query results.
Measurement settings persist if you initiate a different measurement and then return to a previous one. Use READ:<measurement>? if you want to use those persistent settings. If you want to go back to the default settings, use MEASure:<measurement>?.
Configure Commands:
:CONFigure:<measurement>
This command stops the current measurement (if any) and sets up the instrument for the specified measurement using the factory default instrument settings. It sets the instrument to single measurement mode but should not initiate the taking of measurement data unless INIT:CONTinuous is ON. After you change any measurement settings, the READ command can be used to initiate a measurement without changing the settings back to their defaults.
Chapter 3
The CONFigure? query returns the current measurement name.
83
Key and SCPI Reference
Measure
Key and SCPI Reference
Fetch Commands:
:FETCh:<measurement>[n]?
This command puts selected data from the most recent measurement into the output buffer. Use FETCh if you have already made a good measurement and you want to return several types of data (different [n] values, e.g. both scalars and trace data) from a single measurement. FETCh saves you the time of re-making the measurement. You can only FETCh results from the measurement that is currently active, it will not change to a different measurement.
If you need to get new measurement data, use the READ command, which is equivalent to an INITiate followed by a FETCh.
The scalar measurement results will be returned if the optional [n] value is not included, or is set to 1. If the [n] value is set to a value other than 1, the selected trace data results will be returned. See each command for details of what types of scalar results or trace data results are available. The binary data formats should be used for handling large blocks of data since they are smaller and transfer faster then the ASCII format. (FORMat:DATA)
FETCh may be used to return results other than those specified with the original READ or MEASure command that you sent.
INITiate Commands:
:INITiate:<measurement>
This command is not available for measurements in all the instrument modes:
Initiates a trigger cycle for the specified measurement, but does not output any data. You must then use the FETCh<meas> command to return data. If a measurement other than the current one is specified, the instrument will switch to that measurement and then initiate it.
For example, suppose you have previously initiated the ACP measurement, but now you are running the channel power measurement. If you send INIT:ACP? it will change from channel power to ACP and will initiate an ACP measurement.
Does not change any of the measurement settings. For example, if you have previously started the ACP measurement and you send INIT:ACP? it will initiate a new ACP measurement using the same instrument settings as the last time ACP was run.
If your selected measurement is currently active (in the idle state) it triggers the measurement, assuming the trigger conditions are met. Then it completes one trigger cycle. Depending upon the measurement and the number of averages, there may be multiple data acquisitions, with multiple trigger events, for one full trigger cycle. It also holds off additional commands on GPIB until the acquisition is complete.
84
Chapter 3
Key and SCPI Reference
Measure
READ Commands:
:READ:<measurement>[n]?
Does not preset the measurement to the factory default settings. For example, if you have previously initiated the ACP measurement and you send READ:ACP? it will initiate a new measurement using the same instrument settings.
Initiates the measurement and puts valid data into the output buffer. If a measurement other than the current one is specified, the instrument will switch to that measurement before it initiates the measurement and returns results.
For example, suppose you have previously initiated the ACP measurement, but now you are running the channel power measurement. Then you send READ:ACP? It will change from channel power back to ACP and, using the previous ACP settings, will initiate the measurement and return results.
Blocks other SCPI communication, waiting until the measurement is complete before returning the results
If the optional [n] value is not included, or is set to 1, the scalar measurement results will be returned. If the [n] value is set to a value other than 1, the selected trace data results will be returned. See each command for details of what types of scalar results or trace data results are available. The binary data formats should be used when handling large blocks of data since they are smaller and faster then the ASCII format. (FORMat:DATA)
Key and SCPI Reference
Chapter 3
85
Key and SCPI Reference
Measure

3.7.2 Mod Accuracy (Composite EVM)

This measures the Modulation Accuracy of a TD-SCDMA signal. You must be in the TD-SCDMA Modulation mode to use these commands.
Key and SCPI Reference
Key Path: Measure
Remote Command: :CONFigure:EVM
Restriction and Notes: This key invokes Mod Accuracy Measurement
Example: :CONF:EVM
3.7.2.1 SCPI Remote Commands
NOTE If the result is unavailable, the value returned will be –999.
:CONFigure:EVM
:INITiate:EVM
:FETCh:EVM[n]?
:READ:EVM[n]?
:MEASure:EVM[n]?
Index: n <Mnemonic>
Results Returned
0 #. Result name (type of number) [unit] <size>
I/Q Capture Data Trace (float) [volt] <2 * captured data length in chips>
Returns unprocessed I/Q trace data of Capture Interval, as a series of trace point values, in volts. The I values are listed first in each pair, using the 0 through even-indexed values. The Q values are the odd-indexed values.
The sample rate is 3.75 MHz in this measurement.
1 (or not specified)
Returns the following 34 comma-separated scalar results, in the following order:
#. Result name (type of number) [unit] <size>
1. Rho (Average) (float) [NA]
Averaged composite Rho (in average cycle) in the selected timeslot and sub-frame.
2. Rho (Peak Hold) (float) [NA]
Peak/Maximum composite Rho (in average cycle) in the selected timeslot and sub-frame.
3. RMS EVM (Average) (float) [% rms]
Averaged composite RMS EVM (in average cycle) in the selected timeslot and sub-frame.
86
Chapter 3
Key and SCPI Reference
Measure
Key and SCPI Reference
Index: n <Mnemonic>
1 (or not specified)
Results Returned
(Continued)
#. Result name (type of number) [unit] <size>
4. RMS EVM (Peak Hold) (float) [% rms]
Peak/Maximum composite RMS EVM (in average cycle) in the selected timeslot and sub-frame.
5. Peak EVM (Average) (float) [% pk]
Averaged composite peak EVM (in average cycle) in the selected timeslot and sub-frame.
6. Peak EVM (Peak Hold) (float) [% pk]
Peak/Maximum composite peak EVM (in average cycle) in the selected timeslot and sub-frame.
7. RMS Magnitude Error (Average) (float) [% rms]
Averaged composite RMS magnitude error (in average cycle) in the selected timeslot and sub-frame.
8. RMS Magnitude Error (Peak Hold) (float) [% rms]
Peak/Maximum composite RMS magnitude error (in average cycle) in the selected timeslot and sub-frame.
9. Peak Magnitude Error (Average) (float) [% pk]
Averaged composite peak magnitude error in the selected timeslot and sub-frame.
10. Peak Magnitude Error (Peak Hold) (float) [% pk]
Peak/Maximum composite peak magnitude error in the selected timeslot and sub-frame.
11. RMS Phase Error (Average) (float) [° rms]
Averaged composite RMS phase error (in average cycle) in the selected timeslot and sub-frame.
12. RMS Phase Error (Peak Hold) (float) [° rms]
Peak/Maximum composite RMS phase error (in average cycle) in the selected timeslot and sub-frame.
13. Peak Phase Error (Average) (float) [° pk]
Averaged composite peak phase error (in average cycle) in the selected timeslot and sub-frame.
14. Peak Phase Error (Peak Hold) (float) [° pk]
Peak/Maximum composite peak phase error (in average cycle) in the selected timeslot and sub-frame.
Chapter 3
87
Key and SCPI Reference
Measure
Key and SCPI Reference
Index: n <Mnemonic>
1 (or not specified)
Results Returned
(continued)
#. Result name (type of number) [unit] <size>
15. Peak CDE (Average) (float) [dB]
Averaged Peak code domain error of all code channels (in average cycle), including active code channels and inactive code channels.
When DwPTS or UpPTS is selected, –999 will be returned.
16. Peak CDE (Peak Hold) (float) [dB]
Peak/Maximum Peak code domain error of all code channels (in average cycle), including active code channels and inactive code channels.
When DwPTS or UpPTS is selected, –999 will be returned.
17. Peak Active CDE (Average) (float) [dB]
Averaged Peak Code Domain Error of active code channels (in average cycle).
If no active channel is detected, –999 will be returned.
When DwPTS or UpPTS is selected, –999 will be returned.
18. Peak Active CDE (Peak Hold) (float) [dB]
Peak/Maximum Peak Code Domain Error of active code channels (in average cycle).
If no active channel is detected, –999 will be returned.
When DwPTS or UpPTS is selected, –999 will be returned.
19. Frequency Error (Average) (float) [Hz]
Averaged composite frequency error (in average cycle) in the selected timeslot and sub-frame.
20. Frequency Error (Peak Hold) (float) [Hz]
Peak/Maximum composite frequency error (in average cycle) in the selected timeslot and sub-frame.
21. IQ Offset (Average) (float) [dB]
Averaged composite IQ offset (in average cycle) in the selected timeslot and sub-frame.
22. IQ Offset (Peak Hold) (float) [dB]
Peak/Maximum composite IQ offset (in average cycle) in the selected timeslot and sub-frame.
23. Quad Error (Average) (float) [°]
Averaged composite Quad Error (in average cycle) in the selected timeslot and sub-frame.
88
Chapter 3
Key and SCPI Reference
Measure
Key and SCPI Reference
Index: n <Mnemonic>
1 (or not specified)
Results Returned
(Continued)
#. Result name (type of number) [unit] <size>
24. Quad Error (Peak Hold) (float) [°]
Peak/Maximum composite Quad Error (in average cycle) in the selected timeslot and sub-frame.
25. Gain Imbalance (Average) (float) [dB]
Averaged composite gain imbalance (in average cycle) in the selected timeslot and sub-frame.
26. Gain Imbalance (Peak Hold) (float) [dB]
Peak/Maximum composite gain imbalance (in average cycle) in the selected timeslot and sub-frame.
27. Time Offset (Average) (float) [chips]
Averaged composite timing error (in average cycle) in chips, relative to the timing reference (DwPTS/UpPTS/Trig)
28. Time Offset (Peak Hold) (float) [chips]
Peak/Maximum composite timing error (in average cycle) in chips, relative to the timing reference (DwPTS/UpPTS/Trig)
29. Position of Peak CDE - Code Length (Peak Hold) (int) [NA]
Code channel number of Peak/Maximum Peak CDE (in average cycle) is SX(Y). X is the OVSF code length (1,2,4,8,16), Y is the OVSF code index (0, … X–1). OVSF code length X is returned.
When DwPTS or UpPTS is selected, –999 will be returned.
30. Position of Peak CDE - Code Index (Peak Hold) (int) [NA]
Code channel number of Peak/Maximum Peak CDE (in average cycle) is SX(Y). X is the OVSF code length (1,2,4,8,16), Y is the OVSF code index (0, … X–1). OVSF Code index Y is returned.
When DwPTS or UpPTS is selected, –999 will be returned.
31. Position of Peak Active CDE - Code Length (Peak Hold) (int) [NA]
Code channel number of Peak/Maximum Peak Active CDE (in average cycle) is SX(Y). X is the OVSF length (1,2,4,8,16), Y is the OVSF code index (0, …, X–1). OVSF code length X is returned.
If no active channel is detected, –999 will be returned.
When DwPTS or UpPTS is selected, –999 will be returned.
Chapter 3
89
Key and SCPI Reference
Measure
Key and SCPI Reference
Index: n
Results Returned
<Mnemonic>
1 (or not specified)
(Continued)
#. Result name (type of number) [unit] <size>
32. Position of Peak Active CDE - Code Index (Peak Hold) (int) [NA]
Code channel number of Peak/Maximum Peak Active CDE (in average cycle) is SX(Y). X is the OVSF code length (1,2,4,8,16), Y is the OVSF code index (0, …, X–1). OVSF code index Y is returned.
If no active channel is detected, –999 will be returned.
When DwPTS or UpPTS is selected, –999 will be returned.
33. Number of Active Channels (int) [NA]
Number of active channels in the selected timeslot and sub-frame.
34. Total Data Power (float) [dBm]
The total data part power of the selected timeslot and sub-frame.
2 Filtered Analysis Subframe Data Trace (float) [Volt] <2*4*6432>
Return I/Q trace data of RRC filtered selected analysis sub-frame, as a series of trace point values, in volts. There are 4 I/Q pair samples per chip. The I values are listed first in each pair, using the 0 through even-indexed values. The Q values are the odd-indexed values.
There are 6400 chips in a sub-frame. There are extra 16 chips at the head the sub-frame and extra 16 chips at the end of the sub-frame.
3 Unnormalized I/Q Measured Polar Data Trace (float) [Volt] <2*848>
Return unprocessed I/Q trace data of selected timeslot and sub-frame, as a series of trace point values, in volts. The I values are listed first in each pair, using the 0 through even-indexed values. The Q values are the odd-indexed values.
When the analyzed time slot is inactive, a series of –999 will be returned.
4 Normalized I/Q Measured Polar Data Trace (float) [dB] <2*848>
Return unprocessed I/Q trace data of selected timeslot and sub-frame, as a series of trace point values, in dB. The I values are listed first in each pair, using the 0 through even-indexed values. The Q values are the odd-indexed values.
When the analyzed time slot is inactive, a series of –999 will be returned.
5 Magnitude Error vs. Chip Trace (float) [dB] <848>
Return composite magnitude error vs. chip data, as a series of comma-separated trace points. The result is a series of floating point numbers.
When the analyzed time slot is inactive, a series of –999 will be returned.
6 Phase Error vs. Chip Trace (float) [dB] <848>
Return composite phase error vs. chip data, as a series of comma-separated trace points. The result is a series of floating point numbers.
90
When the analyzed time slot is inactive, a series of –999 will be returned.
Chapter 3
Key and SCPI Reference
Measure
Key and SCPI Reference
Index: n
Results Returned
<Mnemonic>
7 EVM vs. Chip Trace (float) [dB] <848>
Return composite EVM error vs. chip data, as a series of comma-separated trace points. The result is a series of floating point numbers.
When the analyzed time slot is inactive, a series of –999 will be returned.
8 Code Length Vector (int) [NA] <16>
Return the vector containing information of the spreading code length of each code channel, active or inactive, in the specified timeslot.
There are 16 numbers in this vector. For the active channel, if its code length is less than the max spreading code length 16, the filled length value is duplicated (16/spreading code length) times. For the inactive channel, it is set to 16. The purpose of this vector is providing the code length information for each value in Active Flag Vector, Unnormalized Code Domain Power Vector, Normalized Code Domain Power Vector, Unnormalized Code Domain Error Vector, and Normalized Code Domain Error Vector.
Its data are lined according to the increasing code index,
Example:
Configuration1:There are five active code channels in one timeslot, C16(0), C8(1), C16(5), C4(2) and C8(7). Like this,
C16 (0)
C8(1) C4(2) C8(7)
C16 (5)
And the yellow block denotes inactive channel.
So the values in this vector should be {16, 16, 8, 8, 16, 16, 16, 16, 4, 4, 4, 4, 16, 16, 8, 8}.
Note: When the measurement fails to get synchronization or the slot under test is DwPTS/UpPTS or inactive, and so on, all the lengths in this vector are –999.
9 Channel Active Flag Vector (int) [NA] <16>
Return the vector containing information whether or not the specified channel is active, as a series of comma-separated points. “1” denotes active, and “0” denotes inactive.
There are 16 numbers in this vector. If the active channel’s code length (specified by the value on the same position within the Code Length Vector) is less than the max spreading code length 16, the flag is duplicated (16/spreading code length) times. Its data are lined according to the increasing code index.
Take Configuration 1 for example, the values in this vector should be {1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1}.
Note: When the measurement fails to get synchronization or the slot under test is DwPTS/UpPTS or inactive, and so on, all the flags in this vector are –999.
Chapter 3
91
Key and SCPI Reference
Measure
Key and SCPI Reference
Index: n
Results Returned
<Mnemonic>
10 Unnormalized Code Domain Power Trace (float) [dBm] <16>
Return the vector containing unnormalized CDP information for the specified code channel, as a series of comma-separated points.
There are 16 numbers in this vector. If the active channel’s code length (specified by the value on the same position within the Code Length Vector) is less than the max spreading code length 16, the power is duplicated (16/spreading code length) times. Its data are lined according to the increasing code index.
Take Configuration 1 for example, the values in this vector should be {P1, Px, P2, P2, Px, P3, Px, Px, P4, P4, P4, P4, Px, Px, P5, P5}. Px is the power on code channel C16(x).
Note: When the measurement fails to get the result, such as: failing to in synchronization or the slot under test is DwPTS/UpPTS or inactive, all the values in this vector will be –999.
11 Normalized Code Domain Power Trace (float) [dB] <16>
Return the vector containing normalized CDP information for the specified code channel, as a series of comma-separated points.
There are 16 numbers in this vector. If the active channel’s code length (specified by the value on the same position within the Code Length Vector) is less than the max spreading code length 16, the power is duplicated (16/spreading code length) times. Its data are lined according to the increasing code index.
Take Configuration 1 for example, the values in this vector should be {P1, Px, P2, P2, Px, P3, Px, Px, P4, P4, P4, P4, Px, Px, P5, P5}. Px is the power on code channel C16(x).
… …
Note: When the measurement fails to get the result, such as: failing to in synchronization or the slot under test is DwPTS/UpPTS or inactive, all the values in this vector will be –999.
12 Normalized Code Domain Error Trace (float) [dB] < 16 >
Return the vector containing normalized CDE information for the specified code channel, as a series of comma-separated points.
There are 16 numbers in this vector. If the active channel’s code length (specified by the value on the same position within the Code Length Vector) is less than the max spreading code length 16, the error is duplicated (16/spreading code length) times. Its data are lined according to the increasing code index.
Take Configuration 1 for example, the values in this vector should be {E1, Ex, E2, E2, Ex, E3, Ex, Ex, E4, E4, E4, E4, Ex, Ex, E5, E5}. Ex is the power on code channel C16(x).
Note: When the measurement fails to get the result, such as: failing to in synchronization or the slot under test is DwPTS/UpPTS or inactive, all the values in this vector will be –999.
92
Chapter 3
Key and SCPI Reference
Measure
Key and SCPI Reference
Index: n
Results Returned
<Mnemonic>
13 Total Power vs. Timeslots Trace (float) [dBm] <9>
Return absolute power measurement of composite signals for each timeslot within the analyzed subframe. The sequence of timeslot is TS0, DwPTS, UpPTS, TS1, TS2, TS3, TS4, TS5, and TS6
Note: When the measurement fails, such as: failing to in synchronization, all the values in this vector will be –999.
14 Midamble Power vs. Timeslots Trace (float) [dBm] <9>
Return absolute power measurement of composite midamble signals for each timeslot within the analyzed subframe. The sequence of timeslot is TS0, DwPTS, UpPTS, TS1, TS2, TS3, TS4, TS5, and TS6.
The midamble power of DwPTS/UpPTS returned is same as the total power of DwPTS/UpPTS.
Note: When the measurement fails, such as: failing to in synchronization, all the values in this vector will be –999.
15 Data Power 1 vs. Timeslots Trace (float) [dBm] <9>
Return absolute power measurement of composite data signals before midamble for each timeslot within the analyzed subframe. The sequence of timeslot is TS0, DwPTS, UpPTS, TS1, TS2, TS3, TS4, TS5, and TS6.
The data power of DwPTS/UpPTS returned is same as the total power of DwPTS/UpPTS.
Note: When the measurement fails, such as: failing to in synchronization, all the values in this vector will be –999.
16 Data Power 2 vs. Timeslots Trace (float) [dBm] <9>
Return absolute power measurement of composite data signals after midamble for each timeslot within the analyzed subframe. The sequence of timeslot is TS0, DwPTS, UpPTS, TS1, TS2, TS3, TS4, TS5, and TS6.
The data power of DwPTS/UpPTS returned is same as the total power of DwPTS/UpPTS.
Note: When the measurement fails, such as: failing to in synchronization, all the values in this vector will be –999.
17 Time Offset vs. Timeslots Trace (float) [chips] <9>
Return the difference in time (in chips) between the measured and ideal start times for each timeslot within the analyzed sub-frame relative to the specified time reference. The sequence of the timeslots is TS0, DwPTS, UpPTS, TS1, TS2, TS3, TS4, TS5, and TS6, totally 9 timeslots.
Either the DwPTS, UpPTS, or Trigger Point as the time reference can be set as Timing Ref in Demod parameters
Note: When the measurement fails, such as: failing to in synchronization or the Timing Ref not exist, all the values in this vector will be –999.
Chapter 3
93
Key and SCPI Reference
Measure
Key and SCPI Reference
Index: n
Results Returned
<Mnemonic>
18 Limit PASS/FAIL Trace (int) [NA] <5>
Return the PASS/FAIL (0/1) message of the current selected device (BTS or MS) in the sequence of:
1st, Composite RMS EVM
2nd, Composite Peak EVM
3rd, Composite Rho
4th, Peak CDE
5th, Composite Frequency Error
Coupled with device. When the current device is set BTS, the trace indicates the limit Pass/Fail of BTS; When the device is set MS, the trace indicates the limit Pass/Fail of MS.
Note: When the measurement fails, such as: failing to in synchronization, all the values in this vector will be –999.
19 Time Slot Active Flag Trace (int) [NA] <9>
Return the Active/Inactive (1/0) message of the 9 time slots within the selected analysis sub-frame. The sequence of the timeslots is TS0, DwPTS, UpPTS, TS1, TS2, TS3, TS4, TS5, and TS6.
Note: When the measurement fails to get synchronization, all the values in this vector will be –999.
94
Chapter 3

3.7.3 Code Domain

Key Path: Measure
Remote Command: :CONFigure:CDPower
Restriction and Notes: This key invokes Code Domain Measurement
Example: :CONF:CDP
3.7.3.1 Remote SCPI Results
:CONFigure:CDPower
:INITiate:CDPower
:FETCh:CDPower[n]?
:MEASure:CDPower[n]?
:READ:CDPower[n]?
Key and SCPI Reference
Measure
Key and SCPI Reference
Index: n
<Mnemonic>
0 Returns unprocessed I/Q trace data, as a series of comma-separated trace points, in volts. The
Results Returned
I values are listed first in each pair, using the 0 through even-indexed values. The Q values are the odd-indexed values.
Chapter 3
95
Key and SCPI Reference
Measure
Key and SCPI Reference
not specified or n = 1
Returns the following 24 comma-separated scalar results:
#. Result Name: (type of number) [unit] <explanation>
Note: When the measurement fails to get results, such as: failing to synchronize or the slot under test is DwPTS/UpPTS or inactive, all the following scalar results will be unavailable and return –999.
1. RMS EVM: (double) [percent]
The RMS-averaged EVM of despreaded symbols in the specified code (spreading code length and code channel), timeslot and sub-frame.
2. Peak EVM: (double) [percent]
The peak symbol EVM in the specified code (spreading code length and code channel), timeslot and sub-frame.
3. Peak position of peak EVM: (int) [symbol]
The index of symbol which has the maximum EVM in the specified code channel, timeslot and sub-frame.
4. Rms Mag Error: (double) [percent]
The RMS-averaged magnitude error of despreaded symbols in the specified code (spreading code length and code channel), timeslot and sub-frame.
5. Peak Mag Error: (double) [percent]
The peak symbol Mag Error in the specified code (spreading code length and code channel), timeslot and sub-frame.
6. Peak position of peak Mag Error: (int) [symbol]
The index of symbol which has the maximum mag error in the specified code channel, timeslot and sub-frame.
7. Rms Phase Error: (double) [deg]
The RMS-averaged phase error of despreaded symbols in the specified code (spreading code length and code channel), timeslot and sub-frame.
8. Peak Phase Error: (double) [deg]
The peak symbol Phase Error in the specified code (spreading code length and code channel), timeslot and sub-frame.
9. Peak position of peak phase Error: (int) [symbol]
The index of symbol which has the with maximum phase error in the specified code channel, timeslot and sub-frame.
10. Code Phase Error: (double) [deg]
The phase offset of the code channel relative to the DwPTS pilot time slot.
11. Number of Active Channels: (int) [NA]
The number of active channels in the specified timeslot and sub-frame.
12. Total Data Power: (double) [dBm]
The total data power of the selected timeslot and sub-frame. It is the power to be used to normalize CDP and CDE.
96
Chapter 3
Key and SCPI Reference
Measure
Key and SCPI Reference
not specified or n = 1
(Continued)
#. Result Name: (type of number) [unit] <explanation>
13. Code Domain Power (dBm): (double) [dBm]
The absolute signal power of specified code channel.
14. Code Domain Power (dB): (double) [dB]
The signal power of specified code channel normalized to the total signal power.
15. Code Domain Error (dBm): (double) [dB]
The code domain error of the specified code channel.
16. Code Domain Error (dB): (double) [dB]
The code domain error of the specified code channel.
17. Peak Active CDE (double) [dB]
The peak CDE in dB among the active channel in the specified timeslot.
18. Spreading Code Length of Peak Active CDE: (int) [NA]
The spreading code length of peak active CDE in the specified timeslot and sub-frame.
19. Code Channel No. of Peak Active CDE: (int) [NA]
The code channel No. of peak active CDE in the specified timeslot and sub-frame.
20. Peak CDE (double) [dB]
The peak CDE in dB among all the channel in the specified timeslot.
21. Spreading Code Length of Peak CDE: (int) [NA]
The spreading code length of peak CDE in the specified timeslot and sub-frame.
22. Code Channel No. of Peak CDE: (int) [NA]
The code channel No. of peak CDE in the specified timeslot and sub-frame.
23. Number of Midamble Shifts: (int) [NA]
The number of midamble shifts detected in the specified timeslot.
24. Mod Detection: (int) [NA]
The modulation mod has been detected. 0 stands for QPSK, 1 stands for 8PSK, 2 stands for 16QAM and 3 stands for 64QAM.
Chapter 3
97
Key and SCPI Reference
Measure
2 Code Length Vector (int) [NA]
Return the vector containing information of the spreading code length of each code channel, active or inactive, in the specified timeslot.
Key and SCPI Reference
There are 16 numbers in this vector. For the active channel, if its code length is less than the max spreading code length 16, the filled length value is duplicated (16/spreading code length) times. For the inactive channel, it is set to 16. The purpose of this vector is providing the code length information for each value in Active Flag Vector, Unnormalized Code Domain Power Vector, Normalized Code Domain Power Vector, Unnormalized Code Domain Error Vector, and Normalized Code Domain Error Vector.
Its data is aligned lined according to the increasing code index, for example:
There are five active code channels in one timeslot, C16(0), C8(1), C16(5), C4(2) and C8(7), as follows, and the blank block denotes inactive channel.
So the values in this vector should be {16, 16, 8, 8, 16, 16, 16, 16, 4, 4, 4, 4, 16, 16, 8, 8}.
Note: When the measurement fails to get synchronization or the slot under test is DwPTS/UpPTS or inactive, and so on, all the length in this vector will be unavailable.
3 Active Flag Vector (int) [NA]
Return the vector containing information whether or not the specified channel is active, as a series of comma-separated points. “1” denotes active, and “0” denotes inactive.
There are 16 numbers in this vector. If the active channel’s code length (specified by the value on the same position within the Code Length Vector) is less than the max spreading code length 16, the flag is duplicated (16/spreading code length) times. Its data is aligned according to the increasing code index.
Take Configuration 1 for example, the values in this vector should be {1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1}.
Note: When the measurement fails to get synchronization or the slot under test is DwPTS/UpPTS or inactive, and so on, all flags in this vector will be -999.
4 Unnormalized Code Domain Power Vector (float) [dBm]
Return the vector containing unnormalized CDP information for the specified code channel, as a series of comma-separated points.
There are 16 numbers in this vector. If the active channel’s code length (specified by the value on the same position within the Code Length Vector) is less than the max spreading code length 16, the power is duplicated (16/spreading code length) times. Its data is aligned according to the increasing code index.
Take Configuration 1 for example, the values in this vector should be {P1, Px, P2, P2, Px, P3, Px, Px, P4, P4, P4, P4, Px, Px, P5, P5}. Px is the power on code channel C16(x).
Note: When the measurement fails to get the result, for example, when failing to synchronize, or if the slot under test is DwPTS/UpPTS or inactive, all the values in this vector will be -999.
98
Chapter 3
5 Normalized Code Domain Power Vector (float) [dB]
Return the vector containing normalized CDP information for the specified code channel, as a series of comma-separated points.
There are 16 numbers in this vector. If the active channel’s code length (specified by the value on the same position within the Code Length Vector) is less than the max spreading code length 16, the power is duplicated (16/spreading code length) times. Its data is aligned according to the increasing code index.
Take Configuration 1 for example, the values in this vector should be {P1, Px, P2, P2, Px, P3, Px, Px, P4, P4, P4, P4, Px, Px, P5, P5}. Px is the power on code channel C16(x).
… …
Note: When the measurement fails to get the result, for example, when failing to synchronize, or if the slot under test is DwPTS/UpPTS or inactive, all the values in this vector will be -999.
6 Unnormalized Code Domain Error Vector (float) [dBm]
Return the vector containing unnormalized CDE information for the specified code channel, as a series of comma-separated points.
Key and SCPI Reference
Measure
Key and SCPI Reference
There are 16 numbers in this vector. If the active channel’s code length (specified by the value on the same position within the Code Length Vector) is less than the max spreading code length 16, the error is duplicated (16/spreading code length) times. Its data is aligned according to the increasing code index.
Take Configuration 1 for example, the values in this vector should be {E1, Ex, E2, E2, Ex, E3, Ex, Ex, E4, E4, E4, E4, Ex, Ex, E5, E5}. Ex is the power on code channel C16(x).
Note: When the measurement fails to get the result, for example, when failing to synchronize, or if the slot under test is DwPTS/UpPTS or inactive, all the values in this vector will be -999.
7 Normalized Code Domain Error Vector (float) [dB]
Return the vector containing normalized CDE information for the specified code channel, as a series of comma-separated points.
There are 16 numbers in this vector. If the active channel’s code length (specified by the value on the same position within the Code Length Vector) is less than the max spreading code length 16, the error is duplicated (16/spreading code length) times. Its data is aligned according to the increasing code index.
Take Configuration 1 for example, the values in this vector should be {E1, Ex, E2, E2, Ex, E3, Ex, Ex, E4, E4, E4, E4, Ex, Ex, E5, E5}. Ex is the power on code channel C16(x).
Chapter 3
Note: When the measurement fails to get the result, for example, when failing to synchronize, or if the slot under test is DwPTS/UpPTS or inactive, all the values in this vector will be -999.
99
Key and SCPI Reference
Measure
8 Symbol Magnitude Error Vector (float) [percent]
Return symbol magnitude error vector for the specified code channel and spread code length, as a series of comma-separated points.
Key and SCPI Reference
The length of the vector depends on the number of symbols in the code channel.
Note: When the measurement fails to get the result, for example, when failing to synchronize, or if the slot under test is DwPTS/UpPTS or inactive, this vector will return a series of -999 with length 44.
9 Symbol Phase Error Vector (float) [deg]
Return symbol phase error vector for the specified code channel and spread code length, as a series of comma-separated points.
The length of the vector depends on the number of symbols in the code channel.
Note: When the measurement fails to get the result, for example, when failing to synchronize, or if the slot under test is DwPTS/UpPTS or inactive, this vector will return a series of -999 with length 44.
10 Symbol EVM Vector (float) [percent]
Return symbol EVM vector for the specified code channel and spread code length, as a series of comma-separated points.
The length of the vector depends on the number of symbols in the code channel.
Note: When the measurement fails to get the result, for example, when failing to synchronize, or if the slot under test is DwPTS/UpPTS or inactive, this vector will return a series of -999 with length 44.
11 Unnormalized I/Q Symbol Polar Vector (float) [volts]
Return unnormalized I/Q data of demod symbols in the specified code channel (Code Length) and code layer (Spread Code Length), as a series of comma-separated points. The I values are listed first in each pair, using the 0 through even-indexed values. The Q values are the odd-indexed values.
The length of the vector depends on the number of symbols in the code channel.
Note: When the measurement fails to get the result, for example, when failing to synchronize, or if the slot under test is DwPTS/UpPTS or inactive, this vector will return a series of -999 with length 88.
12 Normalized I/Q Symbol Polar Vector (float) [NA]
Return normalized I/Q data of demod symbols in the specified code channel (Code Length) and code layer (Spread Code Length), as a series of comma-separated points. The I values are listed first in each pair, using the 0 through even-indexed values. The Q values are the odd-indexed values.
The length of the vector depends on the number of symbols in the code channel.
Note: When the measurement fails to get the result, for example, when failing to synchronize, or if the slot under test is DwPTS/UpPTS or inactive, this vector will return a series of -999 with length 88.
100
Chapter 3
Loading...