NSC ADC0803LCWM, ADC0803LCV, ADC0803LCN, ADC0803LCJ, ADC0805LCN Datasheet

...
0 (0)
NSC ADC0803LCWM, ADC0803LCV, ADC0803LCN, ADC0803LCJ, ADC0805LCN Datasheet

December 1994

ADC0801/ADC0802/ADC0803/ADC0804/ADC0805

8-Bit mP Compatible A/D Converters

General Description

The ADC0801, ADC0802, ADC0803, ADC0804 and ADC0805 are CMOS 8-bit successive approximation A/D converters that use a differential potentiometric ladderÐ similar to the 256R products. These converters are designed to allow operation with the NSC800 and INS8080A derivative control bus with TRI-STATEÉ output latches directly driving the data bus. These A/Ds appear like memory locations or I/O ports to the microprocessor and no interfacing logic is needed.

Differential analog voltage inputs allow increasing the com- mon-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

YDifferential analog voltage inputs

YLogic inputs and outputs meet both MOS and TTL voltage level specifications

YWorks with 2.5V (LM336) voltage reference

YOn-chip clock generator

Y0V to 5V analog input voltage range with single 5V supply

YNo zero adjust required

Y0.3× standard width 20-pin DIP package

Y20-pin molded chip carrier or small outline package

YOperates ratiometrically or with 5 VDC, 2.5 VDC, or analog span adjusted voltage reference

Key Specifications

Features

Y Resolution

8 bits

Y

Compatible with 8080 mP derivativesÐno interfacing

Y

Total error

g(/4 LSB, g(/2 LSB and g1 LSB

 

logic needed - access time - 135 ns

Y

Conversion time

100 ms

Y

Easy interface to all microprocessors, or operates

 

 

 

 

``stand alone''

 

 

 

Typical Applications

 

 

 

 

TL/H/5671 ± 1

 

 

 

 

 

8080 Interface

 

Error Specification (Includes Full-Scale,

 

 

 

 

Zero Error, and Non-Linearity)

 

 

 

 

 

 

Part

Full-

VREF/2e2.500 VDC

VREF/2eNo Connection

 

Scale

 

Number

(No Adjustments)

(No Adjustments)

 

Adjusted

 

 

 

 

 

 

 

 

 

 

ADC0801

g(/4 LSB

 

 

 

ADC0802

 

g(/2 LSB

 

 

ADC0803

g(/2 LSB

 

 

 

ADC0804

 

g1 LSB

 

TL/H/5671 ± 31

ADC0805

 

 

g1 LSB

 

 

 

 

TRI-STATEÉ is a registered trademark of National Semiconductor Corp.

Z-80É is a registered trademark of Zilog Corp.

ADC0801/ADC0802/ADC0803/ADC0804/ADC0805 Converters A/D Compatible Pm Bit-8

C1995 National Semiconductor Corporation

TL/H/5671

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (VCC) (Note 3)

6.5V

Voltage

 

Logic Control Inputs

b0.3V to a18V

At Other Input and Outputs

b0.3V to (VCCa0.3V)

Lead Temp. (Soldering, 10 seconds)

260§C

Dual-In-Line Package (plastic)

Dual-In-Line Package (ceramic)

300§C

Surface Mount Package

215§C

Vapor Phase (60 seconds)

Infrared (15 seconds)

220§C

Storage Temperature Range

b65§C to a150§C

Package Dissipation at TAe25§C

875 mW

ESD Susceptibility (Note 10)

800V

Operating Ratings (Notes 1 & 2)

Temperature Range

TMINsTAsTMAX

ADC0801/02LJ, ADC0802LJ/883

b55§CsTAsa125§C

ADC0801/02/03/04LCJ

b40§CsTAsa85§C

ADC0801/02/03/05LCN

b40§CsTAsa85§C

ADC0804LCN

0§CsTAsa70§C

ADC0802/03/04LCV

0§CsTAsa70§C

ADC0802/03/04LCWM

0§CsTAsa70§C

Range of VCC

4.5 VDC to 6.3 VDC

Electrical Characteristics

The following specifications apply for VCCe5 VDC, TMINsTAsTMAX and fCLKe640 kHz unless otherwise specified.

Parameter

Conditions

Min

Typ

Max

Units

ADC0801: Total Adjusted Error (Note 8)

With Full-Scale Adj.

 

 

g(/4

LSB

 

(See Section 2.5.2)

 

 

 

 

 

 

 

ADC0802: Total Unadjusted Error (Note 8)

VREF/2e2.500 VDC

 

 

g(/2

LSB

ADC0803: Total Adjusted Error (Note 8)

With Full-Scale Adj.

 

 

g(/2

LSB

 

(See Section 2.5.2)

 

 

 

 

 

 

 

ADC0804: Total Unadjusted Error (Note 8)

VREF/2e2.500 VDC

 

 

g1

LSB

ADC0805: Total Unadjusted Error (Note 8)

VREF/2-No Connection

 

 

g1

LSB

VREF/2 Input Resistance (Pin 9)

ADC0801/02/03/05

2.5

8.0

 

kX

 

ADC0804 (Note 9)

0.75

1.1

 

kX

Analog Input Voltage Range

(Note 4) V(a) or V(b)

Gnd ± 0.05

 

VCCa0.05

VDC

DC Common-Mode Error

Over Analog Input Voltage

 

g(/16

g(/8

LSB

 

Range

 

 

 

 

Power Supply Sensitivity

VCCe5 VDC g10% Over

 

g(/16

g(/8

LSB

 

Allowed VIN(a) and VIN(b)

 

 

 

 

 

Voltage Range (Note 4)

 

 

 

 

AC Electrical Characteristics

The following specifications apply for VCCe5 VDC and TAe25§C unless otherwise specified.

Symbol

 

 

Parameter

 

 

 

Conditions

Min

Typ

Max

Units

TC

Conversion Time

 

fCLKe640 kHz (Note 6)

103

 

114

ms

TC

Conversion Time

 

(Note 5, 6)

66

 

73

1/fCLK

fCLK

Clock Frequency

 

VCCe5V, (Note 5)

100

640

1460

kHz

 

 

 

Clock Duty Cycle

(Note 5)

40

 

60

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CR

Conversion Rate in Free-Running

 

INTR tied to WR with

8770

 

9708

conv/s

 

 

 

Mode

CSe0 VDC, fCLKe640 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Width of WR Input (Start Pulse Width)

 

CSe0 VDC (Note 7)

100

 

 

ns

tW(WR)L

 

 

 

 

tACC

Access Time (Delay from Falling

 

CLe100 pF

 

135

200

ns

 

 

 

Edge of RD to Output Data Valid)

 

 

 

 

 

 

 

 

 

 

t1H, t0H

TRI-STATE Control (Delay

 

CLe10 pF, RLe10k

 

125

200

ns

 

 

 

from Rising Edge of RD to

(See TRI-STATE Test

 

 

 

 

 

 

 

Hi-Z State)

 

Circuits)

 

 

 

 

tWI, tRI

Delay from Falling Edge

 

 

 

 

 

 

 

 

 

300

450

ns

 

 

 

of WR or RD to Reset of INTR

 

 

 

 

 

 

 

 

 

 

CIN

Input Capacitance of Logic

 

 

 

 

 

 

 

5

7.5

pF

 

 

 

Control Inputs

 

 

 

 

 

 

 

 

 

 

COUT

TRI-STATE Output

 

 

 

 

 

 

 

5

7.5

pF

 

 

 

Capacitance (Data Buffers)

 

 

 

 

 

 

 

 

 

 

CONTROL INPUTS [Note: CLK IN (Pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]

 

VIN (1)

Logical ``1'' Input Voltage

 

VCCe5.25 VDC

2.0

 

15

VDC

 

 

 

(Except Pin 4 CLK IN)

 

 

 

 

 

 

 

 

 

 

2

AC Electrical Characteristics (Continued)

The following specifications apply for VCC e 5VDC and TMIN s TA s TMAX, unless otherwise specified.

Symbol

 

 

 

Parameter

Conditions

Min

Typ

Max

Units

 

 

 

 

 

 

 

 

 

 

 

CONTROL INPUTS [Note: CLK IN (Pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]

 

 

 

 

 

 

 

 

 

 

 

 

VIN (0)

 

Logical ``0'' Input Voltage

VCCe4.75 VDC

 

 

0.8

VDC

 

 

(Except Pin 4 CLK IN)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IIN (1)

 

Logical ``1'' Input Current

VINe5 VDC

 

0.005

1

mADC

 

 

(All Inputs)

 

 

 

 

 

IIN (0)

 

Logical ``0'' Input Current

VINe0 VDC

b1

b0.005

 

mADC

 

 

(All Inputs)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLOCK IN AND CLOCK R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VTa

 

CLK IN (Pin 4) Positive Going

 

2.7

3.1

3.5

VDC

 

 

Threshold Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VTb

 

CLK IN (Pin 4) Negative

 

1.5

1.8

2.1

VDC

 

 

Going Threshold Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VH

 

CLK IN (Pin 4) Hysteresis

 

0.6

1.3

2.0

VDC

 

 

(VTa)b(VTb)

 

 

 

 

 

VOUT (0)

 

Logical ``0'' CLK R Output

IOe360 mA

 

 

0.4

VDC

 

 

Voltage

VCCe4.75 VDC

 

 

 

 

VOUT (1)

 

Logical ``1'' CLK R Output

IOeb360 mA

2.4

 

 

VDC

 

 

Voltage

VCCe4.75 VDC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DATA OUTPUTS AND INTR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOUT (0)

 

Logical ``0'' Output Voltage

 

 

 

 

 

 

 

Data Outputs

IOUTe1.6 mA, VCCe4.75 VDC

 

 

0.4

VDC

 

 

 

 

IOUTe1.0 mA, VCCe4.75 VDC

 

 

 

 

 

 

INTR Output

 

 

0.4

VDC

VOUT (1)

 

Logical ``1'' Output Voltage

IOeb360 mA, VCCe4.75 VDC

2.4

 

 

VDC

VOUT (1)

 

Logical ``1'' Output Voltage

IOeb10 mA, VCCe4.75 VDC

4.5

 

 

VDC

IOUT

 

TRI-STATE Disabled Output

VOUTe0 VDC

b3

 

 

mADC

 

 

Leakage (All Data Buffers)

VOUTe5 VDC

 

 

3

mADC

ISOURCE

 

 

 

 

 

VOUT Short to Gnd, TAe25§C

4.5

6

 

mADC

ISINK

 

 

 

 

 

VOUT Short to VCC, TAe25§C

9.0

16

 

mADC

POWER SUPPLY

 

 

 

 

 

 

 

 

 

 

 

 

 

ICC

 

Supply Current (Includes

fCLKe640 kHz,

 

 

 

 

 

 

Ladder Current)

VREF/2eNC, TAe25§C

 

 

 

 

 

 

 

 

 

 

and CSe5V

 

 

 

 

 

 

ADC0801/02/03/04LCJ/05

 

 

1.1

1.8

mA

 

 

ADC0804LCN/LCV/LCWM

 

 

1.9

2.5

mA

 

 

 

 

 

 

 

 

 

 

 

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

Note 2: All voltages are measured with respect to Gnd, unless otherwise specified. The separate A Gnd point should always be wired to the D Gnd.

Note 3: A zener diode exists, internally, from VCC to Gnd and has a typical breakdown voltage of 7 VDC.

Note 4: For VIN(b)t VIN(a) the digital output code will be 0000 0000. Two on-chip diodes are tied to each analog input (see block diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the VCC supply. Be careful, during testing at low VCC levels (4.5V), as high level analog inputs (5V) can cause this input diode to conduct±especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog VIN does not exceed the supply voltage by more than 50 mV, the output code will be correct. To achieve an absolute 0 VDC to 5 VDC input voltage range will therefore require a minimum supply voltage of 4.950 VDC over temperature variations, initial tolerance and loading.

Note 5: Accuracy is guaranteed at fCLK e 640 kHz. At higher clock frequencies accuracy can degrade. For lower clock frequencies, the duty cycle limits can be extended so long as the minimum clock high time interval or minimum clock low time interval is no less than 275 ns.

Note 6: With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process. The start request is internally latched, see Figure 2 and section 2.0.

Note 7: The CS input is assumed to bracket the WR strobe input and therefore timing is dependent on the WR pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (see timing diagrams).

Note 8: None of these A/Ds requires a zero adjust (see section 2.5.1). To obtain zero code at other analog input voltages see section 2.5 and Figure 5 .

Note 9: The VREF/2 pin is the center point of a two-resistor divider connected from VCC to ground. In all versions of the ADC0801, ADC0802, ADC0803, and ADC0805, and in the ADC0804LCJ, each resistor is typically 16 kX. In all versions of the ADC0804 except the ADC0804LCJ, each resistor is typically 2.2 kX.

Note 10: Human body model, 100 pF discharged through a 1.5 kX resistor.

3

Typical Performance Characteristics

 

Delay From Falling Edge of

 

 

 

Logic Input Threshold Voltage

RD to Output Data Valid

vs. Supply Voltage

vs. Load Capacitance

CLK IN Schmitt Trip Levels vs. Supply Voltage

Error

TL/H/5671 ± 2

4

TRI-STATE Test Circuits and Waveforms

t1H

t1H, CLe10 pF

t0H

t0H, CLe10 pF

tre20 ns

tre20 ns

TL/H/5671 ± 3

 

Timing Diagrams (All timing is measured from the 50% voltage points)

TL/H/5671 ± 4

Note: Read strobe must occur 8 clock periods (8/fCLK) after assertion of interrupt to guarantee reset of INTR.

5

Typical Applications (Continued)

6800 Interface

Ratiometric with Full-Scale Adjust

TL/H/5671 ± 5

6

Typical Applications (Continued)

Directly Converting a Low-Level Signal

A mP Interfaced Comparator

TL/H/5671 ± 6

7

Typical Applications (Continued)

*

Self

*After of the

*

TL/H/5671 ± 7

8

Typical Applications (Continued)

mP Compatible Differential-Input Comparator with Pre-Set VOS (with or without Hysteresis)

*

*Circuit

**Can A/D

TL/H/5671 ± 8

9

Typical Applications (Continued)

Handling g5V Analog Inputs

Read-Only Interface

TL/H/5671 ± 33

*Beckman Instruments Ý694-3-R10K resistor array

mP Interfaced Comparator with Hysteresis

TL/H/5671 ± 35

Analog Self-Test for a System

TL/H/5671 ± 36

TL/H/5671 ± 34

Protecting the Input

Diodes are 1N914

TL/H/5671 ± 9

A Low-Cost, 3-Decade Logarithmic Converter

TL/H/5671 ± 37

*LM389 transistors

A, B, C, D e LM324A quad op amp

10

Typical Applications (Continued)

3-Decade Logarithmic A/D Converter

TL/H/5671 ± 10

 

 

 

 

 

*A/D output data is updated 1 CLK period

*Allows output data to set-up at falling edge of CS

 

 

 

 

 

prior to assertion of INTR

 

 

11

Loading...
+ 25 hidden pages