Advanced Hardware Architectures AHA4012B-006PJI, AHA4012B-006PJC Datasheet

Pr oduct Specification
AHA4012B
1.5 MBytes/sec Reed-Solomon Error Correction Device
Advanced Hardware
Architectures, Inc.
2365 NE Hopkins Court
509.334.1000
Fax: 509.334.9000
e-mail: sales@aha.com
http://www.aha.com
TM
Advanced Hardware
Architectures
The Data Coding Leader
PS4012B-0100

Table of Contents

Advanced Hardware Architectures, Inc.
1.0 Introduction
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 Conventions, Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2.1 Definition of Correction Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2.0 Functional Description
2.1 Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2.2 Correcting Capability and Polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2.3 Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2.4 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.5 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.5.1 Shortened Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.6 Reset and Initialization Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
2.6.1 Initialization Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
2.7 Encode, Decode or Pass-through Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.8 Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.9 Data Rate and Latencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.9.1 Burst Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.9.2 Continuous Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.10 Reed-Solomon (ECC) Module and Error Rate Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.11 Determining Decoder Performance Boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.12 Erasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.0 Operational Description
3.1 Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.2 Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.3 Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.4 Data Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
4.0 Signal Specifications
4.1 Input Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4.2 Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4.3 Power & Ground Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4.4 AC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4.5 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
5.0 Packaging
6.0 Ordering Information
6.1 Available Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
6.2 Part Numbering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
7.0 Related Technical Publications Appendix A Appendix B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
PS4012B-0100
i
Advanced Hardware Architectures, Inc.

Figures

Figure 1: Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Figure 2: Typical Applications Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Figure 3: Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Figure 4: Data Input and Output Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Figure 5: Burst and Continuous Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Figure 6: Symbol (Byte) Error Rate Performance Curves for Codeword Length = 255 Bytes. . . . . . . . . . . . . . . .11
Figure 7: CLK Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 8: Reset and Initialization Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 9: Data Input - Input Buffer Always Ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 10: Data Input - Buffer Not Ready. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 11: Data Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 12: CRTN Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
ii
PS4012B-0100
Advanced Hardware Architectures, Inc.

Tables

Table 1: Initialization Register Settings for Encode, Decode and Pass-Through Operations. . . . . . . . . . . . . . . . .7
Table 2: Burst Operation Using 6 MHz Clock and 1 Clock/Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Table 3: Continuous Operation Using 6 MHz Clock and Specified Clocks/Byte. . . . . . . . . . . . . . . . . . . . . . . . . .10
Table 4: Continuous Operation for IESS-308 Codes Using 6 MHz Clock and Specified Clocks/Byte . . . . . . . . .10
PS4012B-0100
iii
Advanced Hardware Architectures, Inc.

1.0 INTRODUCTION

The AHA4012B is a single chip integrated circuit that implements a Reed-Solomon Forward Error Correction alg ori thm. The AHA4012B is the lowest cost member of the AHA PerFEC family of forward error correction (FEC) devices conforming to the Intelsat IE S S- 308 specific ation. Data flow through the devic e can occur in bursts at 6 MBytes per second or contin uous at 1.5 MBytes per second maximum.
The device supports several programmable parameters, including; block size, error threshold, number of check bytes and mode of operations. Shortened blocks are supported without require­ment of zero padding. The dat a input port is u sed to initialize the progr ammable parameters a nd the two on-chip buffers are used to input and output data. Discontinuities in data flow may be controlled by dedicated control pins.
High operating frequenc y, in put and output data rate flexibility, low processing latency and various programmable parameters make this device ideal for many applications including: DTV, DBS, ADSL, Satellite Communications, ISDN, High Performance Modems and networks.
This specification provides full electrical and mechanical information to help a system engineer develop a system using AHA401 2B. This document contains descriptions on correction terms, pinout, functions and featu res , DC and AC ch ar acteristics, package and mechanical specifications, ordering information and Related Technical Publications. Software simulat ion of the RS code as implemented in the device is also available. Please contact AHA or its authorized sa les representatives worldwide for copies of Related Technical Publications and software simula t io n.

1.1 FEATURES

PERFORMANCE:
• Polynomial complies to Int elsat IESS-308;
RTCA DO-217 Appendix F, Revision D and proposed ITU-TS SG-18 (Formerly CCITT SG-
18) Standards
• 6 MBytes/sec burst transfer rate with a 6 MHz
clock for all block lengths
• Maximum channel rate of 1.5 MBytes/sec
continuous for block lengths from 54 bytes through 255 bytes using a 6 MHz clock
• Processi n g latency tim e less than 101 µsec in
continuous operation for block lengths of 100 bytes
FLEXIBILITY:
• Programmable to correc t fro m 1 to 10 error by tes or 20 erasure bytes per block
• Block lengths programmable from 3 to 255 bytes
• Encode, decode or pass-through capabi li ty in­line with data flow
• Continuous or burst mode operation
• Programm a ble error th re shold to help determine channel performance
SYSTEM INTERFAC E:
• Byte wide synchronous I/O ports with internal buffering on both ports
• Input data pins used for programmable parameters
• Dedicated control pins permit discontinuities in system data flow
OTHERS:
• 44 pin PLCC; 50 mil lead pitch
• Pin and plug compatible with the higher performance AHA4011
• Software emulation of the algorithm available
1.2 CONVE NTIONS, NOTATIONS AND
DEFINITIONS
– Certain signals are logically true at a voltage
defined as “low” in the dat a sheet. All such signals have an “N” appended to the end of the signal name. For example, RSTN and DSON.
– “Signal assertion” means the output signal is
logically true.
– Hex values are defined with a pr efix of “0x” , such
as “0x10”.
– A range of signal names is denoted by a set of
colons between t he number s. Most sign ific ant bi t is always shown first, followed by least significan t bit. For example, DI[7:0] represents Data Input Bus 7 through 0.
– A product of two variables is expressed with an
“×”, for example, N × C Length multiplied by Input clocks/byte.
– Mega Bytes per second is referred to as MBytes/
sec or MB/sec.
– Channel Rate is defined as transfer rate includi ng
user data and error correction check bytes.
represents Codeword
i
PS4012B-0100 Page 1 of 24
Advanced Hardware Architectures, Inc.

1.2.1 DEFINITION OF CORRECTION T E RMS

TERM
NAME
(other references)
Message Length
K
(user data or message bytes)
Check symbols
R
(parity or redundan cy)
Codeword Length
N
(block lengt h)
t Error Corrections
P Error Threshold
e Number of Errors
E Number of Erasures
G Burden of Correction
DEFINITION
Number of user data symbols in one message bloc k. Size of a symbol in AHA4012B is 8-bits. Message length is K = N R. The first message byte is referred to as X Symbols appended to the user data to detect and correct errors. The number of check symbols required in a system is R E + 2e.* The first check symbol is referred to as Y
.
is Y
0
Sum of message and check symbols. N = K + R. Maximum number of error corrections performed
by the device. The value is t = Integer . The threshold limit to determine uncorrectability
of a Codeword and the number of check bytes allocated for correct io n-only pur po ses (not for detection). An error is defined as an erroneous byte whose correct value and position within the message block are both unknown. An erasure is defined as a n error whose posi tion is known within the message block.**
A measure of the bur den of correction bein g placed on the capabilities of the device for that message block. The value G = 2e + E.
; the last message byte is X0.
K−1
; the last check symbol
R−1
NK
-------------­2
RANGE
(number of bytes)
1 through 253 (1, 2, 3, 4 . . . 253)
2 through 20 in increments of 1 (2, 3, 4 . . . 20)
3 through 255 (3, 4, 5, 6 . . . 255)
1 through 10 (1, 2, 3 . . . 10)
2 through 20 (2, 3, 4 . . . 20)
0 through N
0 through N
0 through R
* For every 2 check bytes, the AHA4012B can correct either 2 erasures or 1 error. ** An erasure is detected by a parity detector or a signal dropout detector. The presence of an erasure is
indicated by asserting the ERASE signal when the erased byte is clocked into the AHA4012B.

2.0 FUNCTIONAL DESCRIPTION

This section describes an architectural overview of the chip and its many functions, features and operating modes. The block diagram for the chip sh ows the Reed-Solomon ECC mod ule, the Input and Output Buffers and their associated control. All input an d output data are cl ocked on the rising edge of CLK.

2.1 FUNCTIONAL OVERVIEW

The AHA4012B Reed-Solomon codec (coder/ decoder) is the lowest cost member of the AHA PerFEC devices. This single chip, three-layer metal, CMOS device can operate in encode, decode or pass­through modes.
TM
family of forward error correction (FEC)
The ECC core imp lements a full err or correcting R eed-Solomon decoder. This code is capable of correct ing up to 10 (t = 10 ) byte-errors or 20 (t = 10) erasures in a block.
Page 2 of 24 PS4012B-0100
Advanced Hardware Architectures, Inc.
R
# erasures 2 # errors()+
The ECC core has three phases of operation: Data In, Calculation and Data Out. Data to be processed is first input into a singl e po rted Input Buffer using a control signal DSIN. ECC core arbitrates fo r the input data out of th e Input Buffer. ECC core has access to the Input Buffer on clock edges where DSIN is not asserted.
Each block is processed within the ECC core and calculations are made. The entire block is processed through the ECC core and transferred into the Output Buf fer. The device asserts RDYON signal and holds active until the Output Buffer is completely emptied.
The ECC core loads the Output Buffer in reverse order fo r either mode. Da ta is strobed o ut of the device in forward order.
The use of internal buffers is restricted per the rules defined in Section 2.9
Latencies
.
Data Rate and
Maximum delay required for each block of a given length to pass thr ough the de vice is fixed and does not vary with the location or the number of errors received. This delay (or latency), expressed in the number of clocks is discussed in a later section.
2.2 CORRECTING CAPABILITY AND
P OLYNOMIALS
For every 2 check bytes, the de c oder corrects either 2 erasures or 1 error. An erasure can be determined with a parity detector or a signal dropout detector external to the chip. An erasure is indicated by the ERASE signal when the erased byte is clocked into the device.
Correcting “erasures” takes only half as much of the correction capa bility of the RS code as it takes to correct “err ors”, since the p osition informat ion is already known for “er asures”. The correction abil ity of the code is bounded as:
Valid block length (N) is defined by the relationship:
1
R
255≤≤+
N
where R ranges from 2 to 20.
A complete codeword can therefore ra nge from a minimum of 3 to a maximum of 255 bytes.
For further discussion on error rate performance, refer to Section 2.10
(ECC) Module and Error Rate Performa nce
Reed-Solomon
.

Figure 1: Block Diagram

RDYIN
RDYIN CLK
ERASE DI[7:0] CLK
DI
Compared w ith other codes , RS codes require relatively few “overhead” check bytes to be added to the data stream to achieve a high degree of er ror detection and correction. Since the AHA4012B deals with bytes (or symbols) rather than with individual bits, when a byte is in error it does not matter how many bits within the byt e are corrupted; it is counted as one error.
The Reed-Solomon code is defined over the finite field GF(28). The field defining primitive polynomial is:
Px()x8x7x2x
1++++=
and the generator polynomial , dep endent on the variable R, is given by:
119R+
()
Gx
=
i
αi–()
x
120=
where R {2, 3, 4, 5, . . . 20} for the AHA4012B. This polynomial is specifie d in international standards, Intelsat IESS-308; RTCA DO-217 Appendix F, Revision D and the proposed ITU-TS SG-18 (Formerly CCITT SG-18).
REGISTER
INPUT BUFFER
367x9
RSTN
RSTN
DSIN
DSON
DSIN
DSON
CONTROL
RDYON
RDYON CRTN DO[7:0] ERR
ECC CORE
OUTPUT BUFFER
REGISTER
CRTN
256x9
DO
A typical system bloc k diagram is shown in the
following figure.
GND
VDD
GND
VDD
PS4012B-0100 Page 3 of 24
Advanced Hardware Architectures, Inc.

Figure 2: Typical Applications Diagram

ENCODER COMMUNICATIONS DECODER
DATA SOURCE
SYSTEM
CONTROLLER
8 8 8 8
A
AHA4012B
ECC COPROCESSOR
BLOCK FORMAT AT:
A B C
B C
KDATA PLUS R “DUMMY” BYTES KDATA PLUS R CHECK BYTES KDATA BYTE S

2.3 SIGNAL DESCRIPTIONS

CHANNEL
1 TO x BITS WIDE
AHA4012B
ECC COPROCESSOR
DATA SINK
SYSTEM
CONTROLLER
Input Pins
DI[7:0] Data Input Bus. The input byte and ERASE
are latched on the rising edge of the clock when both DSIN and RDYIN are active. I f either DSIN or RDYIN are inactive, the DI and ERASE are ignored.
DSIN Data Input Strobe. Enables data from DI to
be loaded into the chip. When RDYIN is active, DSIN being active on the rising edge of the cl ock loads the input data i n the device. DSIN must be activ e for o ne c lock edge only per each input byte. DSIN is ignored if RDYIN is inactive. Signal is active low.
DSON Data Output Strobe. This input strobe
acknowledges to the chip that data available on the Outpu t Bus, DO, has be en received by the system. The device uses this strobe to increment its internal address counter to the next data location. DSON must be active for one clock edge only p er each output byte. DSON is ignored if RDYON is inactive. Active low.
ERASE Erasure input flag fo r symbol currently on
DI. Signal is active high. ERASE signal is used for marking all check Bytes as erasures (dummy check Bytes) during encode operation. It is also used to mark input symbols that contain errors during decoding. If not used, conn ect this signal to ground.
RSTN Reset. Input pi n. When RSTN is active and
DSIN and DSON are inactive, the device forces all internal control circuitry into a known state and initializes all data path elements. RSTN is active during Initialization Phase. In this phase, chip parameters are programmed by using DI and DSIN. Signal is active low.
CLK Clock. System clock input. Refer to
Section 4.4 for clock requirements.
AC Electrical Characteristics
Output Pins
RDYIN Ready Input. Indicates the chip's abili t y to
accept data input on DI. If ac tive, DSIN is allowed to enable the loading of input data on DI. When inactive, DSIN is ignored. Signal is active low.
DO[7:0] Data Output. The output byte is available
on this bus. The val ue of the outpu t byte is undefined if RDYON is inactive. Requ ires an acknowledge strobe, DSON, at a rising edge of the clock to increment internal address counter and output the next location in the buffer. DO bus is al w ays driven and is not tristated by the device.
R D Y O NReady Output. This output pin indicates the
chip's abil ity to gener ate output data. If active, DSON is allowed to increment the internal address counter for the next data byte. When inactive DSON is ignored and DO is undefined. Signal is active low.
CRTN Correctable. The output pin when active
indicates the blo ck did not exceed th e error threshold programmed by P. Error threshold must be programmed with the same value as the number of chec k symbols R if erasures are not used. This signal is valid when the first mess age byte , X the block is available out of the chip. During all other times the signal is undefined. Signal is valid for at least one clock. Active low.
ERR Error. Output pin indicates the current
value on DO[7:0] is a corrected byte. Active high.
K−1
, of
Page 4 of 24 PS4012B-0100
Advanced Hardware Architectures, Inc.

2.4 PINOUT

Figure 3: Pinout

INPUT
DI0
DI1
DI2
DI3
65432
7
VDD
8
GND
9
VDD
10
GND
11
GND
12
VDD
13
*NC *NC
VDD GND GND
AHA4012B-006 PJC
14 15 16 17
1819202122232425262728
DO0
DO1
DO2
DO3
OUTPUT
*NC = No connect, reserved for future considerations.

2.5 DATA FLOW

DI4
DI5
DI6
1
4443424140
DO4
DO5
DO6
DI7
DISN
TM
DO7
VDD
CLK
ERR
GND
CRTN
39 38 37 36 35 34 33 32 31 30 29
VDD VDD GND VDD RSTN ERASE DSON RDYIN RDYON GND GND
device requires reinitialization only when the parameters are changed or a reset is required.
The device processes data as “blocks” containing Message and Check Bytes. Order of input bytes must be f irst message byte X last message byte X
through last check byte Y0. The device
Y
R−1
, followed by first check byte
0
through
K−1
contains an internal counter to keep track of start and end of block. No external signal is required to indicate start and end of block. The device processes the block in this manner:
- a block is clocked into the Input Buffer;
- transferred into the ECC module ;
- passed to t he Output Buffer in the reverse order from what was received at the Input Port; and
- clocked out through the Output Port via the Output Buffer. Consecutive blocks may be input into the Input Buffer while the Output Buffer is be ing emptied.
Data is available through the Output Port in
forward order . Data is clocked out in the same order as it is input.

2.5.1 SHORTENED BLOCKS

The device is first initialized for various programmable parameters including: Erasure Multiplier, Error Threshold, Number of Check bytes, Number of Message bytes per block, Block Length and a Control byte. Following t his six-byte initialization, the device may be used to encode, decode or pass-through multiple blocks of data. The
Figure 4: Data Input and Output Order
. . . . . .
Y1Y
0
Last Byte
In
X
Y
X
1
0R-2YR-1
X
K-2XK-1
First Byte
In
INPUT
BUFFER
This device allows for shortened RS blocks, thus not requiring zero padding when decoding. During encoding, converseley, zero padding is not performed. When the device is programmed to decode a block of less than 244 Bytes, only the message Bytes followed by check Bytes are sent. Prepending with zero value Bytes to fill out the block to 255 Bytes is not required.
ECC
Core
OUTPUT BUFFER
Data Available Forward Order
Last Byte Out
First Byte Out
Y
0
.
.
.
Y
R-1
X
0
.
.
.
X
K-1
PS4012B-0100 Page 5 of 24
Loading...
+ 19 hidden pages