ON Semiconductor NTP10N40, NTB10N40 Technical data

0 (0)
ON Semiconductor NTP10N40, NTB10N40 Technical data

NTMFS4747N

NTP10N40, NTB10N40

Preferred Device

Advance Information

Power MOSFET

10 Amps, 400 Volts

N±Channel TO±220 and D2PAK

Designed for high voltage, high speed switching applications in

http://onsemi.com

power supplies, converters, power motor controls and bridge circuits.

 

 

Features

Higher Current Rating

Lower RDS(on)

Lower Capacitances

Lower Total Gate Charge

Tighter VSD Specifications

Avalanche Energy Specified

Typical Applications

Switch Mode Power Supplies

PWM Motor Controls

Converters

Bridge Circuits

MAXIMUM RATINGS (TC = 25°C unless otherwise noted)

Rating

Symbol

Value

Unit

 

 

 

 

Drain±Source Voltage

VDSS

400

Vdc

Drain±Gate Voltage (RGS = 1.0 MW)

VDGR

400

Vdc

Gate±Source Voltage

 

 

Vdc

± Continuous

VGS

20

 

± Non±Repetitive (tp 10 ms)

VGSM

40

 

Drain

 

 

Adc

± Continuous

ID

10

 

± Continuous @ 100°C

ID

7.5

 

± Single Pulse (tp 10 ms)

IDM

35

 

Total Power Dissipation

PD

142

Watts

Derate above 25°C

 

1.14

W/°C

 

 

 

 

Operating and Storage Temperature

TJ, Tstg

±55 to 150

°C

Range

 

 

 

 

 

 

 

Single Drain±to±Source Avalanche

EAS

500

mJ

Energy ± Starting TJ = 25°C

 

 

 

(VDD = 100 Vdc, VGS = 10 Vdc,

 

 

 

IL = 10 A, L = 10 mH, RG = 25 W)

 

 

 

Thermal Resistance

 

 

°C/W

± Junction±to±Case

RqJC

0.88

 

± Junction±to±Ambient

RqJA

62.5

 

± Junction±to±Ambient (Note 1.)

RqJA

50

 

Maximum Lead Temperature for

TL

260

°C

Soldering Purposes, 1/8″ from case

 

 

 

for 10 seconds

 

 

 

 

 

 

 

1.When surface mounted to an FR4 board using the minimum recommended pad size.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

10 AMPERES

400 VOLTS

RDS(on) = 500 mΩ

N±Channel

 

D

 

 

G

 

 

4

 

 

S

4

 

 

 

1

2

 

 

3

 

TO±220AB

D2PAK

 

CASE 221A

CASE 418B

1

STYLE 5

STYLE 2

2

 

 

 

 

3

 

 

MARKING DIAGRAMS

 

AND PIN ASSIGNMENTS

 

Drain

Drain

NTB10N40

LLYWW

NTP10N40

LLYWW

 

 

 

 

 

Drain

 

Gate

Source

Gate

Source

 

 

Drain

 

NTx10N40 = Device Code

 

 

LL

= Location Code

 

 

 

Y

= Year

 

 

 

 

WW

= Work Week

ORDERING INFORMATION

Device

Package

Shipping

 

 

 

NTP10N40

TO±220AB

50 Units/Rail

 

 

 

NTB10N40

D2PAK

50 Units/Rail

NTB10N40T4

D2PAK

800/Tape & Reel

 

 

 

Preferred devices are recommended choices for future use and best overall value.

Semiconductor Components Industries, LLC, 2000

1

Publication Order Number:

November, 2000 ± Rev. 1

 

NTP10N40/D

NTP10N40, NTB10N40

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic

 

 

 

Symbol

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

OFF CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Drain±to±Source Breakdown Voltage

 

 

 

 

V(BR)DSS

 

 

 

Vdc

(VGS = 0 Vdc, ID = 0.25 mAdc)

 

 

 

 

 

400

±

±

mV/°C

Temperature Coefficient (Positive)

 

 

 

 

 

±

475

±

 

 

 

 

 

 

 

 

 

 

 

Zero Gate Voltage Collector Current

 

 

 

 

IDSS

±

±

10

mAdc

(VDS = 400 Vdc, VGS = 0 Vdc)

 

 

 

 

 

 

(VDS = 400 Vdc, VGS = 0 Vdc, TJ =125°C)

 

 

 

±

±

100

 

Gate±Body Leakage Current (VGS = ±20 Vdc, VDS = 0)

 

 

IGSS(f)

±

±

100

nAdc

 

 

 

 

 

 

IGSS(r)

±

±

100

 

ON CHARACTERISTICS (Note 2.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gate Threshold Voltage

 

 

 

 

VGS(th)

2.0

2.5

4.0

Vdc

ID = 0.25 mA, VDS = VGS

 

 

 

 

 

mV/°C

Temperature Coefficient (Negative)

 

 

 

 

 

±

6.5

±

 

 

 

 

 

 

 

Static Drain±to±Source On±Resistance (VGS = 10 Vdc, ID = 5.0 Adc)

RDS(on)

±

350

500

mOhm

Drain±to±Source On±Voltage

 

 

 

 

VDS(on)

 

 

 

Vdc

(VGS = 10 Vdc, ID = 10 Adc)

 

 

 

 

 

±

±

6.0

 

(VGS = 10 Vdc, ID = 5.0 Adc, TJ = 125°C)

 

 

 

 

±

±

5.3

 

Forward Transconductance (VDS = 15 Vdc, ID = 5.0 Adc)

 

gFS

2.0

7.0

±

Mhos

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Capacitance

 

(VDS = 25 Vdc, VGS = 0 Vdc,

Ciss

±

1440

2020

pF

Output Capacitance

 

Coss

±

360

500

 

 

 

f = 1.0 MHz)

 

Transfer Capacitance

 

 

 

 

 

Crss

±

15

30

 

SWITCHING CHARACTERISTICS (Note 3.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Turn±On Delay Time

 

 

 

 

 

td(on)

±

10

20

ns

Rise Time

 

(VDD = 200 Vdc, ID = 10 Adc,

t

±

20

40

 

 

 

 

VGS = 10 Vdc,

r

 

 

 

 

Turn±Off Delay Time

 

 

td(off)

±

33

70

 

 

 

RG = 9.1 W)

 

Fall Time

 

 

 

 

 

tf

±

24

50

 

Gate Charge

 

 

 

 

 

QT

±

24

30

nC

 

 

(V

= 320 Vdc, I

D

= 10 Adc,

Q1

±

6.0

±

 

 

 

DS

 

 

 

 

 

 

 

 

 

 

VGS = 10 Vdc)

Q2

±

7.0

±

 

 

 

 

 

 

 

Q3

±

12

±

 

SOURCE±DRAIN DIODE CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Forward On±Voltage (Note 2.)

 

(IS = 10 Adc, VGS = 0 Vdc)

VSD

±

0.9

1.1

Vdc

 

 

 

 

 

(IS = 10 Adc, VGS = 0 Vdc, TJ = 125°C)

 

±

0.8

±

 

Reverse Recovery Time

 

 

 

 

 

trr

±

305

±

ns

 

 

(IS = 10 Adc, VGS = 0 Vdc,

ta

±

155

±

 

 

 

tb

±

150

±

 

 

 

 

dIS/dt = 100 A/ms)

 

Reverse Recovery Stored

 

 

 

 

 

QRR

±

2.5

±

mC

Charge

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTERNAL PACKAGE INDUCTANCE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal Drain Inductance

 

 

 

 

LD

±

3.5

±

nH

(Measured from contact screw on tab to center of die)

 

 

 

 

(Measured from the drain lead 0.25″

from package to center of die)

 

±

4.5

±

 

 

 

 

 

 

 

 

 

 

 

Internal Source Inductance

 

 

 

 

LS

 

 

 

 

(Measured from the source lead 0.25″ from package to source bond pad)

 

±

7.5

±

 

 

 

 

 

 

 

 

 

 

 

 

2.Pulse Test: Pulse Width ≤ 300 ms, Duty Cycle ≤ 2%.

3.Switching characteristics are independent of operating junction temperature.

http://onsemi.com

2

Loading...
+ 2 hidden pages