UTMC 5962R3829437SNC, 5962R3829437SNA, 5962R3829437BXX, 5962R3829437BXC, 5962R3829437BNX Datasheet

...
0 (0)
UTMC 5962R3829437SNC, 5962R3829437SNA, 5962R3829437BXX, 5962R3829437BXC, 5962R3829437BNX Datasheet

Standard Products

UT67164 Radiation-Hardened 8K x 8 SRAM -- SEU Hard

Data Sheet

January 2002

FEATURES

q55ns maximum address access time, single-event upset less than 1.0E-10 errors//bit day (-55o C to 125+oC)

q5-volt operation

qPost-radiation AC/DC performance characteristics guaranteed by MIL-STD-883 Method 1019 testing at 1.0E6 rads(Si)

qAsynchronous operation for compatibility with industrystandard 8K x 8 SRAM

qTTL-compatible input and output levels

qThree-state bidirectional data bus

qLow operating and standby current

qFull military operating temperature range, -55o C to 125+o C, screened to specific test methods listed in Table I MIL-STD- 883 Method 5004 for Class S or Class B

qRadiation-hardened process and design; total dose irradiation testing to MIL-STD-883 Method 1019

-Total-dose: 1.0E6 rads(Si)

-Dose rate upset: 1.0E9 rads (Si)/sec

-Dose rate survival: 1.0E12 rads (Si)/sec

-Single-event upset: <1.0E-10 errors/bit-day

qIndustry standard (JEDEC) 64K SRAM pinout

qPackaging options:

-28-pin 100-mil center DIP (.600 x 1.2)

-28-pin 50-mil center flatpack (.700 x .75)

INTRODUCTION

The UT67164 SRAM is a high performance, asynchronous, radiation-hardened, 8K x 8 random access memory conforming to industry-standard fit, form, and function. The UT67164 SRAM features fully static operation requiring no external clocks or timing strobes. UTMC designed and implemented the UT67164 using an advanced radiationhardened twin-well CMOS process. Advanced CMOS processing along with a device enable/disable function result in a high performance, power-saving SRAM. The combination of radiation-hardness, fast access time, and low power consumption make UT67164 ideal for high-speed systems designed for operation in radiation environments.

A(12:5)

 

 

 

 

 

 

 

INPUT

ROW

256 x 256

 

 

 

DRIVERS

DECODERS

MEMORY ARRAY

 

 

A(4:0)

INPUT

COLUMN

 

DATA

INPUT

 

 

COLUMN

WRITE

DRIVERS

 

 

DRIVERS

DECODERS

CIRCUIT

DQ(7:0)

 

 

 

 

 

I/O

 

 

 

E1

 

CHIP ENABLE

 

DATA

OUTPUT

 

 

 

 

READ

DRIVERS

 

 

 

 

 

CIRCUIT

 

E2

 

 

 

 

 

 

 

 

 

 

 

G

 

OUTPUT ENABLE

 

 

 

 

 

 

 

 

 

W

 

WRITE ENABLE

 

 

 

 

 

 

 

 

 

Figure 1. SRAM Block Diagram

NC

 

 

1

28

 

VDD

 

 

A12

 

 

2

27

 

 

 

 

 

 

W

 

 

 

 

 

A7

 

 

3

26

 

E2

 

 

 

 

 

A6

 

 

4

25

 

A8

 

 

 

 

 

A5

 

 

5

24

 

A9

 

 

 

 

 

A4

 

 

6

23

 

A11

 

 

 

 

 

 

 

 

 

 

 

 

 

A3

 

 

7

22

 

G

 

 

 

 

 

A2

 

 

8

21

 

A10

 

 

 

 

 

A1

 

 

9

20

 

E1

 

 

 

 

 

A0

 

 

10

19

 

DQ7

 

 

 

 

 

DQ0

 

 

11

18

 

DQ6

 

 

 

 

 

DQ1

 

 

12

17

 

DQ5

 

 

 

 

 

DQ2

 

 

13

16

 

DQ4

 

 

 

 

 

Vss

 

 

14

15

 

DQ3

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. SRAM Pinout

PIN NAMES

 

 

 

 

 

 

 

 

 

 

A(12:0)

Address

 

W

Write

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ(7:0)

Data Input/Output

 

 

G

Output Enable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E1

Enable 1

VDD

Power

E21

Enable 2

VSS

Ground

DEVICE OPERATION

The UT67164 has four control inputs called Enable 1 (E 1), Enable 2 (E2), Write Enable (W), and Output Enable (G); 13 address inputs, A(12:0); and eight bidirectional data lines, DQ(7:0). E1 and E2 are device enable inputs that control device selection, active, and standby modes. Asserting both E1 and E2 enables the device, causes IDD to rise to its active value, and decodes the 13 address inputs to select one of 8,192 words in the memory. W controls read and write operations. During a read cycle, G must be asserted to enable the outputs.

Table 1. Device Operation Truth Table

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

W

 

E1

E2

I/O Mode

Mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

1

 

X

 

X

0

3-state

Standby

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

 

X

1

 

X

3-state

Standby

 

 

 

 

 

 

 

 

 

 

 

 

 

X

0

 

0

 

1

Data in

Write

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

0

 

1

3-state

Read

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

1

 

0

 

1

Data out

Read

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:

1.“X” is defined as a “don’t care” condition.

2.Device active; outputs disabled.

READ CYCLE

A combination of W greater than VIH (min), E1 less than VIL

(max), and E2 greater than V IH (min) defines a read cycle. Read access time is measured from the latter of device enable, Output Enable, or valid address to valid data output.

Read Cycle 1, the Address Access read in figure 3a, is initiated by a change in address inputs while the chip is enabled with G asserted and W deasserted. Valid data appears on data outputs DQ(7:0) after the specified tAVQV is satisfied. Outputs remain active throughout the entire cycle. As long as device enable and output enable are active, the address inputs may change at a rate equal to the minimum read cycle time (tAVAV ).

Figure 3b shows Read Cycle 2, the Chip Enable-controlled Access. For this cycle, G remains asserted, W remains deasserted, and the addresses remain stable for the entire cycle. After the specified tETQV is satisfied, the eight-bit word addressed by A(12:0) is accessed and appears at the data outputs DQ(7:0).

Figure 3c shows Read Cycle 3, the Output Enable-controlled Access. For this cycle, E1 and E2 are asserted, W is deasserted, and the addresses are stable before G is enabled. Read access time is tGLQV unless tAVQV or tETQV have not been satisfied.

2

WRITE CYCLE

A combination of W less than V IL(max), E 1less than V IL(max), and E2 greater than VIH(min) defines a write cycle. The state of

G is a “don’t care” for a write cycle. The outputs are placed in the high-impedance state when either G is greater than

VIH(min), or when W is less than VIL(max).

Write Cycle 1, the Write Enable-controlled Access shown in figure 4a, is defined by a write terminated byW going high, with E1and E2 still active. The write pulse width is defined by t WLWH

when the write is initiated by W, and by tETWH when the write

is initiated by the latter of E1 or E2. Unless the outputs have been previously placed in the high-impedance state by G, the user must wait tWLQZ before applying data to the eight bidirectional pins DQ(7:0) to avoid bus contention.

Write Cycle 2, the Chip Enable-controlled Access shown in figure 4b, is defined by a write terminated by the latter of E1 or E2 going inactive. The write pulse width is defined by tWLEF when the write is initiated by W, and by tETEF when the write

is initiated by the latter of E1 or E2 going active. For the W initiated write, unless the outputs have been previously placed in the high-impedance state by G, the user must wait tWLQZ before applying data to the eight bidirectional pins DQ(7:0) to avoid bus contention.

RADIATION HARDNESS

The UT67164 SRAM incorporates special design and layout features which allow operation in high-level radiation environments.

Table 2. Radiation Hardness

Design Specifications1

Total Dose

1.0E6

rads(Si)

 

 

 

Dose Rate Upset

1.0E9

rads(Si)/s 20ns pulse

 

 

 

 

 

Dose Rate Survival

1.0E12

rads(Si)/s 20ns pulse

 

 

 

Single-Event Upset

1.0E-10

errors/bit day2

 

 

 

Neutron Fluencs

3.0E14

2

 

 

n/cm

 

 

 

Notes:

1.The SRAM will not latchup during radiation exposure under recommended operating conditions.

2.90% Adam’s worst case spectrum (-55oC to 125+oC).

Table 3. SEU versus Temperature

 

10-4

 

 

 

 

 

10-6

 

 

 

 

day

10-8

 

 

 

10-10

SEU errors/bit-

10-10

10-13

 

10-11

 

 

 

 

 

10-12 10-13

 

 

 

 

 

10-14

 

 

 

 

 

10-16

 

 

 

 

 

-55 -35 -15

5

25 45

65 85

105 125

Temperature (oC)

3

ABSOLUTE MAXIMUM RATINGS1

(Referenced to VSS)

SYMBOL

PARAMETER

LIMITS

 

 

 

VDD

DC supply voltage

-0.5 to 7.0V

VI/O

Voltage on any pin

-0.5 to VDD + 0.5

TSTG

Storage temperature

-65 to +150°C

PD

Maximum power dissipation

1.0W

TJ

Maximum junction temperature

+150°C

 

 

 

ΘJC

Thermal resistance, junction-to-case2

10°C/W

ILU

Latchup immunity

+/-150mA

II

DC input current

+/-10 mA

 

 

 

Notes:

1.Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2.Test per MIL-STD-883, Method 1012.

RECOMMENDED OPERATING CONDITIONS

SYMBOL

PARAMETER

LIMITS

UNITS

 

 

 

 

VDD

Positive supply voltage

4.5 to 5.5V

V

TC

Case temperature range

-55 to +125°C

o C

VIN

DC input voltage

0V to VDD

V

4

DC ELECTRICAL CHARACTERISTICS (Pre/Post-Radiation)*

(VDD = 5.0V±10%; -55°C <Tc < +125°C)

SYMBOL

PARAMETER

 

 

 

CONDITION

MIN

MAX

UNIT

 

 

 

 

 

 

 

 

 

 

 

VIH

High-level input voltage

 

 

 

 

2.2

 

V

 

VIL

Low-level input voltage

 

 

 

 

 

0.8

V

 

VOL

Low-level output voltage

 

IOL = +/- 4.0mA, V DD = 4.5V

 

0.4

V

VOH

High-level output voltage

 

IOH = +/-4mA, V DD = 4.5V

2.4

 

V

CIN

Input capacitance

 

¦ = 1MHz @ 0V, V DD = 4.5V

 

15

pF

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIO

Bidirectional I/O capacitance

 

¦ = 1MHz @ 0V, V DD = 4.5V

 

20

pF

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IIN

Input leakage current

 

VIN = V DD and V SS

-10

+10

mA

 

IOZ

Three-state output leakage current

 

VO = VDD and VSS

-10

+10

mA

 

 

 

 

 

VDD = 5.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G = 5.5V

 

 

 

 

 

 

 

 

 

 

 

 

I

 

2, 3

Short-circuit output current

 

VDD = 5.5V, V O = VDD

 

+90

mA

OS

 

 

VDD = 5.5V, V O = 0V

-90

 

mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

(OP)

Supply current operating @1MHz

 

CMOS inputs (IOUT = 0)

 

40

mA

DD

 

 

 

VDD = 5.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IDD(SB)

Supply current standby

 

CMOS inputs (IOUT = 0)

 

200

mA

 

 

 

 

 

 

 

 

pre-rad

 

 

E1 = V DD - 0.5, VDD = 5.5V

 

 

 

 

 

 

 

 

 

 

IDD(SB)

Supply current standby

 

CMOS inputs (IOUT = 0)

 

3

mA

post-rad

@ f = 0Hz

 

CS1 = negated V DD = 5.5V

 

 

 

 

 

 

 

 

CS2 = negated

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:

* Post-radiation performance guaranteed at 25°C per MIL-STD-883 Method 1019 at 1.0E6 rads(Si).

1.Measured only for initial qualification and after process or design changes that could affect input/output capacitance.

2.Supplied as a design limit but not guaranteed or tested.

3.Not more than one output may be shorted at a time for maximum duration of one second.

5

Loading...
+ 10 hidden pages