1. Unfasten two screws of CF bracket and then take out the CF card bracket.
Revision: 1.0
Figure 1
2. Put the CF card into CF bracket (figure 2).
Please note that the direction of CF card and CF bracket (figure 3).
Figure 2 figure 3
7
Page 8
Revision: 1.0
3. Push CF card to the bottom of bracket to stop the forwarding at the bend of bracket.
Figure 4
4. Push them into the CF slot of system machine and then fasten the two original screws to
fix CF bracket.
Figure 5
8
Page 9
2.2 Installing the Mini PCI-e interface card
1. Unfasten the six screws to take out the heat sink cover.
Revision: 1.0
Figure 6
2. Maybe you need to force open the heat sink cover.
Figure 7
9
Page 10
3. Align the notch key on the Mini PCI-e card with rib on the slot.
Revision: 1.0
4. Push Mini PCI-e card horizontally
.
Figure 8
Figure 9
10
Page 11
5. Using two M2 screws to fasten Mini PCI-e card.
Revision: 1.0
Figure 10
6. Close the heat sink cover using the original screws to fasten heat sink cover and base.
(Please refer to figure 6)
11
Page 12
2.3 Installing the DDR2 SO-DIMM procedures
1. Unfasten the screw of the DDR cover and open the cover.
Revision: 1.0
Figure 11
2. Align the notch key on DDR2 SO-DIMM with rib on the DDR2 socket.
Figure 12
12
Page 13
Revision: 1.0
3. Push DDR2 SO-DIMM horizontally and make sure it is locked by hooks of two sides of
DDR2 socket.
Figure 13
4. Recover the DDR cover and fasten it with the screw.
.
13
Page 14
2.4 Assemble/Disassemble the DIN mounting bracket.
1. Hook the spring of the DIN mounting bracket onto the upper of DIN rail.
Revision: 1.0
Figure 14
2. Press down the AR-ES6050FLD-W system machine and push it forward lightly.
STEP 1
STEP 2
Figure 15
14
Page 15
3. Make sure they are locked together.
Revision: 1.0
Figure 16
4. Disassemble the DIN mounting bracket of AR-ES6050FLD-W system. Press down the
AR-ES6050FLD-W system machine and pull it back lightly.
STEP 1
STEP 2
Figure17
15
Page 16
Appendix. Cable Pin Define
1. Com cable
Revision: 1.0
110mm
2. Power Cable
BLACK
BLACK
YELLOW
YELLOW
16
Page 17
3. Switch Cable
Revision: 1.0
17
Page 18
3AR-B6050 Board Guide
3.1 Block Diagram
Revision: 1.0
18
Page 19
AR-B6050 Board Specifications
Revision: 1.0
Intel Atom N450 1.66GHz
Intel Graphics Media Accelerator 950
1 x SO-DIMM supports DDRII up to 2GB(Memory DDR2 data transfer rates of 667
MT/s)
1 x VGA
4 x USB2.0
2 x SATA
1 x CF II
2 x RS-232
2 x GbE (Realtek RTL8111D)
1 x PCI-104 & 1 x Mini-PCIe
8-bit GPIO
19
Page 20
Revision: 1.0
3.2 AR-B6050 H/W Information
This section describes the installation of AR-B6050. At first, it shows the Function
diagram and the layout of AR-B6050. It then describes the unpacking information
which you should read carefully, as well as the jumper/switch settings for the
AR-B6050 configuration.
The BIOS Setup Utility is a hardware configuration program built into your computer’s BIOS.
To activate the BIOS Utility, press F2 during POST (when “Press <F2> to enter Setup”
message is prompted on the bottom of screen). Press <F12> during POST to enter
multi-boot menu. In this menu, user can change boot device without entering BIOS SETUP
Utility.
This chapter describes the BIOS menu displays and explains how to perform common
tasks needed to get the system up and running. It also gives detailed explanation of the
elements found in each of the BIOS menu. The following topics are covered:
Main Setup
Advanced Setup
Security Setup
Boot Setup
Exit Setup
26
Page 27
Revision: 1.0
3.4.1 Main Setup
Once you enter the InsydeH2O BIOS™ Setup Utility, the Main Menu will appear on the
screen. Use the arrow keys to highlight the item and then use the <F5> <F6> keys to select
the desired value in each item.
Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields,
you can press the <F1> key, and the relevant information will be displayed.
Item OptionDescription
Set the system date. Note that the ‘Day’
automatically changes when you set the
date.
Set the system time.
This field shows the CPU type and speed
of the system.
This field displays the bus speed of the
system.
System Date
System Time
Processor
Type
System Bus
Speed
Format : MM/DD/YYYY
(month/day/year)
Format: HH:MM:SS
(hour:minute:second)
N/A
N/A
System
Memory
N/A
Speed
This field displays the real speed of the
memory.
27
Page 28
Revision: 1.0
Cache RAM
Total Memory
SODIMM 0
BIOS Revision
N/A
This field displays the cache ram of the
CPU.
N/A Displays the total memory available.
N/A
This field displays the memory of the
SODIMM0.
N/A Displays system BIOS version.
28
Page 29
3.4.2 Advanced Chipset Setup
Revision: 1.0
Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields,
you can press the <F1> key, and the relevant information will be displayed.
Item Option Description
Peripheral
Configuration
IDE
Configuration
Serial Port A
Serial Port B
Azalia Audio control
IDE Controller
HDC Configure as
Enter the Peripheral Configuration
menu.
Enter the IDE Configuration menu.
Init Display First
IGD-Device2, Function1
Video
Configuration
IGD-Frame Buffer Size
IGD-DVMT Size
Enter the Video Configuration menu.
IGD-Boot Type
IGD-LCD Panel type
Hardware
Monitor
N/A
This field displays the Hardware
Monitor of the system.
29
Page 30
3.4.3 Security Setup
Revision: 1.0
Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields,
you can press the <F1> key, and the relevant information will be displayed.
Item Option Description
Supervisor
Password
Not Installed
Installed
Shows the setting of the Supervisor
password
Press Enter to set the user password. When
user
password is set, this password protects the
Set
Supervisor
Password
N/A
BIOS Setup
Utility from unauthorized access. The user
can enter
Setup menu only and does not have right to
change the
value of parameters.
30
Page 31
Setting a Password
Follow these steps as you set the user or the supervisor password:
1. Use the ↑ and ↓ keys to highlight the Set Supervisor Password parameter and press the
Enter key. The Set Supervisor Password box appears:
Revision: 1.0
2. Type a password in the “Enter New Password” field. The password length can not exceed 8
alphanumeric characters (A-Z, a-z, 0-9, not case sensitive). Retype the password in the
“Confirm New Password” field.
IMPORTANT: Be very careful when typing your password because the characters do not
appear on the screen.
3. Press Enter. After setting the password, the computer sets the User Password parameter to
“Set”.
4. If desired, you can opt to enable the Password on boot parameter.
5. When you are done, press F10 to save the changes and exit the BIOS Setup Utility.
Removing a Password
Follow these steps:
1. Use the ↑ and ↓ keys to highlight the Set Supervisor Password parameter and press the
Enter key. The Set Password box appears:
2. Type the current password in the Enter Current Password field and press Enter.
3. Press Enter twice without typing anything in the Enter New Password and Confirm New
Password fields. The computer then sets the Supervisor Password parameter to “Clear”.
4. When you have changed the settings, press u to save the changes and exit the BIOS Setup
Utility.
31
Page 32
3.4.4 Boot Setup
Revision: 1.0
Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields,
you can press the <F1> key, and the relevant information will be displayed.
Item Option Description
Boot Device
Priority
Hard disk
Drive
CD/DVD-ROM
Drive
USB Drive
Other
PXE Boot to
LAN
N/A
N/A
N/A
N/A
N/A
Enabled
Disabled
Select Boot Devices to select specific
devices to support boot.
(The item can't display when no device.)
Show the Hard disk drives.
(The item can't display when no device.)
Show the CD/DVD-ROM drives.
(The item can't display when no device.)
Show the USB diskette drives.
(The item can't display when no device.)
Show the other drives.
(The item can't display when no device.)
Disables or enables PXE boot to LAN.
32
Page 33
3.4.5 Exit Setup
Revision: 1.0
Note: The control keys are listed at the bottom of the menu. If you need any help with the item fields,
you can press the <F1> key, and the relevant information will be displayed.
Item Option Description
Exit Saving
changes
Save change
without Exit
Exit
Discarding
changes
Load Optimal
Defaults
Discarding
changes
Yes
NO
Yes
NO
Yes
NO
Yes
NO
Yes
NO
Exit System Setup and save your changes.
Save Your changes and without exiting
system.
Exit system setup and without saving your
changes.
Load default values for all SETUP item.
Load previous values from CMOS for all
SETUP items.
33
Page 34
Revision: 1.0
3.5 WATCHDOG, GPIO, AND BYPASS PROGRAMMING
3.5.1 Watchdog Programming
This section describes the usage of WATCHDOG. AR-B6050 integrated the
WATCHDOG that enable user to reset the system after a time-out event. User can use a
program to enable the WATCHDOG and program the timer in range of 1~255
second(s)/minute(s). Once user enables the WATCHDOG, the timer will start to count down
to zero except trigger the timer by user’s program continuously. After zeroize the timer (stop
triggering), the WATCHDOG will generate a signal to reset the system. It can be used to
prevent system crash or hang up. The WATCHDOG is disabled after reset and should be
enabled by user’s program.
Please refer to the following table to program WATCHDOG properly, and user could test
WATCHDOG under ‘Debug’ program.
Address port: 2E and Data port: 2F
C:>debug
-o 2E 87
-o 2E 01
-o 2E 55
-o 2E 55
-o 2E 07
-o 2F 07
-o 2E 72
-o 2F 40
-o 2E 72
-i 2F
-o 2F xx
-o 2E 73
-o 2F ##
-q
To enter debug mode.
To enter configuration.
To point to Logical Device Number Reg.
To select logical device 7 (WATCHDOG).
To select “keyboard reset” as WATCHDOG output to reset system.
Preparing to select the unit of timer equals minute or second.
To read the value of index “2F”.
The value “xx” equals [(value of index “2F”) OR (80)].
OR (80): unit is second.
OR (00): unit is minute.
Preparing to set the WATCHDOG timer value.
The value “##” ranges between 01 ~ FF (1 ~ 255 seconds).
00: To disable WATCHDOG.
To quit debug mode
Notice: The “actual” timer value may not match with the “theoretical”. That is
because of the tolerance of internal oscillating clock and cannot be adjusted or
optimized.
The WATCHDOG sample code of C language as below:
//====================================================================
=======
// Rev Date Name Description
//====================================================================
=======
// 1.0 12/16/2009 Willy W83627EHF WatchDog timer test
//====================================================================
34
Page 35
Revision: 1.0
=======
//====================================================================
=======
// Language include files
//====================================================================
=======
#include <conio.h>
#include <stdlib.h>
#include <stdio.h>
#include <dos.h>
//====================================================================
=======
// Normal procedure
//====================================================================
=======
void Show_Help();
//====================================================================
=======
// Main procedure
//====================================================================
=======
int main(int argc, char *argv[])
{
unsigned char IO_Port_Address=0x2E;
unsigned char Time;
outportb(IO_Port_Address,0x2D); // Point to Global Reg.
// Select Multi-Function pin, (Bit0=0 Watchdog Function)
outportb(IO_Port_Address+1,(inportb(IO_Port_Address+1)&0xFE));
outportb(IO_Port_Address,0x07); // Point to Logical Device Number Reg.
outportb(IO_Port_Address+1,0x08); // Select logical device 8, (Watchdog Function)
outportb(IO_Port_Address,0x30); // Device Active register
outportb(IO_Port_Address+1,0x01);
35
Page 36
Revision: 1.0
outportb(IO_Port_Address,0xF5); // Select Watchdog count mode seconds or
minutes
outportb(IO_Port_Address+1,0x02); // Default is second and KBRST mode.
outportb(IO_Port_Address,0xF6); // Set Watchdog Timer Value
outportb(IO_Port_Address+1,Time); // 0x00 to disable, max 0xFF
textcolor(YELLOW);
for(Temp=Time;Temp>0;Temp--)
{
outportb(IO_Port_Address,0xF6); // Read Watchdog Timer Value
Time=inportb(IO_Port_Address+1);
gotoxy(20,10);
cprintf(">>> After %3d Second will reset the system. <<<",Time);
delay(1000);
}
textcolor(LIGHTRED);
gotoxy(18,10);
cprintf("If you can see this message, Reset system is Fail");
return 1;
}
//====================================================================
=======
// Function : Show_Help()
// Input : -
// Change : -
// Return : -
// Description : Show Help string.
//====================================================================
=======
void Show_Help()
{
clrscr();
printf("WatchDog Test for W83627EHF\n\n");
printf("Sample: \n");
printf(" WDT.EXE 10 \n");
printf("( For 10 seconds to reset. )\n");
}
//====================================================================
=======
36
Page 37
Revision: 1.0
3.5.2 GPIO Programming
This section describes the usage of GPIOs. AR-B6050 integrated eight bits, 5V TTL
level, bidirectional, and software programmable GPIOs for user’s application. They are all
capable of 5 mA source current for output and 8 mA sink current for input individually. The
electrical characteristics of GPIOs as following table:
//====================================================================
=======
// Rev Date Name Description
//====================================================================
=======
// 1.0 03/17/10 Willy GPIO10~GPIO17 Test utility for W83627EHF.
//====================================================================
=======
//====================================================================
=======
// Turbo C++ Version 3.0 Copyright(c) 1990, 1992 by Borland International,Inc.
//====================================================================
=======
//====================================================================
=======
// Language include files
//====================================================================
=======
#include <conio.h>
#include <stdio.h>
// Set GPIO Port Active
outportb(IO_PORT_BASE,0x30);
outportb(IO_PORT_BASE+1,0x01);
// Set GPIO I/O Register to 00h
outportb(IO_PORT_BASE,0xF3);
outportb(IO_PORT_BASE+1,0x00);
// Set W83627EHF GPIO10~13 to Output, GPIO14~GPIO17 to Input
outportb(IO_PORT_BASE,0xF0);
outportb(IO_PORT_BASE+1,0xF0);
// Set W83627EHF GPIO10~13 to High
outportb(IO_PORT_BASE,0xF1);
outportb(IO_PORT_BASE+1,0x0F);
// Read W83627EHF GPIO14~17 Status, if not High error.
data=inportb(IO_PORT_BASE+1)&0xF0;
if(data!=0xF0)
result=1;
// Set W83627EHF GPIO10~13 to Low
outportb(IO_PORT_BASE,0xF1);
outportb(IO_PORT_BASE+1,0x00);
// Read W83627EHF GPIO14~17 Status, if not Low error.
data=inportb(IO_PORT_BASE+1)&0xF0;
if(data!=0x00)
result=1;
// Set W83627EHF GPIO10~13 to input, GPIO14~GPIO17 to Output
outportb(IO_PORT_BASE,0xF0);
outportb(IO_PORT_BASE+1,0x0F);
// Set W83627EHF GPIO14~17 to High
outportb(IO_PORT_BASE,0xF1);
outportb(IO_PORT_BASE+1,0xF0);
// Read W83627EHF GPIO10~13 Status, if not High error.
data=inportb(IO_PORT_BASE+1)&0x0F;
if(data!=0x0F)
result=1;
// Set W83627EHF GPIO14~17 to Low
outportb(IO_PORT_BASE,0xF1);
outportb(IO_PORT_BASE+1,0x00);
// Read W83627EHF GPIO14~17 Status, if not Low error.
data=inportb(IO_PORT_BASE+1)&0x0F;
if(data!=0x00)
result=1;
This model provides both a GPIO interface and a Watchdog timer. Users can use the
GPIO and Watchdog APIs to configure and to access the GPIO interface and the Watchdog
timer. The GPIO has eight ports. Each port can be configured as an input port or an output
port. The Watchdog timer can be set to 1~255 seconds. Setting the timer to zero disables
the timer. The remaining seconds of the timer to reboot can be read from the timer.
3.6.2 File Description
1. AcroIO.h
This header file includes API declarations and macros for GPIO and Watchdog.
2. AcroIO.lib, AcroIO.dll
The libraries which provide access to GPIO and Watchdog functions.
Description: This function shows the capability of each GPIO port that it is an output
port or an input port.
Parameters:
The returned value which is put at *pInput indicates whether the corresponding GPIO
ports are input ports or not. For example, say, the value at *pInput is 0x00000005, it
indicates that the ports GPIO0 and GPIO2 are both input ports.
The returned value which is put at *pOutput indicates whether the corresponding GPIO
ports are output ports or not. For example, say, the value at *pOutput is 0x000000FA, it
indicates that the ports GPIO7, GPIO6, GPIO5, GPIO4, GPIO3, GPIO1 are all output
ports. If the *pInput shows that a certain GPIO port is an input port and the *pOutput
shows that this port is an output port, this means this port can be configured as an input
port or an output port by invoking the ‘setGpioDirection( )’. If a certain GPIO port is
neither an input port nor an output port, this model does not enable this GPIO port.
Return Value: If the function gets the value successfully, it returns STATUS_SUCCESS,
Description: Get the current state of GPIO input/output configuration.
Parameters:
The argument ‘Id’ has two formats of parameters. If ‘Id’ is ‘GPIO_ALL’, the returned
value at *pDirection shows the state of every GPIO port. A bit ‘1’ at the value of
*pDirection stands for an input port. A bit ‘0’ at the value of *pDirection stands for an
output port. For example, say, the *pDirection is 0x00000085, this indicates that the
ports GPIO7, GPIO2, GPIO0 are input ports. Other GPIO ports (if enabled) are output
ports. The other format of the argument ‘Id’ is that the ‘Id’ is ‘GPIO_ID0’ ~ ‘GPIO_ID32’.
For example, say, ‘Id’ is GPIO_ID2, the returned value of *pDirection is 0x1(input port)
or 0x0(output port).
Code Sample:
Case 1:
Status_t status;
uint32_t Direction;
status = getGpioDirection(GPIO_ALL, &Direction);
Case 2:
Status_t status;
43
Page 44
Revision: 1.0
uint32_t Direction;
status = getGpioDirection(GPIO_ID2, &Direction);
if(Direction == 0x1) {
cout << “GPIO2 is an Input port” << endl;
} else {
cout << “GPIO2 is an Output port” << endl;
}
Return V alue: If the function gets the values successfully, it returns STATUS_SUCCESS,
any other returned value stands for error.
3. Syntax:
Status_t setGpioDirection( uint32_t Id, uint32_t Direction )
Description: Set the current state of GPIO input/output configuration.
Parameters:
The argument ‘Id’ has two formats of parameters. If ‘Id’ is ‘GPIO_ALL’, the parameter
‘Direction’ is bit patterns to set the input/output configuration of the corresponding GPIO
ports. A bit ‘1’ at the value of ‘Direction’ sets the corresponding GPIO port as an input
port. A bit ‘0’ at the value of ‘Direction’ sets the corresponding GPIO port as an output
port. The other format of the argument ‘Id’ is that the ‘Id’ is ‘GPIO_ID0’ ~ ‘GPIO_ID32’.
For example, say, ‘Id’ is GPIO_ID2. If ‘Direction’ is any value other than 0, it configures
the port GPIO2 as an input port. If ‘Direction’ is 0, it configures the port GPIO2 as an
output port.
Return Value: If the function sets the values successfully, it returns
STATUS_SUCCESS, any other returned value stands for error.
Description: Get the current state of the GPIO ports.
Parameters:
The argument ‘Id’ has two formats of parameters. If ‘Id’ is ‘GPIO_ALL’, the returned
value at *pLevel shows the state of every GPIO port. A bit ‘1’ at the value of *pLevel
stands for a logical high. A bit ‘0’ at the value of *pLevel stands for a logical low. For
example, say, the *pLevel is 0x00000085, this indicates that the ports GPIO7, GPIO2,
GPIO0 are at the state of logical high. Other GPIO ports (if enabled) are at the state of
logical low. The other format of the argument ‘Id’ is that the ‘Id’ is ‘GPIO_ID0’ ~
‘GPIO_ID32’. For example, say, ‘Id’ is GPIO_ID2, the returned value of *pLevel is
0x1(logical high) or 0x0(logical low).
Return Value: If the function gets the values successfully, it returns
STATUS_SUCCESS, any other returned value stands for error.
The argument ‘Id’ has two formats of parameters. If ‘Id’ is ‘GPIO_ALL’, the parameter
‘Level’ is bit patterns to be set to the corresponding GPIO ports. A bit ‘1’ at the value of
‘Level’ sets the corresponding GPIO port to logical high. A bit ‘0’ at the value of ‘Level’
sets the corresponding GPIO port to logical low. The setting to an input port is ignored.
The other format of the argument ‘Id’ is that the ‘Id’ is ‘GPIO_ID0’ ~ ‘GPIO_ID32’. For
example, say, ‘Id’ is GPIO_ID2. If ‘Level’ is any value other than 0, it sets the port
GPIO2 to logical high. If ‘Level’ is 0, it sets the port GPIO2 to logical low.
Return Value: If the function sets the values successfully, it returns
STATUS_SUCCESS, any other returned value stands for error.
3.7.2 Watchdog
1. Synt
ax:
Status_t getWtdTimer(uint32_t *pTimer)
Description: This function read the value of the watchdog timer.
Parameters: The value of the timer is put at the memory which is pointed by the
argument ‘pTimer’.
Return Value: This function always returns STATUS_SUCCESS.
2. Syntax:
Status_t setWtdTimer( uint32_t Timer )
Description: This function sets the watchdog timer register to the value ‘Timer’ and
starts to count down. The value could be 0 ~ 255. The unit is second. Setting the timer
register to 0 disables the watchdog function and stops the countdown.
Parameters: The parameter ‘Timer’ is the value to be set to watchdog timer register. The
range is 0 ~ 255.
Return Value: This function always returns STATUS_SUCCESS.
45
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.