Lattice Semiconductor Corporation M4LV-96-48-7VC, M4LV-96-48-18VI, M4LV-96-48-15VC, M4LV-96-48-14VI, M4LV-96-48-12VI Datasheet

...
0 (0)

MACH 4 CPLD Family

High Performance E2CMOS®

In-System Programmable Logic

FEATURES

High-performance, E2CMOS 3.3-V & 5-V CPLD families

Flexible architecture for rapid logic designs

Excellent First-Time-FitTM and refit feature

SpeedLockingTM performance for guaranteed fixed timing

Central, input and output switch matrices for 100% routability and 100% pin-out retention

High speed

7.5ns tPD Commercial and 10ns tPD Industrial

111.1MHz fCNT

32 to 256 macrocells; 32 to 384 registers

44 to 256 pins in PLCC, PQFP, TQFP and BGA packages

Flexible architecture for a wide range of design styles

D/T registers and latches

Synchronous or asynchronous mode

Dedicated input registers

Programmable polarity

Reset/ preset swapping

Advanced capabilities for easy system integration

3.3-V & 5-V JEDEC-compliant operations

JTAG (IEEE 1149.1) compliant for boundary scan testing

3.3-V & 5-V JTAG in-system programming

PCI compliant (-7/-10/-12 speed grades)

Safe for mixed supply voltage system designs

Bus-FriendlyTM inputs and I/Os

Programmable security bit

Individual output slew rate control

Advanced E2CMOS process provides high-performance, cost-effective solutions

Supported by ispDesignEXPERTTM software for rapid logic development

Supports HDL design methodologies with results optimized for MACH 4

Flexibility to adapt to user requirements

Software partnerships that ensure customer success

Lattice and third-party hardware programming support

LatticePROTM software for in-system programmability support on PCs and automated test equipment

Programming support on all major programmers including Data I/O, BP Microsystems, Advin, and System General

Publication# 17466

Rev: M

Amendment/0

Issue Date: March 2000

Table 1. MACH 4 Device Features1, 2

 

M4-32/32

M4-64/32

M4-96/48

M4-128/64

M4-128N/64

M4-192/96

M4-256/128

Feature

M4LV-32/32

M4LV-64/32

M4LV-96/48

M4LV-128/64

M4LV-128N/64

M4LV-192/96

M4LV-256/128

 

 

 

 

 

 

 

 

Macrocells

32

64

96

128

128

192

256

 

 

 

 

 

 

 

 

Maximum User I/O Pins

32

32

48

64

64

96

128

 

 

 

 

 

 

 

 

tPD (ns)

7.5

7.5

7.5

7.5

7.5

7.5

7.5

fCNT (MHz)

111

111

111

111

111

111

111

tCOS (ns)

5.5

5.5

5.5

5.5

5.5

5.5

5.5

tSS (ns)

5.5

5.5

5.5

5.5

5.5

5.5

5.5

Static Power (mA)

25

25

50

70

70

85

100

 

 

 

 

 

 

 

 

JTAG Compliant

Yes

Yes

Yes

Yes

No

Yes

Yes

 

 

 

 

 

 

 

 

PCI Compliant

Yes

Yes

Yes

Yes

Yes

Yes

Yes

 

 

 

 

 

 

 

 

Notes:

1.For information on the M4-96/96 device, please refer to the M4-96/96 data sheet at www.latticesemi.com.

2.“M4-xxx” is for 5-V devices. “M4LV-xxx” is for 3.3-V devices.

2

MACH 4 Family

GENERAL DESCRIPTION

The MACH® 4 family from Lattice offers an exceptionally flexible architecture and delivers a superior Complex Programmable Logic Device (CPLD) solution of easy-to-use silicon products and software tools. The overall benefits for users are a guaranteed and predictable CPLD solution, faster time-to-market, greater flexibility and lower cost. The MACH 4 devices offer densities ranging from 32 to 256 macrocells with 100% utilization and 100% pin-out retention. The MACH 4 family offer 5-V (M4-xxx) and 3.3-V (M4LV-xxx) operation.

MACH 4 products are 5-V or 3.3-V in-system programmable through the JTAG (IEEE Std. 1149.1) interface. JTAG boundary scan testing also allows product testability on automated test equipment for device connectivity.

All MACH 4 family members deliver First-Time-Fit and easy system integration with pin-out retention after any design change and refit. For both 3.3-V and 5-V operation, MACH 4 products

can deliver guaranteed fixed timing as fast as 7.5 ns tPD and 111 MHz fCNT through the SpeedLocking feature when using up to 20 product terms per output (Table 2).

Table 2. MACH 4 Speed Grades

 

 

 

 

 

Speed Grade1

 

 

Device

 

-7

-10

-12

 

-14

-15

-18

 

 

 

 

 

 

 

 

 

M4-32/32

 

C

C, I

C, I

 

I

C

I

M4LV-32/32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M4-64/32

 

C

C, I

C, I

 

I

C

I

M4LV-64/32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M4-96/48

 

C

C, I

C, I

 

I

C

I

M4LV-96/48

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M4-128/64

 

C

C, I

C, I

 

I

C

I

M4LV-128/64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M4-128N/64

 

C

C, I

C, I

 

I

C

I

M4LV-128N/64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M4-192/96

 

C

C, I

C, I

 

I

C

I

M4LV-192/96

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M4-256/128

 

C

C, I

C, I

 

I

C

I

M4LV-256/128

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:

 

 

 

 

 

 

 

 

1. C = Commercial,

I = Industrial

 

 

 

 

 

 

The MACH 4 family offers numerous density-I/O combinations in Thin Quad Flat Pack (TQFP), Plastic Quad Flat Pack (PQFP), Plastic Leaded Chip Carrier (PLCC), and Ball Grid Array (BGA) packages ranging from 44 to 256 pins (Table 3). It also offers I/O safety features for mixedvoltage designs so that the 3.3-V devices can accept 5-V inputs, and 5-V devices do not overdrive 3.3-V inputs. Additional features include Bus-Friendly inputs and I/Os, a programmable powerdown mode for extra power savings and individual output slew rate control for the highest speed transition or for the lowest noise transition.

MACH 4 Family

3

Table 3. MACH 4 Package and I/O Options (Number of I/Os and dedicated inputs in Table)

 

M4-32/32

M4-64/32

M4-96/48

M4-128/64

M4-128N/64

M4-192/96

M4-256/128

Package

M4LV-32/32

M4LV-64/32

M4LV-96/48

M4LV-128/64

M4LV-128N/64

M4LV-192/96

M4LV-256/128

 

 

 

 

 

 

 

 

44-pin PLCC

32+2

32+2

 

 

 

 

 

 

 

 

 

 

 

 

 

44-pin TQFP

32+2

32+2

 

 

 

 

 

 

 

 

 

 

 

 

 

48-pin TQFP

32+2

32+2

 

 

 

 

 

 

 

 

 

 

 

 

 

84-pin PLCC

 

 

 

 

64+6

 

 

 

 

 

 

 

 

 

 

100-pin TQFP

 

 

48+8

64+6

 

 

 

 

 

 

 

 

 

 

 

100-pin PQFP

 

 

 

64+6

 

 

 

 

 

 

 

 

 

 

 

144-pin TQFP

 

 

 

 

 

96+16

 

 

 

 

 

 

 

 

 

208-pin PQFP

 

 

 

 

 

 

128+14

 

 

 

 

 

 

 

 

256-ball BGA

 

 

 

 

 

 

128+14

 

 

 

 

 

 

 

 

4

MACH 4 Family

FUNCTIONAL DESCRIPTION

The fundamental architecture of MACH 4 devices (Figure 1) consists of multiple, optimized PAL® blocks interconnected by a central switch matrix. The central switch matrix allows communication between PAL blocks and routes inputs to the PAL blocks. Together, the PAL blocks and central switch matrix allow the logic designer to create large designs in a single device instead of having to use multiple devices.

The key to being able to make effective use of these devices lies in the interconnect schemes. In MACH 4 architecture, the macrocells are flexibly coupled to the product terms through the logic allocator, and the I/O pins are flexibly coupled to the macrocells due to the output switch matrix. In addition, more input routing options are provided by the input switch matrix. These resources provide the flexibility needed to fit designs efficiently.

 

 

 

 

 

 

 

 

PAL Block

 

 

 

 

Clock

 

4

 

Note 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generator

 

 

 

 

 

 

 

Clock/Input

MatrixSwitchCentral

33/

 

 

 

 

MatrixSwitchOutput

 

CellsI/O

 

Pins

 

 

 

 

 

 

Note 3

 

34/

 

 

 

 

 

 

 

I/O

 

 

36

Logic

Logic

16

Output/

16

8

 

Pins

 

 

 

 

 

 

 

 

Allocator

 

Buried

 

 

 

 

 

 

 

Array

 

 

 

 

 

 

 

 

with XOR

 

Macrocells

 

Note 1

 

 

 

 

 

 

 

 

 

 

Dedicated

 

 

 

 

16

 

 

 

 

Input Pins

 

 

Input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Switch

 

 

 

 

16

 

I/O

 

 

 

Matrix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pins

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAL Block

 

 

 

 

 

 

 

 

 

 

PAL Block

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I/O

 

 

 

 

 

 

 

 

 

 

Pins

 

 

 

 

 

 

 

 

 

 

17466G-001

Figure 1. MACH 4 Block Diagram and PAL Block Structure

Notes:

1.16 for MACH 4 devices with 1:1 macrocell-I/O cell ratio (see next page).

2.Block clocks do not go to I/O cells in M4(LV)-32/32.

3.M4(LV)-192/96 and M4(LV)-256/128 have dedicated clock pins which cannot be used as inputs and do not connect to the central switch matrix.

MACH 4 Family

5

Table 4. Architectural Summary of MACH 4 devices

 

MACH 4 Devices

 

 

 

 

 

 

M4-64/32, M4LV-64/32

 

 

 

M4-96/48, M4LV-96/48

 

 

 

M4-128/64, M4LV-128/64

 

M4-32/32

 

M4-128N/64, M4LV-128N/64

 

M4LV-32/32

 

M4-192/96, M4LV-192/96

 

 

 

M4-256/128, M4LV-256/128

 

 

 

 

 

 

Macrocell-I/O Cell

2:1

 

1:1

Ratio

 

 

 

 

 

 

 

 

Input Switch Matrix

Yes

 

Yes

 

 

 

 

Input Registers

Yes

 

No

 

 

 

 

Central Switch Matrix

Yes

 

Yes

 

 

 

 

Output Switch Matrix

Yes

 

Yes

 

 

 

 

The Macrocell-I/O cell ratio is defined as the number of macrocells versus the number of I/O cells internally in a PAL block (Table 4).

The central switch matrix takes all dedicated inputs and signals from the input switch matrices and routes them as needed to the PAL blocks. Feedback signals that return to the same PAL block still must go through the central switch matrix. This mechanism ensures that PAL blocks in MACH 4 devices communicate with each other with consistent, predictable delays.

The central switch matrix makes a MACH 4 device more advanced than simply several PAL devices on a single chip. It allows the designer to think of the device not as a collection of blocks, but as a single programmable device; the software partitions the design into PAL blocks through the central switch matrix so that the designer does not have to be concerned with the internal architecture of the device.

Each PAL block consists of:

Product-term array

Logic allocator

Macrocells

Output switch matrix

I/O cells

Input switch matrix

Clock generator

6

MACH 4 Family

Product-Term Array

The product-term array consists of a number of product terms that form the basis of the logic being implemented. The inputs to the AND gates come from the central switch matrix (Table 5), and are provided in both true and complement forms for efficient logic implementation.

 

Table 5. PAL Block Inputs

Device

 

Number of Inputs to PAL Block

 

 

 

M4-32/32 and M4LV-32/32

 

33

M4-64/32 and M4LV-64/32

 

33

M4-96/48 and M4LV-96/48

 

33

M4-128/64 and M4LV-128/64

 

33

M4-128N/64 and M4LV-128N/64

 

33

 

 

 

M4-192/96 and M4LV-192/96

 

34

M4-256/128 and M4LV-256/128

 

34

 

 

 

Logic Allocator

Within the logic allocator, product terms are allocated to macrocells in “product term clusters.” The availability and distribution of product term clusters are automatically considered by the software as it fits functions within a PAL block. The size of a product term cluster has been optimized to provide high utilization of product terms, making complex functions using many product terms possible. Yet when few product terms are used, there will be a minimal number of unused—or wasted—product terms left over. The product term clusters available to each macrocell within a PAL block are shown in Tables 6 and 7.

Each product term cluster is associated with a macrocell. The size of a cluster depends on the configuration of the associated macrocell. When the macrocell is used in synchronous mode (Figure 2a), the basic cluster has 4 product terms. When the associated macrocell is used in asynchronous mode (Figure 2b), the cluster has 2 product terms. Note that if the product term cluster is routed to a different macrocell, the allocator configuration is not determined by the mode of the macrocell actually being driven. The configuration is always set by the mode of the macrocell that the cluster will drive if not routed away, regardless of the actual routing.

In addition, there is an extra product term that can either join the basic cluster to give an extended cluster, or drive the second input of an exclusive-OR gate in the signal path. If included with the basic cluster, this provides for up to 20 product terms on a synchronous function that uses four extended 5-product-term clusters. A similar asynchronous function can have up to 18 product terms.

When the extra product term is used to extend the cluster, the value of the second XOR input can be programmed as a 0 or a 1, giving polarity control. The possible configurations of the logic allocator are shown in Figures 3 and 4.

MACH 4 Family

7

Table 6. Logic Allocator for All MACH 4 Devices (except M4(LV)-32/32)

Output Macrocell

Available Clusters

Output Macrocell

Available Clusters

 

 

 

 

M0

C0, C1, C2

M8

C7, C8, C9, C10

M1

C0, C1, C2, C3

M9

C8, C9, C10, C11

M2

C1, C2, C3, C4

M10

C9, C10, C11, C12

M3

C2, C3, C4, C5

M11

C10, C11, C12, C13

M4

C3, C4, C5, C6

M12

C11, C12, C13, C14

M5

C4, C5, C6, C7

M13

C12, C13, C14, C15

M6

C5, C6, C7, C8

M14

C13, C14, C15

M7

C6, C7, C8, C9

M15

C14, C15

Table 7. Logic Allocator for M4(LV)-32/32

Output Macrocell

Available Clusters

Output Macrocell

Available Clusters

 

 

 

 

M0

C0, C1, C2

M8

C8, C9, C10

M1

C0, C1, C2, C3

M9

C8, C9, C10, C11

M2

C1, C2, C3, C4

M10

C9, C10, C11, C12

M3

C2, C3, C4, C5

M11

C10, C11, C12, C13

M4

C3, C4, C5, C6

M12

C11, C12, C13, C14

M5

C4, C5, C6, C7

M13

C12, C13, C14, C15

M6

C5, C6, C7

M14

C13, C14, C15

M7

C6, C7

M15

C14, C15

 

 

1 2

n-1

Logic Allocator

 

 

 

 

To n-

To n-

From

 

 

Basic Product

 

 

 

 

 

 

 

 

 

 

 

Term Cluster

 

 

 

 

 

 

 

 

n

 

 

 

n

Macrocell

 

 

 

 

 

 

0 Default

n

 

 

 

 

 

 

To

 

Extra

0 Default

n+1

n+1

n+2

 

 

 

Product

 

 

 

 

 

To

From

From

 

 

 

Term

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prog. Polarity

 

 

a. Synchronous Mode

 

 

1 2

n-1

Logic Allocator

 

 

 

 

To n-

To n-

From

 

 

Basic Product

 

 

 

 

 

 

 

 

 

 

 

Term Cluster

 

 

 

 

 

 

 

 

n

 

 

 

n

Macrocell

n

 

 

 

 

 

0 Default

 

 

 

 

 

 

 

 

 

 

 

 

To

 

Extra

0 Default

n+1

n+1

n+2

 

 

 

Product

 

 

 

 

 

To

From

From

 

 

 

Term

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prog. Polarity

 

 

b. Asynchronous Mode

Figure 2. Logic Allocator: Configuration of Cluster “n” Set by Mode of Macrocell “n”

17466G-005

17466G-006

8

MACH 4 Family

a. Basic cluster with XOR

b. Extended cluster, active high

c. Extended cluster, active low

 

0

d. Basic cluster routed away;

e. Extended cluster routed away

single-product-term, active high

 

17466G-007

Figure 3. Logic Allocator Configurations: Synchronous Mode

a. Basic cluster with XOR

b. Extended cluster, active high

c. Extended cluster, active low

0

d. Basic cluster routed away;

e. Extended cluster routed away

single-product-term, active high

 

17466G-008

Figure 4. Logic Allocator Configurations: Asynchronous Mode

Note that the configuration of the logic allocator has absolutely no impact on the speed of the signal. All configurations have the same delay. This means that designers do not have to decide between optimizing resources or speed; both can be optimized.

If not used in the cluster, the extra product term can act in conjunction with the basic cluster to provide XOR logic for such functions as data comparison, or it can work with the D-,T-type flipflop to provide for J-K, and S-R register operation. In addition, if the basic cluster is routed to another macrocell, the extra product term is still available for logic. In this case, the first XOR input will be a logic 0. This circuit has the flexibility to route product terms elsewhere without giving up the use of the macrocell.

Product term clusters do not “wrap” around a PAL block. This means that the macrocells at the ends of the block have fewer product terms available.

MACH 4 Family

9

Macrocell

The macrocell consists of a storage element, routing resources, a clock multiplexer, and initialization control. The macrocell has two fundamental modes: synchronous and asynchronous (Figure 5). The mode chosen only affects clocking and initialization in the macrocell.

Power-Up

Reset

PAL-Block

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initialization

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Product Terms

 

 

 

 

 

 

SWAP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Common PAL-block resource

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Individual macrocell resources

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Logic Allocator

 

 

 

 

 

 

 

 

 

AP

AR

 

 

 

 

 

 

 

 

 

 

 

D/T/L

 

Q

 

 

 

 

 

Block CLK0

 

 

 

 

 

 

From

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Block CLK1

 

 

 

 

 

 

 

 

 

PAL-Clock

 

 

 

 

 

 

 

 

 

 

 

 

 

Block CLK2

 

 

 

 

 

 

 

 

 

Generator

 

 

 

 

 

 

 

 

 

 

 

 

 

Block CLK3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. Synchronous mode

 

 

Power-Up

Reset

Individual

Initialization

Product Term

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Logic

 

 

 

 

 

 

 

 

 

 

 

AP

AR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D/T/L

Q

 

 

 

Allocator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From PAL-Block

 

 

 

Block CLK0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clock Generator

 

 

 

Block CLK1

 

 

 

 

 

 

 

 

 

 

Individual Clock

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Product Term

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. Asynchronous mode

 

 

Figure 5. Macrocell

To Output and Input

Switch Matrices

17466G-009

To Output and Input

Switch Matrices

17466G-010

In either mode, a combinatorial path can be used. For combinatorial logic, the synchronous mode will generally be used, since it provides more product terms in the allocator.

10

MACH 4 Family

Lattice Semiconductor Corporation M4LV-96-48-7VC, M4LV-96-48-18VI, M4LV-96-48-15VC, M4LV-96-48-14VI, M4LV-96-48-12VI Datasheet

The flip-flop can be configured as a D-type or T-type latch. J-K or S-R registers can be synthesized. The primary flip-flop configurations are shown in Figure 6, although others are possible. Flip-flop functionality is defined in Table 8. Note that a J-K latch is inadvisable as it will cause oscillation if both J and K inputs are HIGH.

AP AR

D Q

AP AR D Q

a. D-type with XOR

b. D-type with programmable D polarity

 

AP AR

AP AR

L

Q

L

Q

 

 

 

 

G

 

 

 

 

 

G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c. Latch with XOR

d. Latch with programmable D polarity

AP AR

T Q

f. Combinatorial with XOR

e. T-type with programmable T polarity

g. Combinatorial with programmable polarity

17466G-011

Figure 6. Primary Macrocell Configurations

MACH 4 Family

11

Table 8. Register/Latch Operation

Configuration

Input(s)

CLK/LE 1

Q+

 

D=X

0,1, ↓ (↑)

 

Q

D-type Register

D=0

↑ (↓)

0

 

 

D=1

↑ (↓)

1

 

 

 

 

 

 

 

T=X

0, 1, ↓ (↑)

 

Q

T-type Register

T=0

↑ (↓)

 

Q

 

T=1

↑ (↓)

 

 

 

 

Q

 

 

 

 

 

 

 

D=X

1(0)

 

Q

D-type Latch

D=0

0(1)

0

 

 

D=1

0(1)

1

 

 

 

 

 

 

 

Note:

1. Polarity of CLK/LE can be programmed

Although the macrocell shows only one input to the register, the XOR gate in the logic allocator allows the D-, T-type register to emulate J-K, and S-R behavior. In this case, the available product terms are divided between J and K (or S and R). When configured as J-K, S-R, or T-type, the extra product term must be used on the XOR gate input for flip-flop emulation. In any register type, the polarity of the inputs can be programmed.

The clock input to the flip-flop can select any of the four PAL block clocks in synchronous mode, with the additional choice of either polarity of an individual product term clock in the asynchronous mode.

The initialization circuit depends on the mode. In synchronous mode (Figure 7), asynchronous reset and preset are provided, each driven by a product term common to the entire PAL block.

 

Power-Up

Power-Up

 

Reset

 

Preset

 

 

PAL-Block

 

PAL-Block

Initialization

 

 

Initialization

Product Terms

 

 

Product Terms

 

 

AP AR D/T/L Q

AP

AR

D/L

Q

a. Power-up reset

b. Power-up preset

17466G-012

17466G-013

Figure 7. Synchronous Mode Initialization Configurations

12

MACH 4 Family

A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing flexibility. In asynchronous mode (Figure 8), a single individual product term is provided for initialization. It can be selected to control reset or preset.

 

Power-Up

 

 

 

 

Power-Up

 

 

 

Reset

 

 

 

 

 

Preset

 

Individual

 

 

 

 

 

 

 

 

 

Individual

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preset

 

 

 

 

 

 

 

 

 

Reset

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Product Term

 

 

Product Term

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AP

AR

 

 

 

 

 

 

 

AP

AR

 

 

 

 

 

 

 

 

 

 

D/L/T

Q

 

 

 

 

 

 

 

D/L/T

Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. Reset

b. Preset

17466G-014

17466G-015

Figure 8. Asynchronous Mode Initialization Configurations

Note that the reset/preset swapping selection feature effects power-up reset as well. The initialization functionality of the flip-flops is illustrated in Table 9. The macrocell sends its data to the output switch matrix and the input switch matrix. The output switch matrix can route this data to an output if so desired. The input switch matrix can send the signal back to the central switch matrix as feedback.

Table 9. Asynchronous Reset/Preset Operation

AR

AP

CLK/LE1

Q+

0

0

X

See Table 8

 

 

 

 

0

1

X

1

 

 

 

 

1

0

X

0

 

 

 

 

1

1

X

0

 

 

 

 

Note:

1. Transparent latch is unaffected by AR, AP

MACH 4 Family

13

Output Switch Matrix

The output switch matrix allows macrocells to be connected to any of several I/O cells within a PAL block. This provides high flexibility in determining pinout and allows design changes to occur without effecting pinout.

In MACH 4 devices with 2:1 Macrocell-I/O cell ratio, each PAL block has twice as many macrocells as I/O cells. The MACH 4 output switch matrix allows for half of the macrocells to drive I/O cells within a PAL block, in combinations according to Figure 9. Each I/O cell can choose from eight macrocells; each macrocell has a choice of four I/O cells. The MACH 4 devices with 1:1 Macrocell-I/O cell ratio allow each macrocell to drive one of eight I/O cells (Figure 9).

macrocells

MUX

I/O cell

Each I/O cell can choose one of 8 macrocells in all MACH 4 devices.

M0

 

M1

 

M2

 

M3

 

M4

I/O0

M5

I/O1

M6

I/O2

M7

I/O3

M8

I/O4

M9

I/O5

M10

I/O6

M11

I/O7

M12

 

M13

M14

M15

Each macrocell can drive one of 4 I/O cells in MACH 4 devices with

2:1 macrocell-I/O cell ratio.

M0

I/O0

M1

I/O1

M2

I/O2

M3

I/O3

M4

I/O4

M5

I/O5

M6

I/O6

M7

I/O7

 

 

 

 

M8

I/O8

M9

I/O9

M10

I/O10

M11

I/O11

M12

I/O12

M13

I/O13

M14

I/O14

M15

I/O15

 

 

Each macrocell can drive one of 8 I/O cells in M4(LV)-32/32 devices.

Figure 9. MACH 4 Output Switch Matrix

14

MACH 4 Family

Loading...
+ 32 hidden pages