Texas Instruments DAC8550IDGKTG4, DAC8550 Datasheet

0 (0)

DAC8550

DAC8550

SLAS476D – MARCH 2006 – REVISED OCTOBER 2006

16-BIT, ULTRA-LOW GLITCH, VOLTAGE OUTPUT

DIGITAL-TO-ANALOG CONVERTER

FEATURES

Relative Accuracy: 3LSB

Glitch Energy: 0.1nV-s

MicroPower Operation: 140μA at 2.7V

Power-On Reset to Midscale

Power Supply: +2.7V to +5.5V

16-Bit Monotonic Over Temperature

Settling Time: 10μs to ±0.003% FSR

Low-Power Serial Interface with Schmitt-Triggered Inputs

On-Chip Output Buffer Amplifier with Rail-to-Rail Output Amplifier

Power-Down Capability

2'sComplement Input

SYNC Interrupt Facility

Drop-In Compatible with DAC8531/01 and DAC8551 (Binary Input)

Available in a Tiny MSOP-8 Package

APPLICATIONS

Process Control

Data Acquisition Systems

Closed-Loop Servo-Control

PC Peripherals

Portable Instrumentation

Programmable Attenuation

DESCRIPTION

The DAC8550 is a small, low-power, voltage output, 16-bit digital-to-analog converter (DAC). It is monotonic, provides good linearity, and minimizes undesired code-to-code transient voltages. The DAC8550 uses a versatile, 3-wire serial interface that operates at clock rates of up to 30MHz and is compatible with standard SPI™, QSPI™, Microwire™, and digital signal processor (DSP) interfaces.

The DAC8550 requires an external reference voltage to set its output range. The DAC8550 incorporates a power-on reset circuit that ensures that the DAC output powers up at midscale and remains there until a valid write takes place to the device. The DAC8550 contains a power-down feature, accessed over the serial interface, that reduces the current consumption of the device to 200nA at 5V.

The low-power consumption of this device in normal operation makes it ideal for portable, battery-operated equipment. Power consumption is 0.38mW at 2.7V, reducing to less than 1μW in power-down mode.

The DAC8550 is available in an MSOP-8 package.

For additional flexibilty, see the DAC8551, a binary-coded counterpart to the DAC8550.

 

FUNCTIONAL BLOCK DIAGRAM

 

VDD

 

 

 

 

 

VFB

VREF

REF (+)

 

VOUT

 

16-Bit DAC

 

 

16

 

 

 

DAC Register

 

 

 

16

 

 

SYNC

 

 

 

SCLK

Shift Register

PWB

Resistor

Control

Network

 

 

DIN

 

 

 

 

 

 

GND

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SPI, QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor.

All other trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date.

Copyright © 2006, Texas Instruments Incorporated

Products conform to specifications per the terms of the Texas

 

Instruments standard warranty. Production processing does not

 

necessarily include testing of all parameters.

 

DAC8550

www.ti.com

SLAS476D – MARCH 2006 – REVISED OCTOBER 2006

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGING/ORDERING INFORMATION

 

MAXIMUM

MAXIMUM

 

 

SPECIFIED

 

 

TRANSPORT

 

RELATIVE

DIFFERENTIAL

PACKAGE

PACKAGE

PACKAGE

ORDERING

PRODUCT

TEMPERATURE

MEDIA,

ACCURACY

NONLINEARITY

LEAD

DESIGNATOR(1)

MARKING

NUMBER

 

RANGE

QUANTITY

 

(LSB)

(LSB)

 

 

 

 

 

 

 

 

 

 

 

DAC8550

±12

±1

MSOP-8

DGK

–40°C to +105°C

D80

DAC8550IDGKT

Tape and Reel, 250

DAC8550IDGKR

Tape and Reel, 2500

 

 

 

 

 

 

 

DAC8550B

±8

±1

MSOP-8

DGK

–40°C to +105°C

D80

DAC8550IBDGKT

Tape and Reel, 250

DAC8550IBDGKR

Tape and Reel, 2500

 

 

 

 

 

 

 

(1)For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1)

 

UNIT

Supply voltage, VDD to GND

–0.3V to 6V

Digital input voltage range, VI to GND

–0.3V to +VDD + 0.3V

Output voltage, VOUT to GND

–0.3V to +VDD + 0.3V

Operating free-air temperature range, TA

–40°C to +105°C

Storage temperature range, TSTG

–65°C to +150°C

Junction temperature range, TJ(max)

150°C

Power dissipation (DGK package)

(TJmax – TA)/θJA

Thermal impedance, θJA

206°C/W

Thermal impedance, θJC

44°C/W

(1)Stresses above those listed under absolute maximum ratings may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

VDD = 2.7V to 5.5V, –40°C to +105°C range (unless otherwise noted).

 

PARAMETER

TEST CONDITIONS

 

MIN

TYP

MAX

UNIT

STATIC PERFORMANCE(1)

 

 

 

 

 

 

 

Resolution

 

 

16

 

 

Bits

EL

Relative accuracy

Measured by line passing through codes

DAC8550

 

±3

±12

LSB

 

 

 

 

 

–32283 and +32063

DAC8550B

 

±3

±8

LSB

 

 

 

ED

Differential nonlinearity

16-bit Monotonic

 

 

±0.25

±1

LSB

EO

Zero-code error

 

 

 

±2

±12

mV

EFS

Full-scale error

Measured by line passing through codes –32283 and +32063.

 

±0.05

±0.5

% of FSR

EG

Gain error

 

 

 

±0.02

±0.2

% of FSR

 

Zero-code error drift

 

 

 

±5

 

μV/°C

 

Gain temperature coefficient

 

 

 

±1

 

ppm of FSR/°C

PSRR

Power-supply rejection ratio

RL = 2kΩ, CL = 200pF

 

 

0.75

 

mV/V

(1)Linearity calculated using a reduced code range of –32283 to +32063; output unloaded.

2

Submit Documentation Feedback

 

 

 

 

 

 

DAC8550

 

www.ti.com

SLAS476D – MARCH 2006 – REVISED OCTOBER 2006

 

 

ELECTRICAL CHARACTERISTICS (continued)

 

 

 

 

VDD = 2.7V to 5.5V, –40°C to +105°C range (unless otherwise noted).

 

 

 

 

 

PARAMETER

TEST CONDITIONS

MIN

TYP

MAX

UNIT

OUTPUT CHARACTERISTICS(2)

 

 

 

 

 

VO

Output voltage range

 

0

 

VREF

V

tSD

Output voltage settling time

To ±0.003% FSR, 1200h to 8D00h, RL = 2kΩ, 0pF < CL < 200pF

 

8

10

μs

RL = 2kΩ, CL = 500pF

 

12

 

μs

SR

Slew rate

 

 

1.8

 

V/μs

 

Capacitive load stability

RL =

 

470

 

pF

 

RL = 2kΩ

 

1000

 

pF

 

 

 

 

 

Code change glitch impulse

1LSB change around major carry

 

0.1

 

nV-s

 

Digital feedthrough

SCLK toggling, FSYNC high

 

0.1

 

 

 

 

 

zO

DC output impedance

At mid-code input

 

1

 

Ω

IOS

Short-circuit current

VDD = 5V

 

50

 

mA

VDD = 3V

 

20

 

tON

Power-up time

Coming out of power-down mode, VDD = 5V

 

2.5

 

μs

Coming out of power-down mode, VDD = 3V

 

5

 

 

 

 

 

 

AC PERFORMANCE

SNR

Signal-to-noise ratio

THD

Total harmonic distortion

SFDR

Spurious-free dynamic range

SINAD

Signal-to-noise and distortion

REFERENCE INPUT

VREF

Reference voltage

II(REF)

Reference current input range

zI(REF)

Reference input impedance

LOGIC INPUTS (3)

Input current

VIL

Low-level input voltage

VIH

High-level input voltage

Pin capacitance

POWER REQUIREMENTS

VDD

IDD (normal mode)

VDD = 3.6V to 5.5V

VDD = 2.7V to 3.6V

IDD (all power-down modes)

VDD = 3.6V to 5.5V

VDD = 2.7V to 3.6V

POWER EFFICIENCY

IOUT/IDD

TEMPERATURE RANGE

Specified performance

 

95

 

 

BW = 20kHz, VDD = 5V, fOUT = 1kHz,

–85

 

dB

 

 

1st 19 harmonics removed for SNR calculation

87

 

 

 

 

 

 

 

84

 

 

 

0

VDD

V

VREF = VDD = 5V

40

75

μA

VREF = VDD = 3.6V

30

45

μA

 

125

 

kΩ

 

±1

 

μA

VDD = 5V

 

0.8

V

VDD = 3V

 

0.6

 

 

VDD = 5V

2.4

 

V

VDD = 3V

2.1

 

 

 

 

 

3

pF

 

2.7

5.5

V

Input code equals mid-scale, no load, does not include reference

 

 

 

current

 

 

 

VIH = VDD and VIL = GND

160

250

μA

140

240

 

 

VIH = VDD and VIL = GND

0.2

2

μA

 

0.05

2

 

 

ILOAD = 2mA, VDD = 5V

89

 

%

 

–40

+105

°C

(2)Specified by design and characterization, not production tested.

(3)Specified by design and characterization, not production tested.

Submit Documentation Feedback

3

DAC8550

www.ti.com

SLAS476D – MARCH 2006 – REVISED OCTOBER 2006

PIN CONFIGURATION

MSOP-8

(Top View)

VDD

 

 

 

 

GND

1

 

8

 

VREF

 

 

 

 

DIN

2

 

7

 

VFB

 

DAC8550

 

 

SCLK

 

 

 

3

 

6

 

 

 

 

 

 

 

VOUT

4

 

5

 

SYNC

 

 

 

 

 

 

 

 

PIN DESCRIPTIONS

PIN

NAME

DESCRIPTION

1

VDD

Power-supply input, 2.7V to 5.5V.

2

VREF

Reference voltage input.

3

VFB

Feedback connection for the output amplifier.

4

VOUT

Analog output voltage from DAC. The output amplifier has rail-to-rail operation.

 

 

Level-triggered control input (active LOW). This is the frame synchronization signal for the input data. When SYNC goes

5

SYNC

LOW, it enables the input shift register and data is transferred in on the falling edges of the following clocks. The DAC is

updated following the 24th clock (unless SYNC is taken HIGH before this edge, in which case the rising edge of SYNC

 

 

 

 

acts as an interrupt and the write sequence is ignored by the DAC8550). Schmitt-Trigger logic input.

6

SCLK

Serial clock input. Data can be transferred at rates up to 30MHz. Schmitt-Trigger logic input.

7

DIN

Serial data input. Data is clocked into the 24-bit input shift register on each falling edge of the serial clock input.

Schmitt-Trigger logic input.

8

GND

Ground reference point for all circuitry on the part.

4

Submit Documentation Feedback

DAC8550

www.ti.com

SLAS476D – MARCH 2006 – REVISED OCTOBER 2006

SERIAL WRITE OPERATION

 

t1

 

t9

SCLK

1

24

 

 

t8

t2

 

 

t3

 

 

t7

 

 

t4

 

 

SYNC

 

 

 

 

t6

 

 

 

t5

 

 

DIN

DB23

DB0

DB23

TIMING CHARACTERISTICS(1) (2)

VDD = 2.7V to 5.5V, all specifications –40°C to +105°C (unless otherwise noted).

 

PARAMETER

TEST CONDITIONS

MIN TYP MAX

UNIT

t (3)

SCLK cycle time

VDD = 2.7V to 3.6V

50

ns

 

 

1

 

VDD = 3.6V to 5.5V

33

 

 

 

 

t2

SCLK HIGH time

VDD = 2.7V to 3.6V

13

ns

VDD = 3.6V to 5.5V

13

 

 

 

t3

SCLK LOW time

VDD = 2.7V to 3.6V

22.5

ns

VDD = 3.6V to 5.5V

13

 

 

 

t4

SYNC to SCLK rising edge setup time

VDD = 2.7V to 3.6V

0

ns

VDD = 3.6V to 5.5V

0

 

 

 

t5

Data setup time

VDD = 2.7V to 3.6V

5

ns

VDD = 3.6V to 5.5V

5

 

 

 

t6

Data hold time

VDD = 2.7V to 3.6V

4.5

ns

VDD = 3.6V to 5.5V

4.5

 

 

 

t7

24th SCLK falling edge to SYNC rising edge

VDD = 2.7V to 3.6V

0

ns

VDD = 3.6V to 5.5V

0

 

 

 

t8

Minimum SYNC HIGH time

VDD = 2.7V to 3.6V

50

ns

VDD = 3.6V to 5.5V

33

 

 

 

t9

24th SCLK falling edge to SYNC falling edge

VDD = 2.7V to 5.5V

100

ns

(1)All input signals are specified with tR = tF = 5ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.

(2)See Serial Write Operation Timing Diagram.

(3)Maximum SCLK frequency is 30MHz at VDD = 3.6V to 5.5V and 20MHz at VDD = 2.7V to 3.6V.

Submit Documentation Feedback

5

DAC8550

www.ti.com

SLAS476D – MARCH 2006 – REVISED OCTOBER 2006

TYPICAL CHARACTERISTICS: VDD = 5 V

At TA = +25°C, unless otherwise noted.

DLE(LSB) LE(LSB)

 

 

 

LINEARITY ERROR AND

 

 

DIFFERENTIAL LINEARITY ERROR

 

 

vs DIGITAL INPUT CODE (-40°C)

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

VDD = 5V, VREF = 4.99V

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−1.0

08192 16384 24576 32768 40960 49152 57344 65536

Digital Input Code

DLE(LSB) LE(LSB)

 

 

 

LINEARITY ERROR AND

 

 

DIFFERENTIAL LINEARITY ERROR

 

 

vs DIGITAL INPUT CODE (+25°C)

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

VDD = 5V, VREF = 4.99V

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

08192 16384 24576 32768 40960 49152 57344 65536

Digital Input Code

Figure 1.

Figure 2.

 

 

 

 

LINEARITY ERROR AND

 

 

 

DIFFERENTIAL LINEARITY ERROR

 

 

 

vs DIGITAL INPUT CODE (+105°C)

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LE(LSB)

4

VDD = 5V, VREF = 4.99V

 

 

 

 

 

 

 

 

 

 

−2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DLE(LSB)

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−0.5

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

−1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

08192 16384 24576 32768 40960 49152 57344 65536

Digital Input Code

Figure 3.

FULL-SCALE ERROR vs TEMPERATURE

 

0

 

 

 

 

 

VDD = 5V

 

 

 

 

 

VREF = 4.99V

 

 

 

 

Error(mV)

−5

 

 

 

 

 

 

 

 

 

 

−10

 

 

 

 

 

−40

0

40

80

120

 

 

 

Temperature (°C)

 

 

Figure 5.

ZERO-SCALE ERROR vs TEMPERATURE

10

 

 

 

 

VDD = 5V

 

 

 

 

VREF = 4.99V

 

 

 

 

5

 

 

 

 

Error(mV)

 

 

 

 

0

 

 

 

 

−5

 

 

 

 

−40

0

40

80

120

 

 

Temperature (°C)

 

 

Figure 4.

SOURCE AND SINK CURRENT CAPABILITY

 

6

 

 

 

 

 

 

5

 

 

 

 

 

 

 

DAC Loaded with FFFFh

 

 

 

(mV)

4

 

 

 

 

 

3

 

 

 

 

 

OUT

 

 

 

VDD = 5.5V

 

 

 

 

 

 

V

 

 

 

 

VREF = VDD − 10mV

 

 

2

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

DAC Loaded with 0000h

 

 

 

 

0

 

 

 

 

 

 

0

2

4

6

8

10

 

 

 

I(SOURCE/SINK) (mA)

 

Figure 6.

6

Submit Documentation Feedback

Texas Instruments DAC8550IDGKTG4, DAC8550 Datasheet

DAC8550

www.ti.com

SLAS476D – MARCH 2006 – REVISED OCTOBER 2006

TYPICAL CHARACTERISTICS: VDD = 5 V (continued)

At TA = +25°C, unless otherwise noted.

SUPPLY CURRENT vs DIGITAL INPUT CODE

 

300

 

 

 

 

 

 

 

 

 

VDD = VREF = 5V

 

 

 

 

 

 

250

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

A)

 

 

 

Reference Current Included

(

150

 

 

 

 

 

 

 

DD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

0

8192

16384

24576 32768

40960

49152

57344

65536

 

 

 

 

Digital Input Code

 

 

 

Figure 7.

SUPPLY CURRENT vs SUPPLY VOLTAGE

300

280VREF = VDD

Reference Current Included, No Load

 

260

 

 

 

 

 

 

 

 

 

240

 

 

 

 

 

 

 

 

( A)

220

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

DD

 

 

 

 

 

 

 

 

180

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

160

 

 

 

 

 

 

 

 

 

140

 

 

 

 

 

 

 

 

 

120

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

2.7

3.1

3.5

3.9

4.3

4.7

5.1

5.5

 

 

 

 

 

VDD (V)

 

 

 

 

 

 

 

 

Figure 9.

 

 

 

 

 

 

 

SUPPLY CURRENT

 

 

 

 

 

 

 

vs LOGIC INPUT VOLTAGE

 

 

 

1800

 

 

 

 

 

 

 

 

 

1600

TA = 25°C, SCL Input (all other inputs = GND)

 

 

 

VDD

= VREF = 5.5V

 

 

 

 

 

 

 

 

 

 

 

 

 

1400

 

 

 

 

 

 

 

 

 

1200

 

 

 

 

 

 

 

 

A)

1000

 

 

 

 

 

 

 

 

(

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DD

800

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

600

 

 

 

 

 

 

 

 

 

400

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

0

 

1

2

3

 

4

5

 

 

 

 

 

VLOGIC (V)

 

 

 

Figure 11.

POWER-SUPPLY CURRENT vs TEMPERATURE

 

250

 

 

 

 

 

 

VREF = VDD = 5V

 

 

 

 

 

200

 

 

 

 

 

(µA)

150

 

 

 

 

 

 

 

 

 

 

 

DD

 

 

 

 

 

 

I

100

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

0

 

 

 

 

 

 

−40

−10

20

50

80

110

 

 

 

Temperature (°C)

 

 

Figure 8.

POWER-DOWN CURRENT vs SUPPLY VOLTAGE

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VREF = VDD

 

 

 

 

 

 

 

 

 

 

A)

0.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DownCurrent

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power-

0.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7

3.1

3.5

4.3

4.7

5.1

5.5

 

 

 

 

 

 

 

 

VDD (V)

 

 

 

 

 

 

Figure 10.

FULL-SCALE SETTLING TIME: 5V RISING EDGE

Trigger Pulse 5V/div

VDD = 5V

VREF = 4.096V

From Code: D000

To Code: FFFF

Rising Edge

1V/div Zoomed Rising Edge

1mV/div

Time (2 s/div)

Figure 12.

Submit Documentation Feedback

7

Loading...
+ 16 hidden pages