The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
MAXIMUM RATINGSAll Ratings: TC = 25°C unless otherwise specified.
Symbol
Parameter
G
C
E
APT15GP90B
G
UNIT
C
E
V
CES
V
V
GEM
I
C1
I
C2
I
CM
SSOA
P
TJ,T
T
GE
Collector-Emitter Voltage
Gate-Emitter Voltage
Gate-Emitter Voltage Transient
Continuous Collector Current @ T
Continuous Collector Current @ TC = 110°C
Pulsed Collector Current 1 @ TC = 150°C
Switching Safe Operating Area @ TJ = 150°C
Total Power Dissipation
D
Operating and Storage Junction Temperature Range
STG
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
L
C
STATIC ELECTRICAL CHARACTERISTICS
Symbol
BV
V
GE(TH)
V
CE(ON)
I
CES
I
GES
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (V
CES
Gate Threshold Voltage (VCE = VGE, IC = 1mA, Tj = 25°C)
Collector-Emitter On Voltage (V
Collector-Emitter On Voltage (VGE = 15V, IC = 15A, Tj = 125°C)
Collector Cut-off Current (VCE = V
Collector Cut-off Current (VCE = V
Gate-Emitter Leakage Current (VGE = ±20V)
GE
CES
CES
= 25°C
= 0V, IC = 250µA)
GE
= 15V, IC = 15A, Tj = 25°C)
, VGE = 0V, Tj = 25°C)
, VGE = 0V, Tj = 125°C)
900
±20
Volts
±30
43
21
Amps
60
60A @ 900V
291
-55 to 150
Watts
°C
300
MINTYPMAX
UNIT
900
34.56
Volts
3.23.9
2.7
2
2
250
2500
±100
µA
nA
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
050-7470 Rev C 8-2004
DYNAMIC CHARACTERISTICS
1
APT15GP90B
Symbol
C
C
oes
C
res
V
GEP
Q
Q
Q
SSOA
Characteristic
Input Capacitance
ies
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
g
Gate-Emitter Charge
ge
Gate-Collector ("Miller ") Charge
gc
Switching Safe Operating Area
3
TJ = 150°C, R
15V, L = 100µH,V
t
d(on)
t
d(off)
E
E
E
t
d(on)
t
d(off)
E
E
E
t
t
on1
on2
t
t
on1
on2
Turn-on Delay Time
Current Rise Time
r
Turn-off Delay Time
Current Fall Time
f
Turn-on Switching Energy
Turn-on Switching Energy (Diode)
Turn-off Switching Energy
off
Turn-on Delay Time
Current Rise Time
r
Turn-off Delay Time
Current Fall Time
f
Turn-on Switching Energy
Turn-on Switching Energy (Diode)
Turn-off Switching Energy
off
Inductive Switching (25°C)
4
5
6
Inductive Switching (125°C)
4 4
55
66
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
R
ΘJC
R
ΘJC
W
Characteristic
Junction to Case (IGBT)
Junction to Case (DIODE)
Package Weight
T
Test Conditions
Capacitance
= 0V, V
V
GE
CE
f = 1 MHz
Gate Charge
= 15V
V
GE
V
= 450V
CE
I
= 15A
C
= 5Ω, V
G
V
= 600V
CC
V
= 15V
GE
I
= 15A
C
R
= 5Ω
G
T
= +25°C
J
V
= 600V
CC
V
= 15V
GE
I
= 15A
C
R
= 5Ω
G
T
= +125°C
J
= 25V
= 900V
CE
GE
MINTYPMAX
1100
=
60
TBD
TBD
MINTYPMAX
120
32
7.5
60
10
27
9
14
33
55
430
200
9
14
70
100
790
500
.50
N/A
5.90
UNIT
pF
V
nC
A
ns
µJ
ns
µJ
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, I
3 See MIL-STD-750 Method 3471.
4E
is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
on1
adding to the IGBT turn-on loss. (See Figure 24.)
5E
is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
on2
loss. (See Figures 21, 22.)
6E
is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
off
APT Reserves the right to change, without notice, the specifications and information contained herein.
050-7470 Rev C 8-2004
includes both IGBT and FRED leakages
ces
60
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
50
50
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
40
APT15GP90BTYPICAL PERFORMANCE CURVES
40
30
30
TC=25°C
20
20
, COLLECTOR CURRENT (A)
C
10
0
100
250µs PULSE TEST
80
60
TC=125°C
01234560123456
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(V
<0.5 % DUTY CYCLE
= 15V)FIGURE 2, Output Characteristics (V
GE
, COLLECTOR CURRENT (A)
10
C
0
16
IC = 15A
TJ = 25°C
14
12
10
8
40
, COLLECTOR CURRENT (A)I
20
C
0
02468101214010203040506070
VGE, GATE-TO-EMITTER VOLTAGE (V) GATE CHARGE (nC)
TJ = -55°C
TJ = 25°C
TJ = 125°C
6
4
, GATE-TO-EMITTER VOLTAGE (V)I
2
GE
0
TC=125°C
TC=25°C
V
V
CE
= 180V
CE
= 450V
V
CE
GE
= 720V
= 10V)
FIGURE 3, Transfer CharacteristicsFIGURE 4, Gate Charge
3.5
2.5
1.5
4
3
IC =30A
IC = 15A
IC = 7.5A
2
6
5
4
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC =30A
IC = 15A
3
IC = 7.5A
2
1
1
, COLLECTOR-TO-EMITTER VOLTAGE (V)I
CE
0
6810121416-50-250255075100 125
, GATE-TO-EMITTER VOLTAGE (V)TJ, Junction Temperature (°C)
V
FIGURE 5, On State Voltage vs Gate-to- Emitter VoltageFIGURE 6, On State Voltage vs Junction Temperature
GE
, COLLECTOR-TO-EMITTER VOLTAGE (V)V
CE
1.2
VGE = 15V.
0.5
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
60
1.15
50
1.10
1.05
1.0
0.95
0.9
VOLTAGE (NORMALIZED)
0.85
, COLLECTOR-TO-EMITTER BREAKDOWNV
CES
0.8
-50 -250255075100 125-50 -250255075 100 125 150
BV
FIGURE 7, Breakdown Voltage vs. Junction TemperatureFIGURE 8, DC Collector Current vs Case Temperature
T
, JUNCTION TEMPERATURE (°C)TC, CASE TEMPERATURE (°C)
J
40
30
20
DC COLLECTOR CURRENT(A)V
10
C,
I
0
050-7470 Rev C 8-2004
14
12
V
= 15V
10
GE
8
80
V
=15V,T
70
GE
60
50
40
6
30
V
=15V,T
=25°C
J
4
, TURN-ON DELAY TIME (ns)
d(ON)
V
= 600V
CE
T
= 25°C, TJ =125°C
J
2
R
= 5Ω
G
L = 100 µH
0
51015202530355101520253035
, TURN-OFF DELAY TIME (ns)
20
V
10
0
= 600V
CE
R
= 5Ω
G
L = 100 µH
(OFF)
d
GE
ICE, COLLECTOR TO EMITTER CURRENT (A)ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector CurrentFIGURE 10, Turn-Off Delay Time vs Collector Current
35
R
30
25
= 5 Ω, L = 100µH, V
G
CE
= 600V
120
100
80
R
= 5 Ω, L = 100µH, V
G
= 600V
CE
T
= 125°C, VGE = 15V
J
20
60
15
RISE TIME (ns)t
r,
10
T
= 25 or 125°C,V
J
GE
= 15V
FALL TIME (ns)t
f,
40
T
= 25°C, VGE = 15V
J
APT15GP90B
=125°C
J
1200
1000
800
600
20
0
VCE = 600V
VGE = +15V
RG = 5 Ω
T
= 125°C, VGE = 15V
J
5
0
51015202530355101520253035
I
, COLLECTOR TO EMITTER CURRENT (A)ICE, COLLECTOR TO EMITTER CURRENT (A)
CE
FIGURE 11, Current Rise Time vs Collector CurrentFIGURE 12, Current Fall Time vs Collector Current
2000
VCE = 600V
VGE = +15V
RG = 5 Ω
1500
T
= 125°C,V
J
GE
=15V
1000
400
500
, TURN ON ENERGY LOSS (µJ)t
ON2
0
51015202530355101520253035
I
, COLLECTOR TO EMITTER CURRENT (A)ICE, COLLECTOR TO EMITTER CURRENT (A)
CE
FIGURE 13, Turn-On Energy Loss vs Collector CurrentFIGURE 14, Turn Off Energy Loss vs Collector Current
2500
VCE = 600V
VGE = +15V
TJ = 125°C
T
= 25°C,V
J
GE
=15V
E
on2,
30A
2000
, TURN OFF ENERGY LOSS (µJ)t
OFF
200
2000
1500
0
VCE = 600V
VGE = +15V
RG = 5 Ω
T
= 25°C, VGE = 15V
J
1500
1000
500
SWITCHING ENERGY LOSSES (µJ)E
0
010203040500255075100125
FIGURE 15, Switching Energy Losses vs. Gate ResistanceFIGURE 16, Switching Energy Losses vs Junction Temperature
050-7470 Rev C 8-2004
E
30A
on2,
E
30A
off,
E
9A
off,
R
, GATE RESISTANCE (OHMS)TJ, JUNCTION TEMPERATURE (°C)
G
E
E
E
on2,
on2,
off,
15A
9A
15A
1000
500
E
9A
SWITCHING ENERGY LOSSES (µJ)E
on2,
E
15A
off,
0
E
30A
off,
E
15A
on2,
E
9A
off,
Note:
Duty Factor D =
t
1
/
t
2
Peak TJ = PDM x Z
θJC
+ T
C
t
1
t
2
P
DM
3,000
70
APT15GP90BTYPICAL PERFORMANCE CURVES
F)
1,000
P
500
C
ies
60
50
40
100
50
C, CAPACITANCE (
C
oes
C
res
30
, COLLECTOR CURRENT (A)
20
C
I
10
10
0102030405002004006008001000
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)VCE, COLLECTOR TO EMITTER VOLTAGE
0
Figure 17, Capacitance vs Collector-To-Emitter VoltageFigure 18, Minimum Switching Safe Operating Area
0.60
0.50
0.40
0.30
0.20
, THERMAL IMPEDANCE (°C/W)
0.10
JC
θ
Z
0
10
0.9
0.7
0.5
0.3
0.1
SINGLE PULSE
0.05
-5
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
-4
10
-3
10
-2
10
-1
10
RECTANGULAR PULSE DURATION (SECONDS)
1.0
RC MODEL
Junction
temp (°C)
0.222
Power
(watts)
0.278
Case temperature(°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
0.00474F
0.125F
210
100
50
TJ = 125°C
TC = 75°C
10
D = 50 %
, OPERATING FREQUENCY (kHz)
VCE = 600V
RG = 5 Ω
MAX
5
F
010203040
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
Fmin(f,f)
=
maxmax1 max 2
f
f
P
max1
max 2
diss
=
=
=
0.05
ttt t
++ +
d( on )rd (off )f
PP
−
disscond
EE
+
on2off
TT
−
JC
R
JC
θ
050-7470 Rev C 8-2004
APT15GP90B
*DRIVER SAME TYPE AS D.U.T.
I
C
V
CLAMP
100uH
V
TEST
A
A
B
D.U.T.
DRIVER*
V
CE
Figure 24, E
ON1
Test Circuit
V
CC
I
C
D.U.T.
Figure 21, Inductive Switching Test Circuit
90%
t
d(off)
V
90%
CE
APT15DF100
A
Gate Voltage
DrainVoltage
TJ = 125°C
Gate Voltage
t
10%
d(on)
t
r
5%
Drain Current
90%
5%
10%
DrainVoltage
Switching Energy
TJ = 125°C
Figure 22, Turn-on Switching Waveforms and Definitions
t
f
10%
0
Drain Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
T0-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
6.15 (.242) BSC
20.80 (.819)
21.46 (.845)
Collector
0.40 (.016)
0.79 (.031)
2.21 (.087)
2.59 (.102)
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
050-7470 Rev C 8-2004
4.50 (.177) Max.
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
5.45 (.215) BSC
2-Plcs.
15.49 (.610)
16.26 (.640)
5.38 (.212)
6.20 (.244)
3.50 (.138)
3.81 (.150)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
Gate
Collector
Emitter
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.