ST VIPer20, VIPer20SP, VIPer20DIP, VIPer20A, VIPer20ASP User Manual

...
0 (0)

!

 

VIPer20/SP/DIP

®

VIPer20A/ASP/ADIP

 

SMPS PRIMARY I.C.

 

 

TYPE

VDSS

In

RDS(on)

VIPer20/SP/DIP

620V

0.5 A

16 Ω

VIPer20A/ASP/ADIP

700V

0.5 A

18 Ω

ADJUSTABLE SWITCHING FREQUENCY UP TO 200 kHz

CURRENT MODE CONTROL

SOFT START AND SHUT DOWN CONTROL

AUTOMATIC BURST MODE OPERATION IN STAND-BY CONDITION ABLE TO MEET “BLUE ANGEL” NORM (<1W TOTAL POWER CONSUMPTION)

INTERNALLY TRIMMED ZENER REFERENCE

UNDERVOLTAGE LOCK-OUT WITH HYSTERESIS

INTEGRATED START-UP SUPPLY

AVALANCHE RUGGED

OVERTEMPERATURE PROTECTION

LOW STAND-BY CURRENT

ADJUSTABLE CURRENT LIMITATION

BLOCK DIAGRAM

PENTAWATT HV

PENTAWATT HV (022Y)

10

 

1

 

PowerSO-10

DIP-8

DESCRIPTION

VIPer20/20A, made using VIPower M0 Technology, combines on the same silicon chip a state-of-the-art PWM circuit together with an optimized high voltage avalanche rugged Vertical Power MOSFET (620V or 700V / 0.5A).

Typical applications cover off line power supplies with a secondary power capability of 10W in wide range condition and 20W in single range or with doubler configuration. It is compatible from both primary or secondary regulation loop despite using around 50% less components when compared with a discrete solution. Burst mode operation is an additional feature of this device, offering the possibility to operate in stand-by mode without extra components.

 

OSC

 

DRAIN

 

 

 

 

 

 

 

 

 

 

 

ON/OFF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OSCILLATOR

 

 

 

 

 

 

 

 

SECURITY

 

PWM

 

 

 

 

 

 

 

 

 

LATCH

 

LATCH

 

 

 

 

 

 

 

UVLO

 

 

 

 

S

 

 

 

 

 

 

VDD

R/S

FF

Q

R1

FF

Q

 

 

 

 

 

LOGIC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

R2 R3

 

 

 

 

 

 

 

 

 

OVERTEMP.

 

 

 

 

 

 

 

 

 

 

 

DETECTOR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5V

 

 

 

0.5 V

+

 

1.7

 

 

 

 

+

+

_

6 V/A

 

 

 

 

 

 

250 ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

μs

 

 

 

 

 

 

 

 

 

 

_

 

 

 

 

Blanking

_

 

 

 

 

 

 

 

delay

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ERROR

 

 

 

 

 

 

 

 

 

 

CURRENT

 

 

 

 

 

 

 

 

 

 

 

 

AMPLIFIER

 

 

AMPLIFIER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_

 

 

 

 

 

 

 

 

 

 

 

 

13 V

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMP

 

 

 

 

SOURCE

FC00491

 

 

 

 

 

 

 

 

 

 

 

 

July 2002

1/25

VIPer20/SP/DIP - VIPer20A/ASP/ADIP

ABSOLUTE MAXIMUM RATING

Symbol

Parameter

Value

Unit

 

 

 

 

 

Continuous Drain-Source Voltage (Tj=25 to 125°C)

 

 

VDS

for VIPer20/SP/DIP

-0.3 to 620

V

 

for VIPer20A/ASP/ADIP

-0.3 to 700

V

 

 

 

 

 

 

ID

Maximum Current

Internally limited

A

VDD

Supply Voltage

0 to 15

V

VOSC

Voltage Range Input

0 to VDD

V

VCOMP

Voltage Range Input

0 to 5

V

ICOMP

Maximum Continuous Current

± 2

mA

Vesd

Electrostatic Discharge (R =1.5kΩ; C=100pF)

4000

V

 

Avalanche Drain-Source Current, Repetitive or Not Repetitive

 

 

ID(AR)

(TC=100°C; Pulse width limited by T j max; δ < 1%)

0.5

A

for VIPer20/SP/DIP

 

for VIPer20A/ASP/ADIP

0.4

A

 

 

 

 

Ptot

Power Dissipation at Tc=25ºC

57

W

Tj

Junction Operating Temperature

Internally limited

°C

Tstg

Storage Temperature

-65 to 150

°C

THERMAL DATA

Symbol

Parameter

 

PENTAWATT

PowerSO-10 (*)

DIP-8

Unit

 

 

 

 

 

 

 

Rthj-pin

Thermal Resistance Junction-pin

Max

 

 

20

°C/W

Rthj-case

Thermal Resistance Junction-case

Max

2.0

2.0

 

°C/W

Rthj-amb.

Thermal Resistance Ambient-case

Max

70

60

35 (#)

°C/W

(*) When mounted using the minimum recommended pad size on FR-4 board.

 

 

 

(#) On multylayer PCB.

 

 

 

 

 

CONNECTION DIAGRAMS (Top View)

 

 

 

 

 

PENTAWATT HV

PENTAWATT HV (022Y)

PowerSO-10

 

DIP-8

 

 

 

OSC

1

8

DRAIN

 

 

Vdd

 

 

DRAIN

 

 

SOURCE

 

 

DRAIN

 

 

COMP

4

5

DRAIN

 

 

 

 

SC10540

 

CURRENT AND VOLTAGE CONVENTIONS

IDD

 

ID

VDD

DRAIN

 

IOSC

-

 

OSC

+

 

13V

 

VDD

COMP SOURCE

VDS

 

 

 

ICOMP

 

VOSC

 

 

 

VCOMP

 

 

 

FC00020

 

 

2/25

VIPer20/SP/DIP - VIPer20A/ASP/ADIP

ORDERING NUMBERS

PENTAWATT HV

PENTAWATT HV (022Y)

PowerSO-10

DIP-8

 

 

 

 

VIPer20

VIPer20 (022Y)

VIPer20SP

VIPer20DIP

 

 

 

 

VIPer20A

VIPer20A (022Y)

VIPer20ASP

VIPer20ADIP

 

 

 

 

PINS FUNCTIONAL DESCRIPTION

DRAIN PIN:

Integrated Power MOSFET drain pin. It provides internal bias current during start-up via an integrated high voltage current source which is switched off during normal operation. The device is able to handle an unclamped current during its normal operation, assuring self protection against voltage surges, PCB stray inductance, and allowing a snubberless operation for low output power.

SOURCE Pin:

Power MOSFET source pin. Primary side circuit common ground connection.

VDD Pin:

This pin provides two functions:

-It corresponds to the low voltage supply of the

control part of the circuit. If VDD goes below 8V, the start-up current source is activated and the output power MOSFET is switched off until the

VDD voltage reaches 11V. During this phase, the internal current consumption is reduced,

the VDD pin sources a current of about 2mA and the COMP pin is shorted to ground. After that, the current source is shut down, and the device tries to start up by switching again.

-This pin is also connected to the error amplifier, in order to allow primary as well as secondary regulation configurations. In case of primary regulation, an internal 13V trimmed reference

voltage is used to maintain VDD at 13V. For secondary regulation, a voltage between 8.5V

and 12.5V will be put on VDD pin by transformer design, in order to stick the output of the transconductance amplifier to the high state. The COMP pin behaves as a constant current

source, and can easily be connected to the output of an optocoupler. Note that any overvoltage due to regulation loop failure is still detected by the error amplifier through the VDD voltage, which cannot overpass 13V. The output voltage will be somewhat higher than the nominal one, but still under control.

COMP PIN:

This pin provides two functions:

-It is the output of the error transconductance amplifier, and allows for the connection of a compensation network to provide the desired transfer function of the regulation loop. Its bandwidth can easily be adjusted to the needed value with usual components value. As stated above, secondary regulation configurations are also implemented through the COMP pin.

-When the COMP voltage goes below 0.5V, the shut-down of the circuit occurs, with a zero duty cycle for the power MOSFET. This feature can be used to switch off the converter, and is automatically activated by the regulation loop (whatever is the configuration) to provide a burst mode operation in case of negligible output power or open load condition.

OSC PIN:

An Rt-Ct network must be connected on that pin to define the switching frequency. Note that despite the connection of Rt to VDD, no significant frequency change occurs for VDD varying from 8V to 15V. It also provides a synchronization capability, when connected to an external frequency source.

3/25

VIPer20/SP/DIP - VIPer20A/ASP/ADIP

AVALANCHE CHARACTERISTICS

Symbol

Parameter

 

Max Value

Unit

 

 

 

 

 

 

Avalanche Current, Repetitive or Not Repetitive

 

 

 

ID(AR)

(pulse widht limited by Tj max; δ < 1%)

 

0.5

A

for VIPer20/SP/DIP

 

 

for VIPer20A/ASP/ADIP

(see fig.12)

0.4

A

 

 

 

 

 

E(ar)

Single Pulse Avalanche Energy

 

10

mJ

(starting Tj =25ºC, I D=ID(ar))

(see fig.12)

 

 

 

ELECTRICAL CHARACTERISTICS (Tj=25°C; V DD=13V, unless otherwise specified) POWER SECTION

Symbol

Parameter

Test Conditions

Min

Typ

Max

Unit

 

 

ID=1mA; VCOMP=0V

 

 

 

 

BVDSS

Drain-Source Voltage

for VIPer20/SP/DIP

620

 

 

V

 

 

for VIPer20A/ASP/ADIP (see fig.5)

700

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCOMP=0V; Tj=125°C

 

 

 

 

IDSS

Off-State Drain Current

VDS=620V for VIPer20/SP/DIP

 

 

1.0

mA

 

 

VDS=700V for VIPer20A/ASP/ADIP

 

 

1.0

mA

 

 

ID=0.4A

 

13.5

16

Ω

 

 

for VIPer20/SP/DIP

 

 

 

 

15.5

18

Ω

RDS(on)

Static Drain-Source

for VIPer20A/ASP/ADIP

 

On Resistance

ID=0.4A; Tj=100°C

 

 

 

 

 

 

for VIPer20/SP/DIP

 

 

29

Ω

 

 

for VIPer20A/ASP/ADIP

 

 

 

 

 

 

32

Ω

 

 

 

 

 

 

 

 

 

 

 

 

tf

Fall Time

ID=0.2A; VIN=300V (1)

 

100

 

ns

(See fig. 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tr

Rise Time

ID=.4A; VIN=300V (1)

 

50

 

ns

(See fig. 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coss

Output Capacitance

VDS=25V

 

90

 

pF

(1) On Inductive Load, Clamped.

 

 

 

 

 

SUPPLY SECTION

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Test Conditions

Min

Typ

Max

Unit

 

 

 

 

 

 

 

IDDch

Start-Up Charging

VDD=5V; VDS=35V

 

-2

 

mA

Current

(see fig. 2 and fig. 15)

 

 

 

 

IDD0

Operating Supply Current

VDD=12V; FSW=0kHz

 

12

16

mA

 

(see fig. 2)

 

 

 

 

IDD1

Operating Supply Current

VDD=12V; Fsw=100kHz

 

13

 

mA

IDD2

Operating Supply Current

VDD=12V; Fsw=200kHz

 

14

 

mA

VDDoff

Undervoltage Shutdown

(See fig. 2)

7.5

8

9

V

VDDon

Undervoltage Reset

(See fig. 2)

 

11

12

V

VDDhyst

Hysteresis Start-up

(See fig. 2)

2.4

3

 

V

4/25

VIPer20/SP/DIP - VIPer20A/ASP/ADIP

ELECTRICAL CHARACTERISTICS (continued)

OSCILLATOR SECTION

Symbol

Parameter

Test Conditions

 

Min

Typ

Max

Unit

 

 

Rt=8.2KΩ; Ct=2.4nF

 

90

100

110

kHz

FSW

Oscillator Frequency

VDD=9 to 15V;

 

 

 

 

 

Total Variation

with Rt± 1%; Ct± 5%

 

 

 

 

 

 

 

(see fig. 6 and fig. 9)

 

 

 

 

 

 

 

 

 

 

 

 

 

VOSCih

Oscillator Peak Voltage

 

 

 

7.1

 

V

VOSCil

Oscillator Valley Voltage

 

 

 

3.7

 

V

ERROR AMPLIFIER SECTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Test Conditions

 

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

VDDreg

VDD Regulation Point

ICOMP=0mA

(see fig. 1)

12.6

13

13.4

V

VDDreg

Total Variation

Tj=0 to 100°C

 

 

2

 

%

GBW

Unity Gain Bandwidth

From Input =VDD to Output = VCOMP

 

150

 

kHz

COMP pin is open

(see fig. 10)

 

 

 

 

AVOL

Open Loop Voltage Gain

COMP pin is open

(see fig. 10)

45

52

 

dB

Gm

DC Transconductance

VCOMP=2.5V

(see fig. 1)

1.1

1.5

1.9

mA/V

VCOMPLO

Output Low Level

ICOMP= -400µA; VDD=14V

 

 

0.2

 

V

VCOMPHI

Output High Level

ICOMP=400µA; VDD=12V

 

 

4.5

 

V

ICOMPLO

Output Low Current

VCOMP=2.5V; VDD=14V

 

 

-600

 

µA

Capability

 

 

 

ICOMPHI

Output High Current

VCOMP=2.5V; VDD=12V

 

 

600

 

µA

Capability

 

 

 

PWM COMPARATOR SECTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Test Conditions

 

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

HID

VCOMP / IDPEAK

VCOMP=1 to 3 V

 

4.2

6

7.8

V/A

VCOMPoff

VCOMP Offset

IDPEAK=10mA

 

 

0.5

 

V

IDpeak

Peak Current Limitation

VDD=12V; COMP pin open

 

0.5

0.67

0.9

A

td

Current Sense Delay to

ID=1A

 

 

250

 

ns

Turn-Off

 

 

 

tb

Blanking Time

 

 

 

250

360

ns

ton(min)

Minimum On Time

 

 

 

350

 

ns

SHUTDOWN AND OVERTEMPERATURE SECTION

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Test Conditions

 

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

VCOMPth

Restart Threshold

(see fig. 4)

 

 

0.5

 

V

tDISsu

Disable Set Up Time

(see fig. 4)

 

 

1.7

5

µs

Ttsd

Thermal Shutdown

(See fig. 8)

 

140

170

190

°C

Temperature

 

Thyst

Thermal Shutdown

(See fig. 8)

 

 

40

 

°C

Hysteresis

 

 

 

5/25

ST VIPer20, VIPer20SP, VIPer20DIP, VIPer20A, VIPer20ASP User Manual

VIPer20/SP/DIP - VIPer20A/ASP/ADIP

Figure 1: VDD Regulation Point

ICOMP

Slope =

 

ICOMPHI

Gm in mA/V

 

VDD

0

 

ICOMPLO

 

 

VDDreg

 

FC00150

Figure 3: Transition Time

ID

10% Ipeak

t

VDS

90% VD

10% VD

t

tf

 

 

tr

FC00160

Figure 5: Breakdown Voltage Vs. Temperature

1.15

 

 

 

 

 

FC00180

 

 

 

 

 

 

BVDSS

 

 

 

 

 

 

(Normalized)

 

 

 

 

 

 

1.1

 

 

 

 

 

 

1.05

 

 

 

 

 

 

1

 

 

 

 

 

 

0.95

20

40

60

80

100

120

0

Temperature (°C)

Figure 2: Undervoltage Lockout

IDD

 

IDD0

 

VDDhyst

VDS= 35 V

Fsw = 0

 

VDDoff

VDD

VDDon

IDDch

 

 

FC00170

Figure 4: Shut Down Action

VOSC

 

 

t

VCOMP

tDISsu

 

VCOMPth

t

ID

t

ENABLE

ENABLE

DISABLE

FC00060

Figure 6: Typical Frequency Variation

1

 

 

 

 

 

FC00190

 

 

 

 

 

 

 

(%)

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

-1

 

 

 

 

 

 

 

-2

 

 

 

 

 

 

 

-3

 

 

 

 

 

 

 

-4

 

 

 

 

 

 

 

-5

20

40

60

80

100

120

140

0

Temperature (°C)

6/25

VIPer20/SP/DIP - VIPer20A/ASP/ADIP

Figure 7: Start-Up Waveforms

Figure 8: Overtemperature Protection

TJ

Ttsc

Ttsd-Thyst

t

Vdd

Vddon

Vddoff

t

Id

t

Vcomp

t

SC10191

7/25

VIPer20/SP/DIP - VIPer20A/ASP/ADIP

Figure 9: Oscillator

Rt

VDD

For Rt >1.2KW

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

OSC

 

 

 

 

 

 

 

 

 

 

Ct ³ 15nF if FSW £ 40KHz

 

 

 

 

 

 

 

2.3

 

æ

 

 

 

550

ö

 

CLK

FSW =

-----------

× è

1

---------------------

 

R

C

t

R

t

150ø

Ct

Ω

 

t

 

 

 

 

 

 

~360

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FC00050

 

 

 

 

 

 

 

 

 

 

 

Ct

 

 

 

 

 

 

 

 

 

 

 

Forbidden area

 

 

 

 

 

 

 

 

 

 

880

Ct(nF) =

Fsw(kHz)

22nF

15nF

Forbidden area

40kHz

Fsw

 

Oscillator frequency vs Rt and Ct

 

1,000

 

 

 

 

 

FC00030

 

 

 

 

 

 

 

 

 

 

 

Ct = 1.5 nF

 

 

 

 

 

 

 

500

 

 

 

 

 

 

 

 

 

Ct = 2.7 nF

 

 

 

 

 

 

(kHz)

300

 

 

 

 

 

 

 

200

Ct = 4.7 nF

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency

100

Ct = 10 nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

30

2

3

5

10

20

30

50

 

1

Rt (kΩ)

8/25

Loading...
+ 17 hidden pages