NEC NE334S01-T1, NE334S01-T1B Datasheet

DATA SHEET
HETERO JUNCTION FIELD EFFECT TRANSISTOR
NE334S01
C BAND SUPER LOW NOISE AMPLIFIER
N-CHANNEL HJ-FET
DESCRIPTION
The NE334S01 is a Herero Junction FET that utilizes the hetero junction to create high mobility electrons. Its excellent low noise and high associated gain make it suitable for TVRO and another commercial systems.
FEATURES
Super Low Noise Figure & High Associated Gain
NF = 0.25 dB TYP., Ga = 16.0 dB TYP. at f = 4 GHz
Gate Width: Wg = 280 mm
ORDERING INFORMATION
PART NUMBER SUPPLYING FORM MARKING NE334S01-T1 Tape & reel 1000 pcs./reel C NE334S01-T1B Tape & reel 4000 pcs./reel
ABSOLUTE MAXIMUM RATINGS (TA = 25 °°C)
Drain to Source Voltage VDS 4.0 V Gate to Source Voltage VGS –3.0 V Drain Current ID IDSS mA Total Power Dissipation Ptot 300 mW Channel Temperature Tch 125 Storage Temperature Tstg –65 to +125°C
°
C
2
0.125 ± 0.05
PACKAGE DIMENSIONS
(Unit: mm)
2.0 ± 0.2
1
C
3
0.65 TYP.
1.9 ± 0.2
1.6
0.4 MAX.
4.0 ± 0.2
2.0 ± 0.2
4
0.5 TYP.
1. Source
2. Drain
3. Source
4. Gate
1.5 MAX.
2.0 ± 0.2
RECOMMENDED OPERATING CONDITION (TA = 25 °°C)
CHARACTERISTIC SYMBOL MIN. TYP. MAX. Unit Drain to Source Voltage VDS 2 2.5 V Drain Current ID 15 20 mA Input Power Pin 0 dBm
Document No. P11139EJ3V0DS00 (3rd edition) Date Published October 1996 P Printed in Japan
1996©
ELECTRICAL CHARACTERISTICS (TA = 25 °°C)
PARAMETER SYMBOL MIN. TYP. MAX. UNIT TEST CONDITIONS
NE334S01
Gate to Source Leak Current IGSO 0.5 10 Saturated Drain Current IDSS 20 80 150 mA VDS = 2 V, VGS = 0 V Gate to Source Cutoff Voltage VGS(off) Transconductance gm 70 85 mS VDS = 2 V, ID = 14 mA Noise Figure NF 0.25 0.35 dB VDS = 2 V, ID = 15 mA, Associated Gain Ga 15.0 16.0 dB f = 4 GHz
-
0.2
-
0.9
-
2.5 V VDS = 2 V, ID = 100 mA
m
AVGS = -3 V
2
TYPICAL CHARACTERISTICS (TA = 25 °°C)
NE334S01
TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE
500
400
300
200
- Total Power Dissipation - mW
100
tot
P
0 50 100 150 200 250
A
- Ambient Temperature - ˚C
T
DRAIN CURRENT vs. GATE TO SOURCE VOLTAGE
100
DS
V
80
= 2 V
DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE
100
VGS = 0 V
80
–0.2 V
60
40
- Drain Current - mA
D
I
20
–0.4 V
–0.6 V
0 12345
V
DS
- Drain to Source Voltage - V
MAXIMUM AVAILABLE GAIN, FORWARD  INSERTION GAIN vs. FREQUENCY
24
V
DS
= 2 V
D
= 15 mA
I
20
MSG.
60
40
- Drain Current - mA
D
I
20
0
–2.0
GS
- Gate to Source Voltage - V
V
–1.0 0
Gain Calculations
½
S
21
½
MSG. = K =
½
S
12
½
½
S21
MAG. = (K ± K
½
½
S
12
½
2
-
1)
Ö
D
= S11×S22 - S21×S12
1 + ½D
½2 - ½S11
2½S12½½S21
½2 - ½S22
½
16
2
|S
21S
|
12
- Forward Insertion Gain - dB
2
|
8
21S
MSG. - Maximum Stable Gain - dB
MAG. - Maximum Available Gain - dB
|S
4
1
2 4 6 8 10 14 20 30
f - Frequency - GHz
2
½
MAG.
3
S-PARAMETERS
VDS = 2 V, ID = 15 mA
START 2 Ghz, STOP 18 Ghz, STEP 500 Mhz
NE334S01
Marker
1:
4 GHz
2:
8 GHz
3:
12 GHz
4:
16 GHz
5:
18 GHz
S11
1.0
0.5 2.0
3
0
2
–0.5 –2.0
–1.0
21
S
+90˚
5
4
1
Rmax. = 1
S
12
+90˚
+135˚ +45˚
1
±180˚ 0
–135˚ –45˚
–90˚
S
22
1.0
2
3
5
4
Rmax. = 0.25
+135˚ +45˚
1
2
±180˚ 0
–135˚ –45˚
–90˚
5
3
4
Rmax. = 1.0
0.5 2.0
5
4
0
–0.5 –2.0
3
2
–1.0
1
Rmax. = 1
4
Loading...
+ 8 hidden pages