ABB Drives Application Guide

ABB industrial drives
Application guide
Adaptive Programming

List of related manuals

Drive firmware manuals Code (English)
manual
Option manuals
Drive composer start-up and maintenance PC tool User’s manual
You can find manuals and other product documents in PDF format on the Internet. See section
Document library on the Internet on the inside of the back cover. For manuals not available in
the Document library, contact your local ABB representative.
3AXD50000029275
3AUA0000094606
Application guide
Adaptive Programming
Table of contents
2016 ABB Oy. All Rights Reserved.
3AXD50000028574 Rev C
EN
EFFECTIVE: 2016-03-14
Table of contents 5
Table of contents
List of related manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. Introduction to the guide
Contents of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Safety instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Target audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Purpose of the guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Contents of the guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Related documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2. Adaptive programming
Contents of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Overview of Adaptive programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Creating a sequence program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Connecting the Adaptive program to a drive application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Enabling/disabling Adaptive program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Executing the Adaptive program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Creating a backup/restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Safety
3. Using PC tool interface
Contents of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Adaptive programming user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Base and sequence programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Program tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Functional blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Sequence states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
State transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4. Creating an Adaptive program
Contents of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Creating a base program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Creating a sequence program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Downloading the adaptive program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5. Program elements
Contents of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
System inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Parameter inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6 Table of contents
Inputs/outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Actual values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Data storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
System outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Parameter outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Start control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Speed control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Frequency control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Torque control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Process PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Function block specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Abs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Add . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Bit get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Bitwise AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Bitwise OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Bitwise XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Divide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Equal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Greater than . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Less than . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
PI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Ramp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Select boolean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Select value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Set bits 0-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Set bits 8-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Square root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Subtract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Switch boolean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Switch value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Trigger down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Trigger up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
T_off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
T_on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table of contents 7
Further information
Product and service inquiries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Product training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Providing feedback on ABB Drives manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Document library on the Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8 Table of contents
Introduction to the guide 9
1

Introduction to the guide

Contents of this chapter

This chapter gives general information on the guide.

Applicability

This guide applies to the following drive programs and software. For version details, see the Compatibility list:
• ACS880 primary control program
• ACS380 machinery control program
• Drive composer pro

Compatibility

This guide complies with the following drive application programs in which the Adaptive programming feature is included.
Drive application programs Version Other details
ACS880 primary control program
ACS380 machinery control program
Drive composer pro 1.9 or later Microsoft Windows 7 or newer
Note: The available features may differ depending on both the Drive composer pro and drive versions
2.20 or later -
1.60 or later -
10 Introduction to the guide

Safety instructions

Follow all safety instructions delivered with the drive.
• Read the complete safety instructions before you install, commission, or use the drive. The complete safety instructions are delivered with the drive as either part of the Hardware manual, or, in the case of ACS880 multidrives, as a separate document.
• Read the software function specific warnings and notes before changing the default settings of the function. For each function, the warnings and notes are given in the Firmware Manual in the subsection describing the related user adjustable parameters.

Target audience

This guide is intended for people who design, commission, or operate the drive system.

Purpose of the guide

This guide is used together with the firmware manual of the drive application program.The firmware manual contains basic information on drive parameters including the parameters needed for Adaptive programming.
This guide gives the following information on Adaptive programming:
• what is Adaptive programming
• how to build a adaptive program
• how the function blocks operate
• how to use the system inputs and outputs
• how to use the program states

Contents of the guide

This guide contains the following chapters:
Adaptive programming provides the overview on Adaptive programming.
Using PC tool interface describes the user interface elements for creating an
Adaptive program in the PC tool software.
Creating an Adaptive program describes how to create a base program and a
sequence program. It also describes how to download the program to the drive.
Program elements describes the function blocks used for Adaptive programming.

Related documents

See the List of related manuals on the inside of the front cover.
Adaptive programming 11
2

Adaptive programming

Contents of this chapter

This chapter provides an overview of Adaptive programming and how to use the Adaptive program.

Overview of Adaptive programming

Adaptive programming is used to customize the operation of a drive in case the drive parameter setting is not sufficient. The Adaptive program is built with standard function blocks included in the drive firmware. The program consists of the following elements:
• A predefined list of inputs for getting information from the drive parameters to use in the Adaptive program.
• A predefined list of outputs that defines parameters where it is possible to write from the Adaptive program.
• A collection of states in which each state has its own block program, including inputs, outputs and state transition elements
Standard function blocks (for example ADD, AND) are used to create an executable Adaptive program. The maximum size of an Adaptive program is approximately 20 standard function blocks, depending on the block types used and the number of predefined inputs and outputs utilized in the program. The standard function blocks available are presented in Program elements (page 31). Numerical function blocks use floating point numbers in the calculations.
Adaptive program is created using the Drive composer pro software with which the program can be downloaded to the drive and started. By default, Adaptive program is started when the drive is powered On, if the program already exists in the drive.
See the below sections on how to use the Adaptive program.
12 Adaptive programming

Creating a sequence program

Adaptive program consists of a collection of states for creating a sequence program. When the program is running, there is always one state active and the corresponding program is executed until another state is active. In addition to the states there is also a base program that executes in parallel to the active state.
The state changes are controlled with state transition elements that can be connected to function block outputs. State transition takes place after the full execution cycle of the program during which the value of any corresponding output becomes true. In case multiple state transitions are true during a single execution cycle, then the one that is connected to the smallest numbered block is triggered. See the example program execution.
See also Creating a sequence program on page 26 and Downloading the adaptive
program on page 28.

Connecting the Adaptive program to a drive application

Adaptive program is connected to a drive application through predefined system inputs and outputs. Drive provides the available inputs and outputs and sets the pointer parameter values accordingly based on the created program.
When the predefined output (value/bit pointer parameter) is written to from the Adaptive program, the parameter is write protected and it is not changed in the parameter table. The control panel and Drive composer pro shows a text in the pointer parameter to indicate that the parameter is connected to the Adaptive program.

Enabling/disabling Adaptive program

The Adaptive program function can be enabled or disabled with the drive parameter
96.70 Disable Adaptive program.
When Adaptive program is enabled, the program can be put to running mode in the following conditions:
• when drive is powered On
• after a macro/user set is changed
• after a restore operation
• when a clear all and restore to defaults parameter operation (large parameter operations) is done
• when a run command is given from the PC tool.
Adaptive programming 13
When Adaptive program is disabled, the situation is similar to a drive without Adaptive program. The following operations are not possible:
• Adaptive program cannot be put to running mode when the drive is powered On
• Adaptive program cannot be edited or put to running mode from Drive composer pro.

Executing the Adaptive program

Adaptive program is executed on firmware time level. The parameter 7.30 Adaptive program status shows the status of the Adaptive program. The program can be edited
only when the drive is in Stopped state. While editing the program, the Start inhibit is On, so that the drive cannot be started.
Note: For time level actual value, refer firmware manual(s) in the List of related
manuals.
The Adaptive program executes the function blocks in numerical order with all blocks on the same time level. This cannot be changed by the user. The user can only do the following tasks:
• build a program using the standard blocks and connections
• change the numbering of the blocks by moving them to different positions
• select the operation mode of the program (run/edit).
If Adaptive program in the drive is not compatible or corrupted, the fault 64A6h Adaptive program is activated. The extension code of the fault explains the detail of the problem with the Adaptive program.

Creating a backup/restore

Adaptive program can be saved to the backup file and restored. The program starts automatically after the restore operation, unless the parameter 96.70 Disable Adaptive program has such a value that after the restore operation the Adaptive program shall not be put to running mode.
14 Adaptive programming
Using PC tool interface 15
3

Using PC tool interface

Contents of this chapter

This chapter describes the main user interface elements of PC tool for Adaptive programming.

Adaptive programming user interface

The main user interface of Adaptive programming consists of the following sections:
Base and sequence programs
Program tools
Functional blocks
Inputs
Outputs
Sequence states
State transition.
16 Using PC tool interface
The working area can be used either with tab or floating window. The selection between tab and floating window can be made using Drive composer pro View menu. The figure below shows the user interface with tabbed window.
Figure 1. Adaptive programming user interface
Using PC tool interface 17

Base and sequence programs

There are separate canvases for creating base and sequence programs. The required canvas can be expanded or collapsed. See the above Adaptive programming user interface.
• The base program canvas can be used to create a base program with function blocks. The user can drag and drop the desired function blocks to build a base program. See Creating a base program on page 24.
• The sequence program canvas can be used to create a sequence program. The user can drag and drop the desired amount of states to build a sequence program. See Creating a sequence program on page 26.
Figure 2. Sequence program user interface
18 Using PC tool interface

Program tools

The program tools contains the following options:
• Undo: Erases the last change made and reverts it to an older state
• Redo: Reverses the undo or advances to a more current state
• Open: Opens a program from locally saved file
• Save: Saves the active program to a local file (.dcap format)
• Restore: Restores the default program.
See Adaptive programming user interface on page 16.

Functional blocks

Functional blocks of Adaptive programming are grouped into categories and are shown on a horizontal shelf. The scroll bar shows category labels and indicates the current view. The blocks are quickly accessible. The user can drag and drop the required blocks to the canvas. See Adaptive programming user interface on page 16.
The functional block consists of the following categories:
• Arithmetic blocks
• Logical blocks
• Selection blocks
• Comparison blocks
• Timer blocks
• Operation blocks.
Using PC tool interface 19

Inputs

The pre-defined inputs are categorized into groups. Note that the available groups and inputs are dependent on the drive type. Typical examples are:
•Constants
•I/O
Actual values.
The same input can be used multiple times in the same program. Hovering over an input on the shelf highlights every instance of that input on the canvas, so you can easily locate where the input is used in the program.
Figure 3. Inputs
20 Using PC tool interface
Editing the input labels
You can edit the input labels and add a comment.
1. Click label in the functional block input.
Figure 4. Editing label
2. Edit the label and add the comment as desired.
Figure 5. Editing label and comment
For more information on Input descriptions, refer firmware manual(s) in the List of
related manuals.
Using PC tool interface 21

Outputs

The pre-defined outputs are categorized into groups. Note that the available groups and outputs are dependent on the drive type. Typical examples are:
Parameters
I/O
Start control
Speed control.
Each output can be used only once in the program. After you drag and drop an output to the canvas, it is faded on the shelf.
Figure 6. Outputs
For more information on output descriptions, refer firmware manual(s) in the List of
related manuals.
22 Using PC tool interface

Sequence states

The sequence states contains a:
• Blank state: adds a new empty state to the sequence program.
You can drag-and-drop this empty state any number of times to the sequence program canvas and rename the state in the program.
See Adaptive programming user interface on page 16.

State transition

State transition element is used to control the sequence of state transitions when connected to boolean type block outputs. There can be several state transition elements used in a single state.
Figure 7. State transition
Creating an Adaptive program 23
4

Creating an Adaptive program

Contents of this chapter

This chapter describes how to create an Adaptive program and download the program to the drive.
You can do the following:
• Create a base program using function blocks. See Creating a base program on page 24.
• Optionally create a sequence program using states. See Creating a sequence
program on page 26.
• Download the program to the drive. See Downloading the adaptive program on page 28.
24 Creating an Adaptive program

Creating a base program

To create a base program using function blocks, proceed as follows:
1. Drag-and-drop the desired function blocks to the base program canvas.
Figure 8. Function block
2. Drag-and-drop the desired inputs from the Inputs categories to the function block(s).
Figure 9. Adding inputs
Creating an Adaptive program 25
3. Drag-and-drop the desired connections from the block outputs to other function block(s).
Figure 10. Adding outputs
4. Drag-and-drop the desired output from the Outputs categories to the function block(s).
Figure 11. Adding outputs
Similarly, you can create programs as desired by adding multiple function blocks using inputs and outputs.
26 Creating an Adaptive program

Creating a sequence program

To create a sequence program using states, proceed as follows:
1. Open the Sequence Program canvas.
2. Drag-and-drop the desired amount of states to the sequence.
Figure 12. Sequence program states
3. Select the state and create desired block program for each state.
Figure 13. Block program in selected state
Creating an Adaptive program 27
4. Drag-and-drop the desired state transitions to each state.
Figure 14. State transitions
28 Creating an Adaptive program

Downloading the adaptive program

After creating a base program and optionally a sequence program, you can download the program to a drive and run the program.
1. Click Download to drive.
Figure 15. Downloading to drive
Creating an Adaptive program 29
The program is downloaded to the drive.
Figure 16. Program downloaded to a drive
2. In the Program tools, click Run program to start the program.
3. Open the Sequence program canvas to view the sequence program.
Figure 17. Sequence program
30 Creating an Adaptive program
After downloading the program to the drive, you can
• click Edit program to stop the program and start editing
or
• click Save to save the adaptive program to a local file (.dcap format).
Program elements 31
5

Program elements

Contents of this chapter

This chapter describes system inputs, outputs and function blocks available in the master control program for Adaptive programming.
Note: The information in this chapter is drive-specific and should be confirmed from the respective firmware manual(s).
32 Program elements

System inputs

The below mentioned system inputs are examples only.

Parameter inputs

System inputs have new type of parameter inputs.
• Boolean parameter input is for reading the value of a bit from a parameter (for example command or status word)
• Numeric parameter input is for reading the value of a parameter.

Constants

Constants consists of Numerical and Boolean constant input values. These constant inputs can be reused in different blocks by changing their values.
For example: Numerical value and Boolean value.

Inputs/outputs

Analog inputs
Analog inputs can be filtered, inverted or scaled with parameter configuration (i.e. not in Adaptive programming).
Analog inputs can be independently set as voltage or current input by a jumper. Each input can be filtered, inverted or scaled.
The drive can be set to perform an action if the value of an analog input moves out of a predefined range.
Digital inputs and outputs
Digital inputs and outputs can be set as either an input or an output.
Digital input/output DIO1 can be used as a frequency input, DIO2 as a frequency output.
For example: AI1, AI2, DI1, DI2, DIO1, DIO2 etc.
Program elements 33

Actual values

Basic signals for monitoring the drive.
For example: Motor speed, Output frequency, Motor current and so on.

Status

Drive status word.
Example: Enabled, inhibited, Ready to start etc.

Data storage

Data storage parameters are reserved for data storage. These parameters are unconnected by default and can be used for linking, testing and commissioning purpose.
For example: Data storage 1 real32, Data storage 2 real32 etc.
For more information on Input descriptions, refer firmware manual(s) in List of related
manuals.

System outputs

The below mentioned system outputs are examples only.

Parameter outputs

System outputs have a new type of parameter outputs.
• Boolean parameter output is for writing a Boolean block output to a parameter. The parameter gets either value one or zero.
• Numerical parameter output is for writing a Numerical block output to a parameter.
You can select the parameter for the input or output either from a list or type the parameter manually.
34 Program elements
Reading and writing parameters in the drive
The block output value is written to the parameter only when the value changes. The written parameter values are not saved over power down of the drive.
For efficiency, the parameter reading and writing is made in the internal format. In case of some parameters, it is possible that the block input shows a different value than the corresponding parameter.
I/O
Analog outputs
Analog outputs can be filtered, inverted or scaled with parameter configuration (i.e not in Adaptive programming).
Relay outputs
The signal to be indicated by the outputs can be selected by parameters.
Digital inputs and outputs
Digital input/output DIO1 can be used as a frequency input, DIO2 as a frequency output.
For example: AO1, AO2, RO1, RO2, RO3, DIO1 and DIO2.

Start control

Operating mode
The two external control locations, EXT1 and EXT2, are available. The user can select the sources of the start and stop commands separately for each location.
Run enable
The source of the external run enable signal. If the run enable signal is switched off, the drive will not run.
Fault reset
The drive can automatically reset itself after overcurrent, overvoltage, undervoltage and external faults.
For example: Ext1/Ext2 selection, Run enable 1, Fault reset etc.

Speed control

The output of the speed reference selection block. The motor follows a speed reference given to the drive.
For example: Speed ref1, Speed ref2 and Speed additive 1.
Program elements 35

Frequency control

The output of the frequency reference selection block. The motor follows a frequency reference given to the drive. Frequency control is only available in scalar motor control mode.
For example: Frequency ref1, Frequency ref2 etc.

Torque control

The output of the torque reference selection block. Motor torque follows a torque reference given to the drive.
For example: Torque ref1, Torque ref2 and Torque additive 2.

Limitations

Defines the source of maximum torque limit for the drive.
For example: Minimum torque 2 and Maximum torque 2.

Events

Defines the source of external events.
For example: External event 1, External event 2 etc.

Process PID

Selects the source that determines whether process PID parameter set is used.
For example: Set 1 setpoint 1, Set 1 feedback 1, Set 1 tracking mode etc.
For more information on output descriptions, refer firmware manual(s) in List of
related manuals.
36 Program elements

Function block specifications

You can adjust the number of inputs by dragging the bottom line in the function block.
Note: Function blocks which do not contain bottom line cannot be adjusted.
Abs
Calculates absolute value.
Output:
Name Type Default value
Out Float 0
Input: 1
Name Type Default value Function
In Float 0 Block input
Block function
Block calculates absolute value of value in input In. Output = I In I.
Exceptional cases
Block input is not connected. Input has a default value.
Add
Adds n inputs and outputs result.
Output:
Name Type Default value
Out Float 0
Inputs: 2-8
Program elements 37
Default inputs: 2
Name Type Default value Function
In1 - In8 Float 0 Provides values to add
Block function
Output = In1 + In2 +...+ In8
Exceptional cases
Inputs which are not connected are added as default value.
Overflow to positive side: output is limited to Max float.
Overflow to the negative side: output is limited to negative Max float.
Underflow: value 0 is kept at output.
38 Program elements
AND
Performs logic AND.
Output
Name Type Default value
Out Boolean 0
Inputs: 2-8
Default inputs: 2
Name Type Default value Function
In1 - In8 Boolean N/A Block inputs
Block function
Function block performs logical conjunction operation with inputs.
Out = In1 & In2 & … & In8.
The truth table of AND operation is below. Example uses two inputs. Same logic can be applied to other inputs. Output is 1 (true) if and only if all inputs have value 1 (true).
In1 In2 Out
00 0 01 0 10 0 11 1
Exceptional cases
Inputs which are not connected have no effect on the output.
If some inputs are connected and others are not, only the connected inputs are evaluated.
Program elements 39

Bit get

Performs logic OR operation with selected bits from inputs.
Output
Name Type Default value
Out Boolean 0
Inputs: 2-9
Name Type Default value Function
In Float 0 Value to read bits Bit sel 1 - 8 Float N/A Provides number of bits to
be selected from input value.
Block function
Basic functionality of the block is to get the value of the defined bit. In case several bits are defined then values of these bits are retrieved and OR operation is executed with these to get the block output value.
Bits 0 - 15 can be selected.
For example, in case only Bit sel 1 is connected then Out = val1. If Bit sel 1 and 2 are connected then Out = val1 OR val2, where val1 - value of bit selected by Bit sel 1 input and val2 - value of bit selected by Bit sel 2 input.
40 Program elements
Exceptional cases
• Bit sel input is not connected. Bit defined by this input is skipped.
• If entered bit sel value > 15, bit 15 is selected.
• If bit sel < 0 then bit 0 is selected.
• If input In is not connected, it gets default value.
• An input In value that is either negative or larger than (2^31)-1 is set to default value 0.
Program elements 41

Bitwise AND

ANDs the lowest 16 separate bits of the input values and outputs the combination as float.
Output
Name Type Default value
Out Float 0
Inputs: 2-8
Name Type Default value Function
In1 - In8 Float N/A Provides an input value.
Block function
Connected inputs are rounded to the nearest integer after which the AND operation is performed on them. The lowest 16 bits of the result is taken, converted to float and written to output.
Exceptional cases
• An input value that is either negative or larger than (2^31)-1 is set to default value
0.
• If only 1 input is connected then that input is rounded and sent to the output.
42 Program elements

Bitwise OR

ORs the lowest 16 separate bits of the input values and outputs the combination as float.
Output
Name Type Default value
Out Float 0
Inputs: 2-8
Name Type Default value Function
In1 - In8 Float 0 Provides an input value.
Block function
Inputs are rounded to the nearest integer after which the OR operation is performed on them. The lowest 16 bits of the result is taken, converted to float and written to output.
Exceptional cases
• An input value that is either negative or larger than (2^31)-1 is set to default value
0.
• If only 1 input is connected then that input is rounded and sent to the output.
• Disconnected inputs have default value 0.
Program elements 43

Bitwise XOR

XORs the lowest 16 separate bits of the input values and outputs the combination as float.
Output
Name Type Default value
Out Float 0
Inputs: 2
Name Type Default value Function
In1 Float 0 Provides an input value. In2 Float 0 Provides an input value.
Block function
Inputs are rounded to the nearest integer after which the XOR operation is performed on them. The lowest 16 bits of the result is taken, converted to float and written to output.
Exceptional cases
• An input value that is either negative or larger than (2^31)-1 is set to default value
0.
• If only 1 input is connected then that input is rounded and sent to the output.
44 Program elements

Divide

Divides block inputs.
Output:
Name Type Default value
Out Float 0
Inputs: 2
Name Type Default value Function
Num Float 0 Dividend Denom Float 0 Divisor
Block function
Output = In1 / In2
Dividing by zero will set block output to zero.
Exceptional cases
Inputs which are not connected are assigned with default values.
Overflow to positive side: output is limited to Max float.
Overflow to the negative side: output is limited to negative Max float.
Underflow: value 0 is kept at output.
Program elements 45

Equal

Checks if values at inputs are equal.
Output
Name Type Default value
Out Boolean 0
Inputs: 2
Name Type Default value Function
A Float 0 First comparison
B Float 0 Second comparison
Block function
Block compares the whole number parts of numbers in A and B. Behavior of the block can be seen in table below.
Condition Out
A and B are equal 1 A and B are not equal 0
Inputs are rounded before comparison. Only whole number part of the inputs are compared.
value
value
For example, if value 70.5 is in input, it will be compared as 71. If value 70.4 is in input it will be compared as 70. Rounding of negative numbers works as illustrated in the following example. -70.4 rounds to -70. -70.5 rounds to -71.
Exceptional cases
Inputs which are not connected will have a default value.
46 Program elements

Filter

Filters input for a defined length of time and then outputs it.
Output:
Name Type Default value
Out Float 0
Inputs: 2
Name Type Default value Function
In Float 0 Signal to be filtered Time Float 0 Filter time constant
in seconds
Block function
This block is a single pole low - pass filter. Input signal In is filtered using provided time constant Time. The following equation is used for internal calculations.
Coefficient = TimeLevel / (TimeLevel + Time)
Out[i] = Coefficient * (In[i] – Out[i - 1]) + Out[i - 1]
Where:
Variable Function
Out [i] Current calculated output value Out [i - 1] Previous output value of the filter from previous time cycle In [i] Current input value Timelevel Value of timelevel that the program is running at.
This function is a discrete model for single pole low - pass filter.
Exceptional cases
Time constant Time < timelevel or negative constant is provided. Filter does
not filter input signal. Input is written to output unaltered. Time constant is evaluated to 0.
In is not connected - Input gets default value.
Time constant is not connected - assumed to have default value.
Program elements 47

Greater than

Comparison block. Compares values at its inputs to see if first value is greater than second. Comparison accuracy is set by the user.
Output
Name Type Default value
Out Boolean 0
Inputs: 3
Name Type Default value Function
A Float 0 Provides first
B Float 0 Provides second
Hyst Float 0 Value B is
Block function
comparison value
comparison value
subtracted
Takes two inputs to compare with one another, A and B, and a third input that manipulates input B.
First:
If A > B, output is set to 1.
Second (if first is not true):
If A < (B- Hyst) then output is reset to 0.
Third (if neither are true):
Previous output value is kept at block output.
Exceptional cases
When either A or B input is not connected then output is set to default value 0.
A disconnected Hyst input has value 0.
48 Program elements

Less than

Comparison block. Compares values at its inputs to see if first value is smaller than second. Comparison accuracy is set by the user.
Output
Name Type Default value
Out Boolean 0
Inputs: 3
Name Type Default
value
A Float 0 Provides first
B Float 0 Provides second
Hyst Float 0 Value that is added
Block function
Function
comparison value
comparison value
to B
Takes two inputs to compare with one another, A and B, and a third input that manipulates input B.
First
If A < B, output is set to 1.
Second (if first isn't true)
If A > (B+ Hyst) then output is reset to 0.
Third (if neither are true)
Previous output value is kept at block output.
Exceptional cases
When either A or B input is not connected then output is set to default value 0.
A disconnected Hyst input has value 0.
Program elements 49

Limit

Takes an input that is limited and outputs the value after limiting it.
Output:
Name Type Default value
Out Float 0
Inputs: 3
Name Type Default value Function
In Float 0 Value to be limited. Max Float 3.4028235e+38 Maximum value In is
Min Float - 3.4028235e+38 Minimum value In is
Block function
limited
limited.
In is written to the output as long as it is within the value range of Max and Min. When In exceeds or falls below the respective limit values, it will first be capped to the
appropriate limit value and then written to the output. In is evaluated first against Max. If Max is not limiting, then In is evaluated against Min.
Exceptional cases
•If In is not connected then the block output is zero.
•If Max or Min input is not connected, then the highest and lowest float values are set as the default values for Max or Min.
50 Program elements
Max
Compares n inputs and outputs the largest input value.
Output:
Name Type Default value
Out Float 0
Inputs: 2-8
Default inputs: 2
Name Type Default value Function
In1 - In8 Float 0 Provides an input
value to compare
Block function
Compares all input values to determine the highest one and outputs it.
Exceptional cases
If some inputs are connected and other inputs are not connected, only the connected inputs are evaluated.
Min
Compares n inputs and outputs the smallest input value.
Output:
Name Type Default value
Out Float 0
Inputs: 2-8
Program elements 51
Default inputs: 2
Name Type Default value Function
In - In8 Float 0 Provides an input
value to be compared
Block function
Compares all input values to determine the lowest one and outputs it.
Exceptional cases
If some inputs are connected and others are not connected, only the connected inputs are evaluated.
52 Program elements

Multiply

Multiples n inputs and outputs the result.
Output:
Name Type Default value
Out Float 0
Inputs: 2-8
Default inputs: 2
Name Type Default value Function
In1 - In8 Float N/A Provides values for multiply
block to perform multiplication
Block function
Out = In1 * In2 *...* In8
Exceptional cases
Inputs which are not connected are not multiplied. If one input is connected, its value is at output.
All inputs are not connected: output is assigned a default value.
Overflow to positive side: output is limited to Max float.
Overflow to the negative side: output is limited to negative Max float.
Underflow: value 0 is kept at output.
Program elements 53
NOT
Inverts value at input.
Output
Name Type Default value
Out Boolean 1
Input: 1
Name Type Default value Function
In Boolean 0 Block input
Block function
Function block performs inversion.
In Out
01 10
Exceptional cases
In case a block input is not connected then its value is set to 0 by default.
54 Program elements
OR
Performs logic OR.
Output
Name Type Default value
Out Boolean 0
Inputs: 2-8
Default inputs: 2
Name Type Default value Function
In1 - In8 Boolean 0 Block inputs
Block function
Function block performs logical or operation with inputs. Out = In1 v In2 v … v In8.
The truth table of OR operation is below. Example uses two inputs. Same logic can be applied to other inputs. Output has value 1 when one of the inputs have value 1. Output is 0 if and all inputs have value 0.
In0 In1 Out
00 0 01 1 10 1 11 1
Exceptional cases
If some inputs are connected and others are not, only the connected inputs are evaluated.
PI
PI controller.
Program elements 55
Output:
Name Type Default value
Out Float 0
Inputs: 8
Name Type Default value Function
Setpoint Float 0 Desired output value Actual Float 0 Actual output value Gain Float 0 Proportional gain (Kp) Integration
time Track Boolean 0 Enables tracking mode Track
reference Min Float - 3.4028235e+38 Maximum output value Max Float 3.4028235e+38 Minimum output value
Float 0 Integration time in
seconds (s)
Float 0 Output value in
tracking mode
56 Program elements
Block function
Calculates the P and I terms based on error, proportional gain and an integral coefficient. The sum of P and I is written to the output. Sets output to tracking reference value when tracking is enabled and limits the output when needed. In these cases, the I term value is maintained directly in reference to the tracking reference or limit values to provide smooth transfer/anti-windup. PI output continuous changing from track reference value when track is disabled. In the limitation, the value is evaluated first against Max limit. If Max is not limiting, then the value is evaluated against Min limit.
Exceptional cases
In case a block input is not connected then its value is set to default value.
When either Setpoint, Actual or Gain are not connected then output is set to 0. When Track is enabled and Track reference is not connected then output is set to 0.
When Integration time input is not connected then integral component is reset and PI block functions as a P controller.
When Min or Max is not connected, the default values of these inputs are used.
Program elements 57

Ramp

Changes the output value to match the input value at a defined rate of change.
Output:
Name Type Default value
Out Float 0
Inputs: 7
Name Type Default value Function
In Float 0 Reference value to
Increase Float 0 The amount of output
Decrease Float 0 The amount of output
Track Boolean 0 E nables tracking mode Track
reference Max Float 3.4028235e+38 Maximum value block
Min Float - 3.4028235e+38 Minimum value block
Float 0 Output value in tracking
ramp to output
increased per second
decreased per second
mode
output will be limited
output will be limited
58 Program elements
Block function
If output value does not equal input reference, then the output value starts changing towards the input value.
The amount of change per second is defined by the inputs for increasing and decreasing the output. Sets output to track reference value when track is enabled. Output is limited to maximum and minimum limit values. In the limitation, the output is evaluated first against Max limit. If Max is not limiting, then the output is evaluated against Min limit. Ramp output continues changing from tracking reference value when tracking is disabled.
Exceptional cases
In case a block input is not connected, then its value is set to default value.
In case, either maximum or minimum limit is disconnected, then their values will be defaulted to the highest and lowest value representable by a float.
In case, Increase or Decrease input is disconnected then Output = In when trying to ramp with the disconnected input. If the other input is connected then ramping with it behaves as normal.
In case, In input is disconnected then Output = 0.
Program elements 59

Select boolean

Outputs the Boolean input value that is selected by the selector input.
Output
Name Type Default value
Out Boolean 0
Inputs: 3-9
Default inputs: 3
Name Type Default value Function
Sel Float 0 Selects input value to
In1 - In8 Boolean 0 Provides selectable input
connect to out put
value for the block.
Block function
This is a selector block that can have different input connected to output. Input to be connected is selected by Sel input.
When Sel = 1 then Out = In1, when Sel = 2 Out = In2 etc.
When Sel = 8 Out = In8.
Allowable value range for Sel input is 1 <= Sel <= 8.
Exceptional cases
When Sel input is out of its allowable range then Out = 0.
Inputs which are not connected will have a default value.
60 Program elements

Select value

Outputs the float input value that is selected by the selector input.
Output
Name Type Default value
Out Float 0
Inputs: 3-9
Default inputs: 3
Name Type Default value Function
Sel Float 0 Selects input to be
In1 - In8 Float 0 Provides selectable input
connect to output
value for the block
Block function
This is a selector block that can have different input connected to output. Input to be connected is selected by Sel input.
When, Sel = 1 then Out = In1, and Sel = 2 then Out = In2 and etc.
When, Sel = 8 then Out = In8.
Allowable value range for Sel input is 1 <= Sel <= 8.
Exceptional cases
When Sel input is out of its allowable range then Output = 0.
Inputs which are not connected will have a default value.
Program elements 61

Set bits 0-7

Updates bits 0-7 of the input value.
Output
Name Type Default value
Out Float 0
Inputs: 9
Name Type Default value Function
In Float 0 Value to be updated Bit0 Boolean N/A Value of bit 0 (lowest) Bit1 Boolean N/A Value of bit 1 Bit2 Boolean N/A Value of bit 2 Bit3 Boolean N/A Value of bit 3 Bit4 Boolean N/A Value of bit 4 Bit5 Boolean N/A Value of bit 5 Bit6 Boolean N/A Value of bit 6 Bit7 Boolean N/A Value of bit 7
Block function
Rounds the float input to closest integer and updates bits 0-7 of the integer value based on the boolean inputs Bit0-Bit7. Takes then the lowest 16 bits of the integer result and converts the value to float and writes it to output.
Exceptional cases
An input value that is either negative or larger than (2^31)-1 is set to default value 0. Bits 0-7 of the default value are updated.
If Boolean input is not connected, the value of that bit is not updated.
62 Program elements

Set bits 8-15

Update bits 8-15 of the input value.
Output
Name Type Default value
Out Float 0
Inputs: 9
Name Type Default value Function
In Float 0 Value to be updated Bit8 B oolean N/A Value of bit 8 Bit9 B oolean N/A Value of bit 9 Bit10 Boolean N/A Value of bit 10 Bit11 Boolean N/A Value of bit 11 Bit12 Boolean N/A Value of bit 12 Bit13 Boolean N/A Value of bit 13 Bit14 Boolean N/A Value of bit 14 Bit15 Boolean N/A Value of bit 15
Block function
Rounds the float input to closest integer and updates bits 8-15 of the integer value based on the Boolean inputs Bit8-Bit15. Takes then the lowest 16 bits of the integer result and converts the value to float and writes it to output.
Exceptional cases
An input value that is either negative or larger than (2^31)-1 is set to default value 0. Bits 8-15 of the default value are updated.
If Boolean input is not connected, the value of that bit is not updated.

Square root

Calculates square root of value at input.
Output
Name Type Default value
Out Float 0
Inputs: 1
Name Type Default value Function
In Float 0 Block input
Block function
Block calculates square root of input. Out =
Exceptional cases
• When value at the input is negative (In < 0), then Out = 0
Program elements 63
64 Program elements
SR
SR trigger is used to store Set value.
Output
Name Type Default value
Out Boolean 0
Input: 2
Name Type Default value Function
Set Boolean 0 Set input Reset Boolean 0 Reset
Block function
This is SR latch. Output keeps it value once set by Set input. Value at output is reset to 0 when Reset = 1. Value at output depends on previous output value. See truth table.
Previous Out Reset Set Current Out
000 0 001 1 x1x 0 100 1 101 1
Exceptional cases
•If Set is not connected, it is assumed to have default value.
•If Reset is not connected, it is assumed to have default value.
Program elements 65

Subtract

Performs subtract.
Output:
Name Type Default value
Out Float 0
Inputs: 2
Name Type Default value Function
In1 Float 0 Value to subtract from In2 Float 0 Value to be subtracted
Block function
Output = In1 - In2
Exceptional cases
In case both inputs are not connected, output has a default value.
Inputs which are not connected are assigned default value.
Overflow to positive side: output is limited to Max float.
Overflow to the negative side: output is limited to negative Max float.
Underflow: value 0 is kept at output
66 Program elements

Switch boolean

Outputs the input Boolean value whose enable value is set first.
Output:
Name Type Default value
Out Boolean 0
Program elements 67
Inputs: 3-15
Default inputs: 3
Name Type Default value Function
Sel1 - Sel7 Boolean 0 Selects/deselects input
In1 - In7 Boolean 0 Provides selectable input
Default Boolean 0 Default output when Sel
value.
value for the block.
is not active for any inputs.
Block function
The value written to the output is “In X” value whose “Sel X” is set first. If no “Sel X” is set then Default input is written to the output.
Example:
Multiple Sel inputs have value 1. Inputs are evaluated from top to bottom. In case of multiple In, Sel pairs In1, Sel1 is checked first followed by In2, Sel2 and etc. In case Multiple Sel inputs are 1 the first one will be connected to output. In this example, if both Sel1 and Sel 2 are 1 then In1 is connected to output.
Exceptional cases
Inputs which are not connected will have a default value.
68 Program elements

Switch value

Outputs the input float value whose enable value is set first.
Output:
Name Type Default value
Out Float 0
Program elements 69
Inputs: 3-15
Default inputs: 3
Name Type Default value Function
Sel1 - Sel7 Boolean 0 Selects/deselects input
In1 - In7 Float 0 Provides selectable
Default Float 0 Default, that is,
value
input value for the block
connected to output when no Sel is 1
Block function
The value written to the output is “In X” value whose “Sel X” is set first. If no “Sel X” is set, then the Default input is written to the output.
Example:
Multiple Sel inputs have value 1. Inputs are evaluated from top to bottom. In case of multiple In, Sel pairs In1, Sel1 is checked first followed by In2, Sel2 etc. In case Multiple Sel inputs are 1, the first one will be connected to output. In this example, if both Sel1 and Sel2 are 1 then In1 is connected to output.
Exceptional cases
• Inputs which are not connected will have a default value.
70 Program elements

Timer

Runs through states at the speed of timer values defined at the inputs. Outputs the current state. The timers can be paused and the state can be reset.
Output
Name Type Default value
Out Float 1
Inputs: 4-10
Default inputs: 4
Name Type Default value Function
Enable Boolean 0 Enables/disables timer. Reset Boolean 0 Resets time when rising
Time1 ­Time8
Float 0 Provides time in state,
edge is detected on input.
time value is in seconds.
Program elements 71
F
FFFFFF
T
T
TT
T
TT
112 33
1
1
1s 2s 3s 4s 5s 6s 7sTime, s
Reset
Enable
Out
F
FFFFFF
T
T
T
F
TT
112 223 3
1s 2s 3s 4s 5s 6s 7sTime, s
Reset
Enable
Out
F
Block function
Timer block is a state machine that goes through states. The time block stays in each state is specified by time inputs Time1 - Time8. Minimal number of time inputs is 2. When timer starts, it is in state 1 and block output is 1. Timer stays in this state for the time specified in input Time1. When this time is passed, the timer block switches to the next state. This behavior of normal operation is illustrated below. Reset is false, enable is true. Time values Time1 = 2s, Time2 = 1s and Time3 = 2s are used in all examples below.
Timer block can be paused by setting enable to false. During which the block stays in the state that it was at the time. When Enable is set to true again, timer resume its work from where it left off. The effect of enable input is illustrated below.
Timer block can be reset using the reset input. When rising edge is detected at the reset input, block goes to state 1 if it is a valid state. If time in state 1 is specified to be less than the time level that the program is running at, timer block will find the next valid state to go to starting from state 1. If all states have delay times that are less than the time level, block will go to state 1. The reset of the timer block happens also in case the block is not enabled.
72 Program elements
F
FF FF F F
T
T
T
F
TT
112 223 3
1s 2s 3s 4s 5s 6s 7sTime, s
Reset
Enable
Out
F
F
FFT TFF
T
T
T
T
TT
112 112 3
1s 2s 3s 4s 5s 6s 7sTime, s
Reset
Enable
Out
T
The reset behavior under normal circumstances is illustrated below. In this example there are 3 time inputs and they all have valid delay times specified.
Block only reacts to rising edge. The reset behavior is illustrated below. The rising edge occurs at time 4s. Reset input is left true but this does not interfere with block operation. At time 5s block is in normal operation mode again.
Exceptional cases
• Not connected inputs get default values assigned.
• When specified time in a state is smaller than the value of the time level that the program is running, the state will be skipped.
• When all time inputs have times specified that are smaller than the time level value, the block output is set to default value.
Program elements 73

Trigger down

Falling edge detection.
Output
Name Type Default value
Out Boolean 0
Input: 1
Name Type Default value Function
In Boolean 0 Block input
Block function
Function block performs falling edge detection. Output is 1 when input previous value is 1 and current value is 0. Otherwise output is 0.
Exceptional cases
If input In is not connected, it will get the default value.
If input In has value 0 at the first execution cycle of the block, the output of the block is set to 0.
74 Program elements

Trigger up

Rising edge detection.
Output
Name Type Default value
Out Boolean 0
Input: 1
Name Type Default value Function
In Boolean 0 Block input
Block function
Function block performs rising edge detection. Output is 1 when block input previous value is 0 and current value is 1. Otherwise output is 0.
Exceptional cases
When input In is not connected, it will get the default value.
If input In has value 1 at the first execution cycle of the block, the output of the block is set to 1.
Program elements 75

T_off

Turns off the delay.
Output
Name Type Default value
Out Boolean 0
Inputs: 2
Name Type Default value Function
In Boolean 0 Provides boolean value Delay Float 0 Provides the time value in
seconds to delay outputting 0
Block function
If the value of In is 1 then it is written to the output. If the value of In is 0 it is written to the output only after a time period is passed which is defined by Delay. Delay is limited to 2097152 seconds.
Exceptional cases
In case a block input is not connected, then its value is set to default value.
76 Program elements

T_on

Turns on the delay.
Output
Name Type Default value
Out Boolean 0
Inputs: 2
Name Type Default value Function
In Boolean 0 Provides boolean
Delay Float 0 Provides time value
Block function
If the value of In is 0 then it is written to the output. If the value of In is 1, it is written to the output only after a time period is passed which is defined by Delay. Delay is limited to 2097152 seconds.
Exceptional cases
value.
in seconds to delay outputting 1.
In case a block input is not connected then its value is set to default value.
Program elements 77
XOR
XOR inputs.
Output:
Name Type Default value
Out Boolean 0
Inputs: 2
Name Type Default value Function
In1 Boolean 0 Block input In2 Boolean 0 Block input
Block function
Function block performs logical XOR operation with inputs.
The truth table of XOR operation:
In1 In2 Out
000 011 101 110
Output has value 1 when the inputs have different values, otherwise the output is 0.
Exceptional cases
In case a block input is not connected, the default value of the input is used in the operation.
78 Program elements

Further information

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to
www.abb.com/searchchannels

Product training

For information on ABB product training, navigate to new.abb.com/service/training.

Providing feedback on ABB Drives manuals

Your comments on our manuals are welcome. Navigate to
new.abb.com/drives/manuals-feedback-form

Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet at
www.abb.com/drives/documents
.
.
.
Contact us
www.abb.com/drives www.abb.com/drivespartners
3AXD50000028574 Rev C (EN) 2016-03-14
Loading...