Intel CORE I7-620 UE, CORE I7-620LE, CELERON PROCESSOR U3405, CORE I7-610E, CORE I7-660UE Manual

...
0 (0)

Intel® CoreTM i7-660UE, i7-620LE/

UE, i7-610E, i5-520E, i3-330E and

Intel® Celeron® Processor P4505,

U3405 Series

Datasheet Addendum

August 2010

Document Number: 323178-003

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details.

The Intel® CoreTM i7-620LE/UE, i7-610E and i5-520E Processor Series may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting HT Technology and a HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See http://www.intel.com/ products/ht/Hyperthreading_more.htm for additional information.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, Dialogic, FlashFile, i960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others. Copyright © 2010, Intel Corporation. All Rights Reserved.

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor

P4505, U3405 Series

Datasheet Addendum

August 2010

2

Document Number: 323178-003

Contents

1

Introduction and Features Summary .........................................................................

8

 

1.1

Introduction .......................................................................................................

8

 

1.2

Interfaces ........................................................................................................

10

 

 

1.2.1

System Memory Support .........................................................................

10

 

 

1.2.2

PCI Express* .........................................................................................

10

 

1.3

Package ...........................................................................................................

11

 

1.4

Terminology .....................................................................................................

12

 

1.5

Related Documents ...........................................................................................

13

2

Interfaces................................................................................................................

 

15

 

2.1

System Memory Interface ..................................................................................

15

 

 

2.1.1 System Memory Technology Supported .....................................................

15

 

 

2.1.2 System Memory Timing Support...............................................................

16

 

 

2.1.3 System Memory Organization Modes.........................................................

16

 

 

2.1.4 Rules for Populating Memory Slots............................................................

18

 

 

2.1.5 Technology Enhancements of Intel® Fast Memory Access (Intel® FMA)..........

18

 

 

2.1.6

DRAM Clock Generation...........................................................................

19

 

 

2.1.7

DDR3 On-Die Termination .......................................................................

19

 

2.2

PCI Express* Interface.......................................................................................

19

 

 

2.2.1 PCI Express* Configuration Mechanism .....................................................

19

 

 

2.2.2 PCI Express Port Bifurcation.....................................................................

20

3

Signal Description ...................................................................................................

21

 

3.1

System Memory Interface ..................................................................................

21

 

3.2

Reset and Miscellaneous Signals..........................................................................

24

4

Electrical Specifications...........................................................................................

25

 

4.1

Signal Groups ...................................................................................................

25

 

4.2

DC Specifications ..............................................................................................

25

 

 

4.2.1 Voltage and Current Specifications............................................................

25

5

Processor Ball and Signal Information.....................................................................

27

 

5.1

Processor Ball Assignments.................................................................................

27

6

Processor Configuration Registers...........................................................................

70

 

6.1

Register Terminology .........................................................................................

70

 

 

6.1.1

DEVEN - Device Enable ...........................................................................

72

 

 

6.1.2

ERRSTS - Error Status ............................................................................

73

 

 

6.1.3

ERRCMD - Error Command ......................................................................

74

 

 

6.1.4

SMICMD - SMI Command ........................................................................

76

 

 

6.1.5 C0WRDATACTRL - Channel 0 Write Data Control.........................................

77

 

 

6.1.6 COECCERRLOG - Channel 0 ECC Error Log .................................................

78

 

 

6.1.7 C1WRDATACTRL - Channel 1 Write Data Control.........................................

80

 

 

6.1.8 C1ECCERRLOG - Channel 1 ECC Error Log .................................................

80

 

6.2

PCI Device 6.....................................................................................................

81

 

 

6.2.1

VID6 - Vendor Identification ....................................................................

85

 

 

6.2.2

DID6 - Device Identification.....................................................................

85

 

 

6.2.3

PCICMD6 - PCI Command........................................................................

86

 

 

6.2.4

PCISTS6 - PCI Status..............................................................................

88

 

 

6.2.5

RID6 - Revision Identification...................................................................

90

 

 

6.2.6

CC6 - Class Code ...................................................................................

90

 

 

6.2.7

CL6 - Cache Line Size .............................................................................

91

 

 

6.2.8

HDR6 - Header Type...............................................................................

91

 

 

6.2.9

PBUSN6 - Primary Bus Number ................................................................

92

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor

P4505, U3405 Series

August 2010

Datasheet Addendum

Document Number: 323178-003

3

6.2.10

SBUSN6 - Secondary Bus Number.............................................................

92

6.2.11

SUBUSN6 - Subordinate Bus Number ........................................................

93

6.2.12

IOBASE6 - I/O Base Address ....................................................................

93

6.2.13

IOLIMIT6 - I/O Limit Address ...................................................................

94

6.2.14

SSTS6 - Secondary Status .......................................................................

95

6.2.15

MBASE6 - Memory Base Address...............................................................

96

6.2.16

MLIMIT6 - Memory Limit Address..............................................................

97

6.2.17

PMBASE6 - Prefetchable Memory Base Address...........................................

98

6.2.18

PMLIMIT6 - Prefetchable Memory Limit Address ..........................................

99

6.2.19

PMBASEU6 - Prefetchable Memory Base Address Upper..............................

100

6.2.20

PMLIMITU6 - Prefetchable Memory Limit Address Upper .............................

101

6.2.21

CAPPTR6 - Capabilities Pointer................................................................

102

6.2.22

INTRLINE6 - Interrupt Line ....................................................................

102

6.2.23

INTRPIN6 - Interrupt Pin........................................................................

103

6.2.24

BCTRL6 - Bridge Control ........................................................................

103

6.2.25

PM_CAPID6 - Power Management Capabilities ..........................................

105

6.2.26

PM_CS6 - Power Management Control/Status ...........................................

106

6.2.27

SS_CAPID - Subsystem ID and Vendor ID Capabilities ...............................

108

6.2.28

SS - Subsystem ID and Subsystem Vendor ID ..........................................

108

6.2.29

MSI_CAPID - Message Signaled Interrupts Capability ID ............................

109

6.2.30

MC - Message Control............................................................................

109

6.2.31

MA - Message Address...........................................................................

111

6.2.32

MD - Message Data...............................................................................

111

6.2.33

PEG_CAPL - PCI Express-G Capability List ................................................

112

6.2.34

PEG_CAP - PCI Express-G Capabilities .....................................................

112

6.2.35

DCAP - Device Capabilities .....................................................................

113

6.2.36

DCTL - Device Control ...........................................................................

114

6.2.37

DSTS - Device Status ............................................................................

115

6.2.38

LCAP - Link Capabilities .........................................................................

116

6.2.39

LCTL - Link Control ...............................................................................

119

6.2.40

LSTS - Link Status ................................................................................

121

6.2.41

SLOTCAP - Slot Capabilities....................................................................

123

6.2.42

SLOTCTL - Slot Control..........................................................................

124

6.2.43

SLOTSTS - Slot Status...........................................................................

127

6.2.44

RCTL - Root Control ..............................................................................

129

6.2.45

RSTS - Root Status ...............................................................................

130

6.2.46

LCTL2 - Link Control 2...........................................................................

130

6.2.47

LSTS2 - Link Status 2............................................................................

132

6.2.48

PEGLC - PCI Express-G Legacy Control ....................................................

133

6.3 PCI Device 6 - Extended Configuration................................................................

134

6.3.1

VCECH - Virtual Channel Enhanced Capability Header ................................

134

6.3.2

PVCCAP1 - Port VC Capability Register 1 ..................................................

134

6.3.3

PVCCAP2 - Port VC Capability Register 2 ..................................................

135

6.3.4

PVCCTL - Port VC Control.......................................................................

136

6.3.5

VC0RCAP - VC0 Resource Capability ........................................................

136

6.3.6

VC0RCTL - VC0 Resource Control ............................................................

137

6.3.7

VC0RSTS - VC0 Resource Status.............................................................

138

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor

P4505, U3405 Series

Datasheet Addendum

August 2010

4

Document Number: 323178-003

Figures

1Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®

®CoreTM i7 processor based

 

low-power platform ....................................................................................................

9

2

Intel® Flex Memory Technology Operation...................................................................

17

3

Dual-Channel Symmetric (Interleaved) and Dual-Channel Asymmetric Modes ..................

18

4

PCI Express* Related Register Structures in the Intel® CoreTM i7-660UE, i7-620LE/UE,

 

 

i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series ...............

20

5

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®

 

 

Processor P4505, U3405 Series Ballmap (Top View, Upper-Left Quadrant) .......................

28

6

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®

 

 

Processor P4505, U3405 Series Ballmap (Top View, Upper-Right Quadrant) .....................

29

7

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®

 

 

Processor P4505, U3405 Series Ballmap (Top View, Lower-Left Quadrant) .......................

30

8

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®

 

 

Processor P4505, U3405 Series Ballmap (Top View, Lower-Right Quadrant) .....................

31

Tables

 

1

Processor Documents ...............................................................................................

13

2

PCH Documents .......................................................................................................

14

3

Public Specifications .................................................................................................

14

4

Supported DIMM Module Configurations ......................................................................

15

5

DDR3 System Memory Timing Support........................................................................

16

6

Signal Description Buffer Types..................................................................................

21

7

Memory Channel A ...................................................................................................

21

8

Memory Channel B ...................................................................................................

23

9

Reset and Miscellaneous Signals ................................................................................

24

10

Mobile Signal Groups1 ..............................................................................................

25

11

DDR3 Signal Group DC Specifications .........................................................................

25

12

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®

 

 

Processor P4505, U3405 Series Ball List by Ball Name...................................................

32

13

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron®

 

 

Processor P4505, U3405 Series Ball List by Ball Number................................................

49

14

Register Terminology................................................................................................

70

15

DEVEN - Device Enable Register.................................................................................

72

16

Error Status Register ................................................................................................

73

17

Error Command Registers .........................................................................................

75

18

SMI Command Registers ...........................................................................................

76

19

Channel 0 Write Data Control Registers.......................................................................

77

20

Channel 0 ECC Error Registers ...................................................................................

78

21

Channel 1 Write Data Control Registers.......................................................................

80

22

Channel 1 ECC Error Registers ...................................................................................

81

23

PCI Device 6 Register ...............................................................................................

82

24

VID6 - Vendor Identification Register..........................................................................

85

25

DID6 - Device Identification Register ..........................................................................

85

26

PCICMD6 - PCI Command Register .............................................................................

86

27

PCISTS6 - PCI Status Register ...................................................................................

88

28

RID6 - Revision Identification Register ........................................................................

90

29

CC6 - Class Code Register .........................................................................................

90

30

CL6 - Cache Line Size Register...................................................................................

91

31

HDR6 - Header Type Register ....................................................................................

91

32

PBUSN6 - Primary Bus Number Register......................................................................

92

33

SBUSN6 - Secondary Bus Number Register..................................................................

92

34

SUBUSN6 - Subordinate Bus Number Register .............................................................

93

35

IOBASE6 - I/O Base Address Register .........................................................................

94

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor

P4505, U3405 Series

August 2010

Datasheet Addendum

Document Number: 323178-003

5

36

IOLIMIT6 - I/O Limit Address Register.........................................................................

94

37

SSTS6 - Secondary Status Register.............................................................................

95

38

MBASE6 - Memory Base Address Register ....................................................................

96

39

MLIMIT6 - Memory Limit Address Register ...................................................................

97

40

PMBASE6 - Prefetchable Memory Base Address Register ................................................

98

41

PMLIMIT6 - Prefetchable Memory Limit Address Register................................................

99

42

PMBASEU6 - Prefetchable Memory Base Address Upper Register ...................................

100

43

PMLIMITU6 - Prefetchable Memory Limit Address Upper Register ..................................

101

44

CAPPTR6 - Capabilities Pointer Register .....................................................................

102

45

INTRLINE6 - Interrupt Line Register..........................................................................

102

46

INTRPIN6 - Interrupt Pin Register .............................................................................

103

47

BCTRL6 - Bridge Control Register .............................................................................

103

48

PM_CAPID6 - Power Management Capabilities Register................................................

105

49

PM_CS6 - Power Management Control/Status Register ................................................

106

50

SS_CAPID - Subsystem ID and Vendor ID Capabilities Register ....................................

108

51

SS - Subsystem ID and Subsystem Vendor ID Register................................................

108

52

MSI_CAPID - Message Signaled Interrupts Capability ID Register..................................

109

53

MC - Message Control Register .................................................................................

109

54

MA - Message Address Register ................................................................................

111

55

MD - Message Data Register ....................................................................................

111

56

PEG_CAPL - PCI Express-G Capability List Register......................................................

112

57

PEG_CAP - PCI Express-G Capabilities Register...........................................................

112

58

DCAP - Device Capabilities Register ..........................................................................

113

59

DCTL - Device Control Register.................................................................................

114

60

DSTS - Device Status Register .................................................................................

115

61

LCAP - Link Capabilities Register...............................................................................

116

62

LCTL - Link Control Register.....................................................................................

119

63

LSTS - Link Status Register......................................................................................

121

64

SLOTCAP - Slot Capabilities Register .........................................................................

123

65

SLOTCTL - Slot Control Register ...............................................................................

124

66

SLOTSTS - Slot Status Register ................................................................................

127

67

RCTL - Root Control Register....................................................................................

129

68

RSTS - Root Status Register ....................................................................................

130

69

LCTL2 - Link Control 2 Register ................................................................................

130

70

LSTS2 - Link Status 2 Register .................................................................................

132

71

PEGLC - PCI Express-G Legacy Control Register..........................................................

133

72

PCI Device 6 - Extended Configuration ......................................................................

134

73

VCECH - Virtual Channel Enhanced Capability Header..................................................

134

74

PVCCAP1 - Port VC Capability Register 1....................................................................

135

75

PVCCAP2 - Port VC Capability Register 2....................................................................

136

76

PVCCTL - Port VC Control ........................................................................................

136

77

VC0RCAP - VC0 Resource Capability..........................................................................

136

78

VC0RCTL - VC0 Resource Control..............................................................................

138

79

VC0RSTS - VC0 Resource Status ..............................................................................

139

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor

P4505, U3405 Series

Datasheet Addendum

August 2010

6

Document Number: 323178-003

Revision History

Date

Revision

Description

 

 

 

January 2010

001

• Initial release of this document.

 

 

 

 

 

• Added information for the Intel® Celeron® Processor P4500 and P4505 Series.

April 2010

002

• Corrected first bullet in Section 2.1.1 to “No support for mixed ECC and non-ECC DIMM

 

 

configurations.”

 

 

 

 

 

• Added information for the Intel® CoreTM i7-660UE, i3-330E and Celeron® Processor U3405

August 2010

003

• Removed all references to Celeron® Processor P4500 since it is a PGA package and does not

relate to this document (was included by error in last revision).

 

 

 

 

• CMD mode for DDR3 is restated to 1n instead of 1n and 2n

 

 

 

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor

P4505, U3405 Series

August 2010

Datasheet Addendum

Document Number: 323178-003

7

Introduction and Features Summary

1Introduction and Features Summary

1.1Introduction

This Datasheet Addendum is a supplement to the Intel® CoreTM i7-600, i5-500 and i3300 Mobile Processor Series Datasheet. It contains the additional DC and AC electrical specifications, signal integrity, differential signaling specifications, pinout and signal definitions, interface functional descriptions, additional feature information and configuration registers pertinent to the implementation and operation of the Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series on its respective platform.

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series is the next generation of 64-bit, multi-core mobile processor built on a 32nanometer process technology. Throughout this document, Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series may be referred to as simply the processor. The processor is designed for a two-chip platform as opposed to the traditional three-chip platforms (processor, GMCH, and ICH). The two-chip platform consists of a processor and the Platform Controller Hub (PCH) and enables higher performance, lower cost, easier validation, and improved x-y footprint. The PCH may also be referred to as Mobile Intel® 5 Series Chipset (formerly Ibex Peak-M). Intel® CoreTM i7-660UE, i7620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series is designed for the Intel® CoreTM i7 processor based low-power platform and is offered in a BGA1288 package.

Included in this family of processors is an integrated graphics and memory controller die on the same package as the processor core die. This two-chip solution of a processor core die with an integrated graphics and memory controller die is known as a multi-chip package (MCP) processor.

Note: Integrated graphics and memory controller die is built on 45-nanometer process technology.

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

Datasheet Addendum

August 2010

8

Document Number: 323178-003

Intel CORE I7-620 UE, CORE I7-620LE, CELERON PROCESSOR U3405, CORE I7-610E, CORE I7-660UE Manual

Introduction and Features Summary

Figure 1.

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel®

 

Celeron® Processor P4505, U3405 Series on the Intel® CoreTM i7 processor

 

based low-power platform

 

 

 

 

 

 

 

 

Dual-core

 

 

 

 

 

 

 

Processor

 

 

 

Discrete Graphics

Intel CoreTM i7/i5/i3 and Celeron

 

 

 

(PEG)

PCI Express* x16

 

Processor

800/1066 MT/s

 

 

OR

 

(MCP Processor)

2 Channels

 

 

Embedded

 

 

 

 

 

 

GPU, Memory

1 DIMM / Channel

 

DisplayPort* (eDP)

 

 

 

 

 

 

 

Controller

 

 

 

 

 

 

 

 

DDR3 DIMMs

 

 

PCI Express x 1

 

 

 

 

 

 

 

 

Intel®

Flexible

DMI2

 

 

 

 

 

Display Interface

(x4)

 

 

 

 

Digital Display x 3

 

 

 

Serial ATA

6 Ports

 

 

 

 

Intel®

3 Gb/s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LVDS Flat Panel

 

 

Management

USB 2.0

14 Ports

 

 

 

 

Engine

 

 

 

 

 

 

 

 

Analog CRT

Mobile Intel 5 Series Chipset

 

 

 

 

 

 

PCH

 

 

 

 

 

 

 

 

 

Intel® HD Audio

 

 

 

 

 

 

 

SMBUS 2.0

 

 

 

SPI Flash

SPI

 

 

Controller Link 1

 

 

 

 

 

 

 

 

 

 

PCI

PCI

PCI Express*

 

 

 

 

 

 

 

 

 

 

 

FWH

 

 

 

Gigabit

 

 

 

 

 

 

Network Connection

 

 

 

 

 

 

 

 

TPM 1.2

 

8 PCI Express* x1

 

 

 

 

LPC

Ports

 

 

 

 

 

 

 

 

 

 

(2.5 GT/s)

 

 

 

 

Super I/O

 

 

 

 

 

 

 

 

 

 

 

 

 

PECI

 

 

 

 

 

 

 

GPIO

 

 

 

 

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

 

August 2010

 

 

 

 

 

Datasheet Addendum

Document Number: 323178-003

 

 

 

 

9

Introduction and Features Summary

1.2Interfaces

1.2.1System Memory Support

One or two channels of DDR3 memory with a maximum of one DIMM per channel

Singleand dual-channel memory organization modes

Data burst length of eight for all memory organization modes

Memory DDR3 data transfer rates of 800 and 1066 MT/s

64-bit wide channels (72-bit wide including ECC)

DDR3 I/O Voltage of 1.5 V

Supports ECC and non-ECC, unbuffered DDR3 DIMMs

Mixing of ECC and Non-ECC DIMMS is not supported

Theoretical maximum memory bandwidth of:

12.8 GB/s in dual-channel mode assuming DDR3 800 MT/s

17.1 GB/s in dual-channel mode assuming DDR3 1066 MT/s

1-Gb, and 2-Gb DDR3 DRAM technologies for x8 and x16 devices

Using 2-Gb device technologies, the largest memory capacity possible is 8 GB, assuming dual-channel mode with two x8, dual-rank, un-buffered, DIMM memory configuration.

Up to 32 simultaneous open pages, 16 per channel (assuming 4 Ranks of 8 Bank Devices)

Memory organizations:

Single-channel modes

Dual-channel modes

Dual-channel symmetric (Interleaved)

Dual-channel asymmetric Intel® Flex Memory Technology

Command launch mode of 1n

Partial Writes to memory using Data Mask (DM) signals

On-Die Termination (ODT)

Intel® Fast Memory Access (Intel® FMA):

Just-in-Time Command Scheduling

Command Overlap

Out-of-Order Scheduling

1.2.2PCI Express*

The processor PCI Express* port(s) are fully-compliant to the PCI Express Base Specification, Revision 2.0 at 2.5GT/s.

The processor supports:

One 16-lane PCI Express port for graphics or I/O.

Two 8-lane PCI Express ports for graphics or I/O.

PCI Express Port 0 is mapped to PCI Device 1.

PCI Express Port 1 is mapped to PCI Device 6.

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

Datasheet Addendum

August 2010

10

Document Number: 323178-003

Introduction and Features Summary

1.3Package

The Intel Core i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel Celeron Processor P4505, U3405 Series are available on a 34 x 28 mm BGA package (BGA1288).

Note: Although the BGA1288 package is shared with Intel® CoreTM i7-640UM/LM, i7-620M/ UM/LM, i5-540M, i5-520M/UM and i5-430M Processor Series they are not ball-out compatible.

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

August 2010

Datasheet Addendum

Document Number: 323178-003

11

Introduction and Features Summary

1.4Terminology

Term

Description

 

 

BLT

Block Level Transfer

 

 

CRT

Cathode Ray Tube

 

 

DDR3

Third generation Double Data Rate SDRAM memory technology

 

 

DP

DisplayPort*

 

 

DMA

Direct Memory Access

 

 

DMI

Direct Media Interface

 

 

DTS

Digital Thermal Sensor

 

 

ECC

Error Correction Code

 

 

eDP*

Embedded DisplayPort*

 

 

Intel® DPST

Intel® Display Power Saving Technology

Enhanced Intel

Technology that provides power management capabilities to laptops.

SpeedStep® Technology

 

The Execute Disable bit allows memory to be marked as executable or non-

 

executable, when combined with a supporting operating system. If code

 

attempts to run in non-executable memory the processor raises an error to the

Execute Disable Bit

operating system. This feature can prevent some classes of viruses or worms

 

that exploit buffer overrun vulnerabilities and can thus help improve the overall

 

security of the system. See the Intel® 64 and IA-32 Architectures Software

 

Developer's Manuals for more detailed information.

 

 

EU

Execution Unit

 

 

(G)MCH

Legacy component - Graphics Memory Controller Hub.

 

 

GPU

Graphics Processing Unit

 

 

 

The legacy I/O Controller Hub component that contains the main PCI interface,

ICH

LPC interface, USB2, Serial ATA, and other I/O functions. It communicates with

 

the legacy (G)MCH over a proprietary interconnect called DMI.

 

 

IMC

Integrated Memory Controller

 

 

Intel® 64 Technology

64-bit memory extensions to the IA-32 architecture.

Intel® FDI

Intel® Flexible Display Interface.

Intel® TXT

Intel® Trusted Execution Technology

Intel® Virtualization

Processor virtualization which when used in conjunction with Virtual Machine

Technology

Monitor software enables multiple, robust independent software environments

inside a single platform.

 

 

 

ITPM

Integrated Trusted Platform Module

 

 

IOV

I/O Virtualization

 

 

LCD

Liquid Crystal Display

 

 

 

Low Voltage Differential Signaling

LVDS

A high speed, low power data transmission standard used for display connections

 

to LCD panels.

 

 

MCP

Multi-Chip Package

 

 

 

Non-Critical to Function: NCTF locations are typically redundant ground or non-

NCTF

critical reserved, so the loss of the solder joint continuity at end of life conditions

 

will not affect the overall product functionality.

 

 

 

Platform Controller Hub. The new 2009 chipset with centralized platform

PCH

capabilities including the main I/O interfaces along with display connectivity,

audio features, power management, manageability, security and storage

 

 

features. The PCH may also be referred to using the code name Ibex Peak.

 

 

PECI

Platform Environment Control Interface

 

 

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

Datasheet Addendum

August 2010

12

Document Number: 323178-003

Introduction and Features Summary

Term

Description

 

 

 

PCI Express* Graphics. External Graphics using PCI Express Architecture. A

PEG

high-speed serial interface whose configuration is software compatible with the

 

existing PCI specifications.

 

 

Processor

The 64-bit, single-core or multi-core component (package)

 

 

 

The term “processor core” refers to Si die itself which can contain multiple

Processor Core

execution cores. Each execution core has an instruction cache, data cache, and

 

256-KB L2 cache. All execution cores share the L3 cache.

 

 

 

A unit of DRAM corresponding four to eight devices in parallel, ignoring ECC.

Rank

These devices are usually, but not always, mounted on a single side of a SO-

 

DIMM.

 

 

SCI

System Control Interrupt. Used in ACPI protocol.

 

 

 

A non-operational state. The processor may be installed in a platform, in a tray,

 

or loose. Processors may be sealed in packaging or exposed to free air. Under

 

these conditions, processor landings should not be connected to any supply

Storage Conditions

voltages, have any I/Os biased or receive any clocks. Upon exposure to “free air”

 

(i.e., unsealed packaging or a device removed from packaging material) the

 

processor must be handled in accordance with moisture sensitivity labeling

 

(MSL) as indicated on the packaging material.

 

 

TAC

Thermal Averaging Constant

 

 

TDP

Thermal Design Power

 

 

TOM

Top of Memory

 

 

TTM

Time-To-Market

 

 

VCC

Processor core power supply

VSS

Processor ground

VAXG

Graphics core power supply

VTT

L3 shared cache, memory controller, and processor I/O power rail

VDDQ

DDR3 power rail

VLD

Variable Length Decoding

 

 

x1

Refers to a Link or Port with one Physical Lane

 

 

x4

Refers to a Link or Port with four Physical Lanes

 

 

x8

Refers to a Link or Port with eight Physical Lanes

 

 

x16

Refers to a Link or Port with sixteen Physical Lanes

 

 

1.5Related Documents

 

Refer to the documents in Table 1 for additional information.

 

Table 1.

Processor Documents

 

 

 

 

 

Document

Document Number/

 

Location

 

 

 

 

 

 

Intel® CoreTM i7-600, i5-500 and i3-300 Mobile Processor Series Datasheet

http://www.intel.com

 

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel®

 

 

Celeron® Processor P4505, U3405 Series Datasheet Addendum Specification

http://www.intel.com

 

Update

 

 

 

 

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

August 2010

Datasheet Addendum

Document Number: 323178-003

13

Introduction and Features Summary

Table 2.

PCH Documents

 

 

 

 

 

Document

Document Number/

 

Location

 

 

 

 

 

 

Intel® 5 Series Chipset and Intel® 3400 Series Chipset Datasheet

http://www.intel.com

 

 

 

Table 3.

Public Specifications

 

 

 

 

 

Document

Document Number/

 

Location

 

 

 

 

 

 

Advanced Configuration and Power Interface Specification 3.0

http://www.acpi.info/

 

 

 

 

PCI Local Bus Specification 3.0

http://www.pcisig.com/

 

specifications

 

 

 

 

 

 

PCI Express Base Specification 2.0

http://www.pcisig.com

 

 

 

 

DDR3 SDRAM Specification

http://www.jedec.org

 

 

 

 

DisplayPort Specification

http://www.vesa.org

 

 

 

 

Intel® 64 and IA-32 Architectures Software Developer's Manuals

http://www.intel.com/

 

products/processor/

 

 

manuals/index.htm

 

 

 

 

Volume 1: Basic Architecture

253665

 

 

 

 

Volume 2A: Instruction Set Reference, A-M

253666

 

 

 

 

Volume 2B: Instruction Set Reference, N-Z

253667

 

 

 

 

Volume 3A: System Programming Guide

253668

 

 

 

 

Volume 3B: System Programming Guide

253669

 

 

 

§ §

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

Datasheet Addendum

August 2010

14

Document Number: 323178-003

Interfaces

2 Interfaces

This chapter describes the interfaces supported by the processor.

2.1System Memory Interface

2.1.1System Memory Technology Supported

The Integrated Memory Controller (IMC) supports DDR3 protocols with two, independent, 64-bit wide channels each accessing one DIMM. It supports:

ECC and non-ECC un-buffered DIMMs. No support for mixed ECC and non-ECC DIMM configurations.

DDR3 Data Transfer Rates:

800 MT/s (PC3-6400), and 1066 MT/s (PC3-8500)

DDR3 DIMM Modules:

Raw Card A – single rank x8 unbuffered non-ECC

Raw Card B – dual rank x8 unbuffered non-ECC

Raw Card C – single rank x16 unbuffered non-ECC

Raw Card D – single rank x8 unbuffered ECC

Raw Card E – dual rank x8 unbuffered ECC

Raw Card F - dual rank x16 unbuffered non-ECC

DDR3 DRAM Device Technology:

Standard 1-Gb, and 2-Gb technologies and addressing are supported for x16 and x8 devices. There is no support for memory modules with different technologies or capacities on opposite sides of the same memory module. If one side of a memory module is populated, the other side is either identical or empty.

Table 4.

Supported DIMM Module Configurations (Sheet 1 of 2)

 

 

 

 

 

 

 

 

 

 

 

 

Raw

 

DRAM

 

 

# of

# of

# of Row/

# of

 

DIMM

DRAM

Physical

Col

Banks

Page

Card

Device

DRAM

Capacity

Organization

Device

Address

Inside

Size

Version

Technology

Devices

 

 

 

 

 

 

Ranks

Bits

DRAM

 

 

 

 

 

 

 

 

 

 

 

 

512 MB

512 Mb

64

M x 8

8

1

13/10

8

8K

 

 

 

 

 

 

 

 

 

A

1 GB

1 Gb

128 M x 8

8

1

14/10

8

8K

 

 

 

 

 

 

 

 

 

 

2 GB

2 Gb

256M x 8

8

1

15/10

8

8K

 

 

 

 

 

 

 

 

 

 

 

1 GB

512 Mb

64

M x 8

16

2

13/10

8

8K

 

 

 

 

 

 

 

 

 

B

2 GB

1 Gb

128 M x 8

16

2

14/10

8

8K

 

 

 

 

 

 

 

 

 

 

4 GB

2 Gb

256 M x 8

16

2

15/10

8

8K

 

 

 

 

 

 

 

 

 

 

256MB

512 Mb

32 M x 16

4

1

12/10

8

8K

 

 

 

 

 

 

 

 

 

 

C

512 MB

1 Gb

64

M x 8

4

1

13/10

8

8K

 

 

 

 

 

 

 

 

 

 

 

1 GB

2 Gb

128

M x 16

4

1

14/10

8

8K

 

 

 

 

 

 

 

 

 

 

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

August 2010

Datasheet Addendum

Document Number: 323178-003

15

Interfaces

Table 4.

Supported DIMM Module Configurations (Sheet 2 of 2)

 

 

 

 

 

 

 

 

 

 

 

Raw

 

DRAM

 

# of

# of

# of Row/

# of

 

DIMM

DRAM

Physical

Col

Banks

Page

Card

Device

DRAM

Capacity

Organization

Device

Address

Inside

Size

Version

Technology

Devices

 

 

 

 

 

Ranks

Bits

DRAM

 

 

 

 

 

 

 

 

 

 

 

512 MB

512 Mb

64 M x 8

9

1

13/10

8

8K

 

 

 

 

 

 

 

 

 

D

1 GB

1 Gb

128 M x 8

9

1

14/10

8

8K

 

 

 

 

 

 

 

 

 

 

2 GB

2 Gb

256 M x 8

9

1

15/10

8

8K

 

 

 

 

 

 

 

 

 

 

1 GB

512 Mb

64M x 8

18

2

13/10

8

8K

 

 

 

 

 

 

 

 

 

E

2 GB

1 Gb

128 M x 8

18

2

14/10

8

8K

 

 

 

 

 

 

 

 

 

 

4 GB

2 Gb

256 M x 8

18

2

15/10

8

8K

 

 

 

 

 

 

 

 

 

 

512 MB

512 Mb

32 M x 16

8

2

12/10

8

8K

 

 

 

 

 

 

 

 

 

F

1 GB

1 Gb

64 M x 16

8

2

13/10

8

8K

 

 

 

 

 

 

 

 

 

 

2 GB

2 Gb

128 M x 16

8

2

14/10

8

8K

 

 

 

 

 

 

 

 

 

2.1.2System Memory Timing Support

The IMC supports the following DDR3 Speed Bin, CAS Write Latency (CWL), and command signal mode timings on the main memory interface:

tCL = CAS Latency

tRCD = Activate Command to READ or WRITE Command delay

tRP = PRECHARGE Command Period

CWL = CAS Write Latency

Command Signal modes = 1n indicates a new command may be issued every clock. Command launch mode programming depends on the transfer rate and memory configuration.

Table 5.

DDR3 System Memory Timing Support

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transfer

tCL

tRCD

 

tRP

CWL

 

 

 

Rate

 

CMD Mode

Notes

 

(tCK)

(tCK)

 

(tCK)

(tCK)

 

(MT/s)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

800

6

6

 

6

5

1n

1

 

 

 

 

 

 

 

 

 

 

1066

7

7

 

7

6

1n

1

 

 

 

 

 

 

8

8

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES:

1.System Memory timing support is based on availability and is subject to change.

2.1.3System Memory Organization Modes

The IMC supports two memory organization modes, single-channel and dual-channel. Depending upon how the DIMM Modules are populated in each memory channel, a number of different configurations can exist.

2.1.3.1Single-Channel Mode

In this mode, all memory cycles are directed to a single-channel. Single-channel mode is used when either Channel A or Channel B DIMM connectors are populated in any order, but not both.

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

Datasheet Addendum

August 2010

16

Document Number: 323178-003

Interfaces

2.1.3.2Dual-Channel Mode - Intel® Flex Memory Technology Mode

The IMC supports Intel® Flex Memory Technology Mode. This mode combines the advantages of the Dual-Channel Symmetric (Interleaved) and Dual-Channel Asymmetric Modes. Memory is divided into a symmetric and a asymmetric zone. The symmetric zone starts at the lowest address in each channel and is contiguous until the asymmetric zone begins or until the top address of the channel with the smaller capacity is reached. In this mode, the system runs with one zone of dual-channel mode and one zone of single-channel mode, simultaneously, across the whole memory array.

Figure 2. Intel® Flex Memory Technology Operation

C

B

C H A

B

C H A

B

C H B

C

B

C H B

 

T O M

C

N o n in te rle a v e d

 

a c c e s s

B

 

 

D u a l c h a n n e l

 

in te rle a v e d a c c e s s

B

 

B – T h e la rg e s t p h y s ic a l m e m o ry a m o u n t o f th e s m a lle r s iz e m e m o ry m o d u le

C– T h e re m a in in g p h y s ic a l m e m o ry a m o u n t o f th e la rg e r s iz e m e m o ry m o d u le

2.1.3.2.1Dual-Channel Symmetric Mode

Dual-Channel Symmetric mode, also known as interleaved mode, provides maximum performance on real world applications. Addresses are ping-ponged between the channels after each cache line (64-byte boundary). If there are two requests, and the second request is to an address on the opposite channel from the first, that request can be sent before data from the first request has returned. If two consecutive cache lines are requested, both may be retrieved simultaneously, since they are ensured to be on opposite channels. Use Dual-Channel Symmetric mode when both Channel A and Channel B DIMM connectors are populated in any order, with the total amount of memory in each channel being the same.

When both channels are populated with the same memory capacity and the boundary between the dual channel zone and the single channel zone is the top of memory, IMC operates completely in Dual-Channel Symmetric mode.

Note: The DRAM device technology and width may vary from one channel to the other.

2.1.3.2.2Dual-Channel Asymmetric Mode

This mode trades performance for system design flexibility. Unlike the previous mode, addresses start at the bottom of Channel B and stay there until the end of the highest rank in Channel B, and then addresses continue from the bottom of Channel A to the top. Real world applications are unlikely to make requests that alternate between addresses that sit on opposite channels with this memory organization, so in most cases, bandwidth is limited to a single channel.

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

August 2010

Datasheet Addendum

Document Number: 323178-003

17

Interfaces

This mode is used when Intel® Flex Memory Technology is disabled and both Channel A and Channel B DIMM connectors are populated in any order with the total amount of memory in each channel being different.

Figure 3. Dual-Channel Symmetric (Interleaved) and Dual-Channel Asymmetric Modes

Dual Channel Interleaved

Dual Channel Asymmetric

(memory sizes must match)

(memory sizes can differ)

 

 

CL

Top of

 

 

CL

 

Top of

 

 

 

 

 

 

 

 

 

 

CH. B

Memory

 

 

CH. A

 

Memory

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH. A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH.B-top

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH. B

 

DRB

 

 

 

 

 

 

 

 

 

 

CH. B

 

CH. A

 

CH. B

 

CH. A

0

0

2.1.4Rules for Populating Memory Slots

In all modes, the frequency of system memory is the lowest frequency of all memory modules placed in the system, as determined through the SPD registers on the memory modules. The system memory controller supports only one DIMM connector per channel.For dual-channel modes both channels must have an DIMM connector populated and for single-channel mode only a single-channel must have an DIMM connector populated.

2.1.5Technology Enhancements of Intel® Fast Memory Access (Intel® FMA)

The following sections describe the Just-in-Time Scheduling, Command Overlap, and Out-of-Order Scheduling Intel® FMA technology enhancements.

2.1.5.1Just-in-Time Command Scheduling

The memory controller has an advanced command scheduler where all pending requests are examined simultaneously to determine the most efficient request to be issued next. The most efficient request is picked from all pending requests and issued to system memory Just-in-Time to make optimal use of Command Overlapping. Thus, instead of having all memory access requests go individually through an arbitration mechanism forcing requests to be executed one at a time, they can be started without

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

Datasheet Addendum

August 2010

18

Document Number: 323178-003

Interfaces

interfering with the current request allowing for concurrent issuing of requests. This allows for optimized bandwidth and reduced latency while maintaining appropriate command spacing to meet system memory protocol.

2.1.5.2Command Overlap

Command Overlap allows the insertion of the DRAM commands between the Activate, Precharge, and Read/Write commands normally used, as long as the inserted commands do not affect the currently executing command. Multiple commands can be issued in an overlapping manner, increasing the efficiency of system memory protocol.

2.1.5.3Out-of-Order Scheduling

While leveraging the Just-in-Time Scheduling and Command Overlap enhancements, the IMC continuously monitors pending requests to system memory for the best use of bandwidth and reduction of latency. If there are multiple requests to the same open page, these requests would be launched in a back to back manner to make optimum use of the open memory page. This ability to reorder requests on the fly allows the IMC to further reduce latency and increase bandwidth efficiency.

2.1.6DRAM Clock Generation

Two differential clock pairs for every supported DIMM. There are total of four clock pairs driven directly by the processor to two DIMMs.

2.1.7DDR3 On-Die Termination

On-Die Termination (ODT) is a feature that allows a DRAM device to turn on/off internal termination resistance for each DQ, DQS/DQS#, and DM signal via the ODT control pin.

The ODT feature improves signal integrity of the memory channel by allowing the DRAM controller to independently turn on or off the termination resistance for any or all DRAM devices themselves instead of on the motherboard.

The IMC drives out the required ODT signals, based on the memory configuration and which rank is being written to or read from, to the DRAM devices on a targeted DIMM module rank to enable or disable their termination resistance.

2.2PCI Express* Interface

This section describes the PCI Express* interface capabilities of the processor. See the PCI Express Base Specification for further details on PCI Express.

The processor has two options for PCI Express controllers available:

1 x16 PCI Express Port or

2 x8 PCI Express Ports

Enabled with CFG[0] strapping, see Section 2.2.2 and Section 3.2

2.2.1PCI Express* Configuration Mechanism

The PCI Express* link is mapped through a PCI-to-PCI bridge structure.

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

August 2010

Datasheet Addendum

Document Number: 323178-003

19

Interfaces

Figure 4. PCI Express* Related Register Structures in the

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

 

 

 

 

 

 

 

 

PCI Express

Port 0

 

PCI-PCI Bridge

 

PCI Compatible

 

 

representing root

 

 

Device

 

 

PCI Express port

 

Host Bridge Device

 

 

 

 

 

 

 

 

(Device 0)

 

 

 

 

(Device 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCI Express

Port 1

 

PCI-PCI Bridge

 

 

 

 

 

representing root

 

 

 

 

Device

 

 

PCI Express port

 

 

 

 

 

 

 

(Device 6)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMI

2.2.2PCI Express Port Bifurcation

When bifurcated, the wires which had previously been assigned to lanes 15:8 of the single x16 primary port (Port 0) are reassigned to lanes 7:0 of the x8 secondary port (Port 1). This assignment applies whether the lane numbering is reversed or not. The controls for the secondary port (Port 1) and the associated virtual PCI-to-PCI bridge can be found in PCI Device 6.

When the primary port is not bifurcated, Device 6 is hidden from the discovery mechanism used in PCI enumeration, such that configuration of the device is neither possible nor necessary.

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

Datasheet Addendum

August 2010

20

Document Number: 323178-003

Signal Description

3

Signal Description

 

 

 

 

 

 

This chapter describes the processor signals. They are arranged in functional groups

 

according to their associated interface or category. The following notations are used to

 

describe the signal type:

 

 

 

 

 

 

Notations

 

Signal Type

 

 

 

 

 

 

 

I

 

Input Pin

 

 

 

 

 

 

 

O

 

Output Pin

 

 

 

 

 

 

 

I/O

 

Bi-directional Input/Output Pin

 

 

 

 

 

 

 

The signal description also includes the type of buffer used for the particular signal:

Table 6.

Signal Description Buffer Types

 

 

 

 

 

Signal

 

Description

 

 

 

 

 

PCI Express interface signals. These signals are compatible with PCI Express 2.0

 

PCI Express*

Signalling Environment AC Specifications and are AC coupled. The buffers are not 3.3-

 

 

V tolerant. Refer to the PCIe specification.

 

 

 

 

 

Intel Flexible Display interface signals. These signals are compatible with PCI Express

 

FDI

2.0 Signaling Environment AC Specifications, but are DC coupled. The buffers are not

 

 

3.3-V tolerant.

 

 

 

 

 

Direct Media Interface signals. These signals are compatible with PCI Express 2.0

 

DMI

Signaling Environment AC Specifications, but are DC coupled. The buffers are not 3.3-

 

 

V tolerant.

 

 

 

 

CMOS

CMOS buffers. 1.1-V tolerant

 

 

 

 

DDR3

DDR3 buffers: 1.5-V tolerant

 

 

 

 

A

Analog reference or output. May be used as a threshold voltage or for buffer

 

compensation.

 

 

 

 

 

 

GTL

Gunning Transceiver Logic signaling technology.

 

 

 

 

Ref

Voltage reference signal.

 

 

 

 

Asynchronous1

Signal has no timing relationship with any reference clock.

NOTES:

1. Qualifier for a buffer type.

3.1System Memory Interface

Table 7.

Memory Channel A (Sheet 1 of 2)

 

 

 

 

 

 

Signal Name

Description

Direction/Buffer

 

Type

 

 

 

 

 

 

 

 

SA_BS[2:0]

Bank Select: These signals define which banks

O

 

are selected within each SDRAM rank.

DDR3

 

 

 

 

 

 

 

 

Write Enable Control Signal: Used with

O

 

SA_WE#

SA_RAS# and SA_CAS# (along with SA_CS#) to

 

DDR3

 

 

define the SDRAM Commands.

 

 

 

 

 

 

 

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

August 2010

Datasheet Addendum

Document Number: 323178-003

21

Signal Description

Table 7.

Memory Channel A (Sheet 2 of 2)

 

 

 

 

 

 

Signal Name

Description

Direction/Buffer

 

Type

 

 

 

 

 

 

 

 

 

RAS Control Signal: Used with SA_CAS# and

O

 

SA_RAS#

SA_WE# (along with SA_CS#) to define the SRAM

 

DDR3

 

 

Commands.

 

 

 

 

 

 

 

 

 

CAS Control Signal: Used with SA_RAS# and

O

 

SA_CAS#

SA_WE# (along with SA_CS#) to define the SRAM

 

DDR3

 

 

Commands.

 

 

 

 

 

 

 

 

 

Data Mask: These signals are used to mask

 

 

 

individual bytes of data in the case of a partial

O

 

SA_DM[7:0]

write and to interrupt burst writes. When activated

 

during writes, the corresponding data groups in

DDR3

 

 

 

 

the SDRAM are masked. There is one SA_DM[7:0]

 

 

 

for every data byte lane.

 

 

 

 

 

 

 

ECC Data Strobe: SA_DQS[8] is the data strobe

I/O

 

SA_DQS[8]

for the ECC check data bits SA_DQ[71:64]

 

DDR3

 

 

Note: Not required for non-ECC mode

 

 

 

 

 

 

 

 

 

Data Strobes: SA_DQS[7:0] and its complement

 

 

SA_DQS[7:0]

signal group make up a differential strobe pair. The

I/O

 

data is captured at the crossing point of

 

DDR3

 

 

SA_DQS[7:0] and its SA_DQS#[7:0] during read

 

 

 

 

 

and write transactions

 

 

 

 

 

 

 

ECC Data Strobe Complement: SA_DQS#[8] is

 

 

SA_DQS#[8]

the complement strobe for the ECC check data bits

I/O

 

SA_DQ[71:64]

DDR3

 

 

 

 

Note: Not required for non-ECC mode

 

 

 

 

 

 

SA_DQS#[7:0]

Data Strobe Complements: These are the

I/O

 

complementary strobe signals.

DDR3

 

 

 

 

 

 

 

 

ECC Check Data Bits: SA_DQ[71:64] are the ECC

I/O

 

SA_DQ[71:64]

check data bits for Channel A.

 

DDR3

 

 

Note: Not required for non-ECC mode

 

 

 

 

 

 

 

 

SA_DQ[63:0]

Data Bus: Channel A data signal interface to the

I/O

 

SDRAM data bus.

DDR3

 

 

 

 

 

 

 

 

Memory Address: These signals are used to

O

 

SA_MA[15:0]

provide the multiplexed row and column address

 

DDR3

 

 

to the SDRAM.

 

 

 

 

 

 

 

 

 

SDRAM Differential Clock: Channel A SDRAM

 

 

SA_CK[1:0]

Differential clock signal pair. The crossing of the

O

 

positive edge of SA_CK and the negative edge of

 

DDR3

 

 

its complement SA_CK# are used to sample the

 

 

 

 

 

command and control signals on the SDRAM.

 

 

 

 

 

 

SA_CK#[1:0]

SDRAM Inverted Differential Clock: Channel A

O

 

SDRAM Differential clock signal-pair complement.

DDR3

 

 

 

 

 

 

 

 

Clock Enable: (1 per rank) Used to:

 

 

 

- Initialize the SDRAMs during power-up

O

 

SA_CKE[1:0]

- Power-down SDRAM ranks

 

DDR3

 

 

- Place all SDRAM ranks into and out of self-refresh

 

 

 

 

 

during STR

 

 

 

 

 

 

 

Chip Select: (1 per rank) Used to select particular

O

 

SA_CS#[1:0]

SDRAM components during the active state. There

 

DDR3

 

 

is one Chip Select for each SDRAM rank.

 

 

 

 

 

 

 

 

SA_ODT[1:0]

On Die Termination: Active Termination Control.

O

 

DDR3

 

 

 

 

 

 

 

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

Datasheet Addendum

August 2010

22

Document Number: 323178-003

Signal Description

Table 8.

Memory Channel B (Sheet 1 of 2)

 

 

 

 

 

 

Signal Name

Description

Direction/Buffer

 

Type

 

 

 

 

 

 

 

 

SB_BS[2:0]

Bank Select: These signals define which banks

O

 

are selected within each SDRAM rank.

DDR3

 

 

 

 

 

 

 

 

Write Enable Control Signal: Used with

O

 

SB_WE#

SB_RAS# and SB_CAS# (along with SB_CS#) to

 

DDR3

 

 

define the SDRAM Commands.

 

 

 

 

 

 

 

 

 

RAS Control Signal: Used with SB_CAS# and

O

 

SB_RAS#

SB_WE# (along with SB_CS#) to define the SRAM

 

DDR3

 

 

Commands.

 

 

 

 

 

 

 

 

 

CAS Control Signal: Used with SB_RAS# and

O

 

SB_CAS#

SB_WE# (along with SB_CS#) to define the SRAM

 

DDR3

 

 

Commands.

 

 

 

 

 

 

 

 

 

Data Mask: These signals are used to mask

 

 

 

individual bytes of data in the case of a partial

O

 

SB_DM[7:0]

write, and to interrupt burst writes. When

 

activated during writes, the corresponding data

DDR3

 

 

 

 

groups in the SDRAM are masked. There is one

 

 

 

SB_DM[7:0] for every data byte lane.

 

 

 

 

 

 

 

ECC Data Strobe: SB_DQS[8] is the data strobe

I/O

 

SB_DQS[8]

for the ECC check data bits SB_DQ[71:64]

 

DDR3

 

 

Note: Not required for non-ECC mode

 

 

 

 

 

 

 

 

 

Data Strobes: SB_DQS[7:0] and its complement

 

 

 

signal group make up a differential strobe pair. The

I/O

 

SB_DQS[7:0]

data is captured at the crossing point of

 

DDR3

 

 

SB_DQS[7:0] and its SB_DQS#[7:0] during read

 

 

 

 

 

and write transactions.

 

 

 

 

 

 

 

ECC Data Strobe Complement: SB_DQS#[8] is

 

 

SB_DQS#[8]

the complement strobe for the ECC check data bits

I/O

 

SB_DQ[71:64]

DDR3

 

 

 

 

Note: Not required for non-ECC mode

 

 

 

 

 

 

SB_DQS#[7:0]

Data Strobe Complements: These are the

I/O

 

complementary strobe signals.

DDR3

 

 

 

 

 

 

 

 

ECC Check Data Bits: SB_DQ[71:64] are the ECC

I/O

 

SB_DQ[71:64]

check data bits for Channel B

 

DDR3

 

 

Note: Not required for non-ECC mode

 

 

 

 

 

 

 

 

SB_DQ[63:0]

Data Bus: Channel B data signal interface to the

I/O

 

SDRAM data bus.

DDR3

 

 

 

 

 

 

 

 

Memory Address: These signals are used to

O

 

SB_MA[15:0]

provide the multiplexed row and column address

 

DDR3

 

 

to the SDRAM.

 

 

 

 

 

 

 

 

 

SDRAM Differential Clock: Channel B SDRAM

 

 

 

Differential clock signal pair. The crossing of the

O

 

SB_CK[1:0]

positive edge of SB_CK and the negative edge of

 

DDR3

 

 

its complement SB_CK# are used to sample the

 

 

 

 

 

command and control signals on the SDRAM.

 

 

 

 

 

 

SB_CK#[1:0]

SDRAM Inverted Differential Clock: Channel B

O

 

SDRAM Differential clock signal-pair complement.

DDR3

 

 

 

 

 

 

 

 

Clock Enable: (1 per rank) Used to:

 

 

 

- Initialize the SDRAMs during power-up.

O

 

SB_CKE[1:0]

- Power-down SDRAM ranks.

 

DDR3

 

 

- Place all SDRAM ranks into and out of self-refresh

 

 

 

 

 

during STR.

 

 

 

 

 

 

 

Chip Select: (1 per rank) Used to select particular

O

 

SB_CS#[1:0]

SDRAM components during the active state. There

 

DDR3

 

 

is one Chip Select for each SDRAM rank.

 

 

 

 

 

 

 

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

August 2010

Datasheet Addendum

Document Number: 323178-003

23

Signal Description

Table 8.

Memory Channel B (Sheet 2 of 2)

 

 

 

 

 

 

Signal Name

Description

Direction/Buffer

 

Type

 

 

 

 

 

 

 

 

SB_ODT[1:0]

On Die Termination: Active Termination Control.

O

 

DDR3

 

 

 

 

 

 

 

3.2Reset and Miscellaneous Signals

Table 9.

Reset and Miscellaneous Signals

 

 

 

 

 

 

 

Signal Name

 

Description

Direction/Buffer

 

 

Type

 

 

 

 

 

 

 

 

 

SM_DRAMRST#

DDR3 DRAM Reset: Reset signal from processor

O

 

to DRAM devices. One for all channels of DIMMs.

DDR3

 

 

 

 

 

 

 

 

Configuration signals:

 

 

 

The CFG signals have a default value of 1 if not

 

 

 

terminated on the board. Refer to the Platform

 

 

 

Design Guide for pull-down recommendations

 

 

 

when logic low is desired.

 

 

 

CFG[0]: PCI Express* Bifurcation:

 

 

 

— 1 = 1 x16 PCI Express I/O

 

 

 

— 0 = 2 x 8 PCI Express I/O

 

 

 

CFG[1]: Reserved

 

 

 

CFG[2]: Reserved configuration lands. A test

 

 

 

point may be placed on the board for this land.

 

 

 

CFG[3]: PCI Express* Static Lane Numbering

 

 

 

Reversal. A test point may be placed on the

 

 

 

board for this land. Lane reversal will be

 

 

 

applied across all 16 lanes.

 

 

 

1: No Reversal

 

 

 

0: Reversal

 

 

CFG[17:0]

In the case of Bifurcation with NO Lane Reversal

I

 

CMOS

 

 

the physical lane mapping is as follows:

 

 

— Lanes 15:8 => Port 1 Lanes 7:0

 

 

 

— Lanes 7:0 => Port 0 Lanes 7:0

 

 

 

In the case of Bifurcation with WITH Lane Reversal

 

 

 

the physical lane mapping is as follows:

 

 

 

— Lanes 15:8 => Port 0 Lanes 0:7

 

 

 

— Lanes 7:0 => Port 1 Lanes 0:7

 

 

 

CFG[4]: Embedded DisplayPort Detection:

 

 

 

This is used to detect the presence of a device

 

 

 

on the Embedded DisplayPort.

 

 

 

— 1: No Physical Display Port attached to

 

 

 

 

the Embedded Display Port

 

 

 

— 0: An external Display Port device is

 

 

 

 

connected to the Embedded Display Port

 

 

 

CFG[17:5]: Reserved configuration lands.

 

 

 

Intel does not recommend a test point on the

 

 

 

board for these lands.

 

 

 

 

 

 

§ §

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

Datasheet Addendum

August 2010

24

Document Number: 323178-003

Electrical Specifications

4 Electrical Specifications

4.1Signal Groups

Signals are grouped by buffer type and similar characteristics as listed in Table 10. The buffer type indicates which signaling technology and specifications apply to the signals. All the differential signals, and selected DDR3 and Control Sideband signals have OnDie Termination (ODT) resistors. There are some signals that do not have ODT and need to be terminated on the board.

Table 10.

Mobile Signal Groups1

 

 

 

Signal Group

Alpha

Type

Signals

 

Group

 

 

 

 

 

 

 

 

 

 

DDR3 Data Signals2

 

 

 

 

Single ended

(e)

DDR3 Bi-directional

SA_DQ[71:0], SB_DQ[71:0]

 

 

 

 

 

 

Differential

(f)

DDR3 Bi-directional

SA_DQS[8:0], SA_DQS#[8:0]

 

 

 

 

SB_DQS[8:0], SB_DQS#[8:0]

 

 

 

 

 

 

Power/Ground/Other

 

 

 

 

 

 

 

 

 

Single Ended

(z)

Other

DBR#, PROC_DETECT, VCAP0, VCAP1, VCAP2

 

 

 

 

 

 

NOTES:

 

 

 

1.Refer to Chapter 3 for signal description details.

2.SA and SB refer to DDR3 Channel A and DDR3 Channel B.

All Control Sideband Asynchronous signals are required to be asserted/deasserted for at least eight BCLKs in order for the processor to recognize the proper signal state. See Section 4.2 for the DC specifications.

4.2DC Specifications

The processor DC specifications in this section are defined at the processor pins, unless noted otherwise. See Chapter 5 for the processor pin listings and Chapter 3 for signal definitions.

The DC specifications for the DDR3 signals are listed in Table 11.

4.2.1Voltage and Current Specifications

Table 11.

DDR3 Signal Group DC Specifications (Sheet 1 of 2)

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Alpha

Min

Typ

Max

Units

Notes1,9

 

 

Group

 

 

 

 

 

 

 

 

 

 

 

 

 

VIL

Input Low Voltage

(e,f)

 

 

0.43*VDDQ

V

2,4

NOTES:

 

 

 

 

 

 

 

1.Unless otherwise noted, all specifications in this table apply to all processor frequencies.

2.VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.

3.VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value.

4.VIH and VOH may experience excursions above VDDQ. However, input signal drivers must comply with the signal quality specifications.

5.RVTT_TERM is the termination on the DIMM and in not controlled by the processor.

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

August 2010

Datasheet Addendum

Document Number: 323178-003

25

Electrical Specifications

Table 11.

DDR3 Signal Group DC Specifications (Sheet 2 of 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Alpha

Min

Typ

 

Max

Units

Notes1,9

 

 

Group

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIH

Input High Voltage

(e,f)

0.57*VDDQ

 

 

 

V

3

VOL

Output Low Voltage

(c,d,e,f)

 

(VDDQ / 2)* (RON

/

 

 

5

 

(RON+RVTT_TERM))

 

 

 

 

 

 

 

 

 

VOH

 

 

 

VDDQ - ((VDDQ / 2)*

 

 

 

Output High Voltage

(c,d,e,f)

 

(RON/

 

 

V

4,5

 

 

 

 

(RON+RVTT_TERM))

 

 

 

NOTES:

1.Unless otherwise noted, all specifications in this table apply to all processor frequencies.

2.VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.

3.VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high value.

4.VIH and VOH may experience excursions above VDDQ. However, input signal drivers must comply with the signal quality specifications.

5.RVTT_TERM is the termination on the DIMM and in not controlled by the processor.

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

Datasheet Addendum

August 2010

26

Document Number: 323178-003

Processor Ball and Signal Information

5Processor Ball and Signal Information

5.1Processor Ball Assignments

Table 12 provides a listing of all processor pins ordered alphabetically by ball name for the Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series package respectively.

Table 13 provides a listing of all processor pins ordered alphabetically by ball number for the Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series package respectively.

Figure 5, Figure 6, Figure 7, and Figure 8 show the Top-Down view of the Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series ballmap

Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series

August 2010

Datasheet Addendum

Document Number: 323178-003

27

Processor Ball and Signal Information

Figure 5. Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series Ballmap (Top View, Upper-Left Quadrant)

 

71

70

69

68

67

66

65

64

63

62

61

 

60

 

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

 

BV

DC_TES

 

DC_TES

DC_TES

 

VSS

 

VSS

 

SB_DQS SB_DQ[4

 

 

SB_DQ[4

 

SB_DM[5

 

SB_DQS SB_DQ[3

 

SB_DQ[3

 

SB_DQ[3

 

SB_DQ[3 SB_DM[4

 

SB_ODT

 

SB_BS[1

 

SB_BS[0

SM_RCO

 

SB_CK[1

 

 

SA_MA[2

 

T_BV71

 

T_BV69

T_BV68

 

 

 

[6]

8]

 

 

 

7]

 

]

 

#[5]

9]

 

7]

 

4]

 

3]

]

 

[0]

 

]

 

]

MP[2]

 

]

 

 

]

 

BU

 

 

 

 

 

 

SB_DM[6

 

SB_DQS

VSS

 

 

SB_DQ[4

 

VSS

 

SB_DQS

VSS

 

SB_DQ[4

 

VSS

 

SB_ODT

VSS

 

SB_CAS

 

VSS

 

SB_MA[1

 

SA_DQ[6

SB_CK#[

 

 

VSS

 

 

 

 

 

 

 

 

]

 

#[6]

 

 

6]

 

 

 

[5]

 

1]

 

 

[1]

 

#

 

 

0]

 

6]

1]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BT

DC_TES

 

DC_TES

VSS

 

 

 

 

 

 

SB_DQ[5

 

 

 

SB_DQ[4

 

SB_DQ[4

 

SB_DQ[4 SB_DQ[3

 

SB_DQS

 

SB_DQS

 

SB_DQ[3 SB_DQ[3

 

SB_MA[1

 

SB_CS#[

 

SB_WE#

SB_RAS

 

SA_BS[0]

 

 

SA_MA[0

 

T_BT71

 

T_BT69

 

 

 

 

 

 

 

3]

 

 

 

2]

 

3]

 

4]

8]

 

[4]

 

#[4]

 

2]

6]

 

3]

 

1]

 

 

#

 

 

 

 

]

 

BR

DC_TES

 

VSS

VSS

 

SB_DQ[5

 

SB_DQ[5

 

SB_DQ[5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T_BR71

 

 

0]

 

1]

 

2]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BP

 

 

 

 

 

 

 

 

 

 

 

 

SB_DQ[4

 

SA_DQS

 

SB_DQ[4

 

 

SB_DQ[4

 

 

 

SB_DQ[3

 

 

SB_CS#[

 

 

 

VSS

 

 

SM_RCO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9]

 

 

#[6]

 

5]

 

 

0]

 

 

 

5]

 

 

0]

 

 

 

 

 

MP[1]

 

 

 

 

 

BN

VSS

 

 

SB_DQ[5

 

 

SA_DQ[5

VSS

 

SA_DM[6

 

 

 

 

 

 

SA_DQ[4

 

SA_DQ[4

 

 

 

SA_DQ[4

 

 

SA_DQ[4 SA_DQ[3

 

 

SA_DQ[3

 

 

 

SA_DQ[3

 

SB_DQ[6

 

 

 

 

 

 

4]

 

 

0]

 

]

 

 

 

 

 

 

9]

 

7]

 

 

 

1]

 

 

0]

9]

 

 

8]

 

 

 

6]

 

8]

 

 

 

 

BM

 

VSS

 

 

 

 

 

 

 

 

 

 

SA_DQS[

 

 

 

 

 

 

SA_DQ[4

 

VSS

 

 

 

 

 

 

VSS

SA_DQ[3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6]

 

 

 

 

 

 

 

6]

 

 

 

 

 

 

 

3]

 

 

 

 

 

 

 

 

 

BL

VSS

 

SB_DQ[5

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

VSS

 

 

 

 

 

 

VSS

SA_ODT[

 

 

 

 

 

 

VSS

 

SA_RAS

 

 

 

 

 

5]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1]

 

 

 

 

 

 

 

#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BK

 

SB_DQ[6

 

 

SB_DQ[6

 

 

SA_DQ[5

VSS

 

SA_DQ[5

 

VSS

 

 

 

 

 

 

VSS

 

SA_DQS

 

 

 

 

 

 

SA_DQS[ SA_CAS

 

 

 

 

 

 

 

SA_CK#[

 

 

0]

 

 

1]

 

 

4]

 

5]

 

 

 

 

 

 

 

 

#[5]

 

 

 

 

 

 

4]

#

 

 

 

 

 

 

 

1]

 

BJ

SB_DQ[5

 

SB_DQS

 

 

SA_DQ[6

 

VSS

SA_DQ[5

 

SA_DQ[5

 

 

 

 

 

SA_DQ[5

 

SA_DQ[4

 

 

 

 

 

 

SA_DQ[4 SA_CS#[

 

 

 

 

 

 

SA_DQ[3

 

SA_DQ[7

 

 

 

 

6]

 

[7]

 

 

0]

 

6]

 

1]

 

 

 

 

 

3]

 

3]

 

 

 

 

 

 

5]

1]

 

 

 

 

 

 

2]

 

1]

 

 

 

 

BH

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

SA_DM[7

 

VSS

 

VSS

 

SA_DQ[4

 

SA_DQS[

 

 

SA_DQ[4

VSS

 

 

SA_DQS SA_DQ[3

 

 

SA_CS#[

 

SA_BS[1]

 

 

SA_CK[1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

]

 

 

 

2]

 

5]

 

 

4]

 

 

#[4]

7]

 

 

0]

 

 

 

]

 

BG

SB_DQ[5

 

SB_DQS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SA_DM[5

 

VSS

 

 

 

 

 

 

SA_DM[4 SA_DQ[7

 

 

 

 

 

 

 

VSS

 

8]

 

#[7]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

]

 

 

 

 

 

 

 

]

0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BF

 

SB_DQ[5

 

 

SB_DM[7

 

SA_DQ[6 SA_DQ[5

 

VSS

 

 

VTT0

VTT0

 

SA_DQ[5

 

SA_DQ[4

 

 

 

 

 

 

SA_DQ[3 SA_DQ[3

 

 

 

SA_ODT[

 

 

SA_MA[1

 

SA_WE#

 

 

 

 

 

7]

 

 

]

 

1]

7]

 

 

 

 

2]

 

8]

 

 

 

 

 

 

5]

4]

 

 

 

0]

 

 

3]

 

 

 

 

 

BE

RSVD

VSS

RSVD

 

 

 

VSS

SA_DQS[

 

SA_DQS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7]

 

#[7]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BD

SB_DQ[6

 

SB_DQ[6

 

 

 

 

 

 

 

 

 

VTT0

VTT0

 

VSS

 

VCAP0

 

VSS

 

VCAP0

VSS

 

VCAP0

 

VSS

 

VCAP1

 

VSS

VCAP1

 

VSS

 

 

VCAP1

 

 

2]

 

3]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BC

 

SA_DQ[6

 

 

SB_DQ[5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3]

 

 

9]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BB

VSS

 

RSVD

 

 

SA_DQ[5

 

SA_DQ[5

 

VSS

 

 

VTT0

VTT0

 

VSS

 

VCAP0

 

VSS

 

VCAP0

VSS

 

VCAP0

 

VSS

 

VCAP1

 

VSS

VCAP1

 

VSS

 

 

VCAP1

 

 

 

 

 

9]

 

8]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BA

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AY

VSS

 

RSVD

 

 

VSS

 

SA_DQ[6

 

VSS

 

 

VTT0

VSS

 

VCAP0

 

VSS

 

VCAP0

 

VSS

VCAP0

 

VSS

 

VCAP1

 

VSS

 

VCAP1

VSS

 

VCAP1

 

 

VSS

 

 

 

 

 

 

2]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AW

 

RSVD

 

 

VSS

 

 

 

 

VSS

 

 

VTT0

 

VSS

 

VCAP0

 

VSS

 

VCAP0

 

VSS

VCAP0

 

VSS

 

VCAP1

 

VSS

 

VCAP1

VSS

 

VCAP1

 

 

VSS

 

 

AV

RSVD

 

RSVD

 

 

PM_EXT

 

PM_EXT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_TS#[0]

 

_TS#[1]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AU

RSVD

VSS

RSVD

 

 

 

 

 

 

VSS

 

 

VTT0

 

VTT0

 

VSS

 

VCAP0

 

VSS

 

VCAP0

VSS

 

VCAP0

 

VSS

 

VCAP1

 

VSS

VCAP1

 

VSS

 

 

VCAP1

 

 

AT

 

RSVD

 

 

RSVD

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AR

RSVD

 

RSVD

 

 

 

 

 

 

VSS

 

 

VTT0

 

VTT0

 

VSS

 

VCAP0

 

VSS

 

VCAP0

VSS

 

VCAP0

 

VSS

 

VCAP1

 

VSS

VCAP1

 

VSS

 

 

VCAP1

 

 

AP

 

VSS

 

 

 

RSVD

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AN

GFX_VID

 

RSVD

 

 

 

 

 

 

VSS

 

 

VTT0

 

VTT0

 

VCAP0

 

VSS

 

VCAP0

 

VSS

VCAP0

 

VSS

 

VCAP1

 

VSS

 

VCAP1

VSS

 

VCAP1

 

 

VSS

 

 

[4]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AM

 

GFX_VID

 

 

GFX_VID

RSVD

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[6]

 

 

[5]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AL

GFX_DP

 

GFX_IM

 

 

 

 

 

 

VSS

 

 

VTT0

 

VTT0

 

VCAP0

 

VSS

 

VCAP0

 

VSS

VCAP0

 

VSS

 

VCAP1

 

VSS

 

VCAP1

VSS

 

VCAP1

 

 

VSS

 

 

RSLPVR

 

ON

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AK

RSVD

VSS

RSVD

 

 

RSVD

 

VSS

 

VCAP2

 

 

VCAP2

 

VCAP2

 

VCAP0

 

VSS

 

VCAP0

 

VSS

VCAP0

 

VSS

 

VCAP1

 

VSS

 

VCAP1

VSS

 

VCAP1

 

 

VSS

 

 

AJ

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AH

GFX_VID

 

GFX_VR

 

 

RSVD

 

 

 

VSS

 

 

VCAP2

 

VCAP2

 

VSS

 

VSS

 

VSS

 

VSS

VSS

 

VSS

 

VSS

 

VSS

 

VSS

VSS

 

VSS

 

 

VSS

 

 

 

[3]

 

_EN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AG

 

GFX_VID

 

 

GFX_VID

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[2]

 

 

[1]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AF

GFX_VID

 

VSS

 

 

 

 

 

 

VSS

 

 

VCAP2

 

VCAP2

 

VCC

 

VCC

 

VCC

 

VCC

VCC

 

VCC

 

VCC

 

VCC

 

VCC

VCC

 

VTT0

 

 

VTT0

 

 

[0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AE

 

VSS

 

 

 

COMP0

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AD

COMP3

 

COMP1

 

 

 

 

 

 

VSS

 

 

VCAP2

 

VCAP2

 

VSS

 

VCC

 

VSS

 

VCC

VSS

 

VCC

 

VSS

 

VCC

 

VSS

VCC

 

VTT0

 

 

VTT0

 

 

AC

RSVD

COMP2

RSVD

 

VSS

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AB

 

VSS

 

 

 

 

 

 

 

VSS

 

 

VCAP2

 

VCAP2

 

VSS

 

VCC

 

VSS

 

VCC

VSS

 

VCC

 

VSS

 

VCC

 

VSS

VCC

 

VSS

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

323178-003 28

Processor Ball and Signal Information

Figure 6. Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series Ballmap (Top View, Upper-Right Quadrant)

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

 

 

SB_CK#[

SM_RCO

 

SB_MA[4

 

SB_MA[2

 

SB_MA[8 SB_MA[1

 

SB_BS[2

 

SB_DQ[2

 

SB_DQ[3 SB_DQ[2

 

SB_DQ[2

 

SB_DQ[1

 

SB_DQS SB_DQ[2

 

SB_DQ[1

 

RSVD_N

 

RSVD_N

DC_TES

 

DC_TES

 

DC_TES

 

 

0]

MP[0]

 

]

 

]

 

]

4]

 

]

 

6]

 

0]

9]

 

2]

 

9]

 

[2]

0]

 

5]

 

CTF

 

CTF

T_BV5

 

T_BV3

 

T_BV1

 

SA_DQ[6

 

SB_CK[0

VSS

 

SB_MA[3

 

SB_DQ[7

 

SB_MA[1

VSS

 

SB_MA[1

 

VSS

 

SB_DQ[2

VSS

 

SB_DQ[2

 

VSS

 

SB_DQS

VSS

 

SB_DQ[1

 

VSS

 

 

 

 

 

 

 

7]

 

]

 

]

 

1]

 

1]

 

5]

 

 

5]

 

3]

 

 

#[2]

 

4]

 

 

 

 

 

 

 

 

 

SB_MA[0 SB_MA[5

 

SB_MA[6

 

SB_MA[1

 

SB_MA[9 SB_CKE[

 

SB_CKE[

 

SB_DQ[2

 

SB_DQ[3 SB_DQS

 

SB_DQS

 

SB_DQ[1

 

SB_DM[2 SB_DQ[1

 

 

 

 

 

 

RSVD_N

 

DC_TES

 

DC_TES

 

 

]

]

 

]

 

2]

 

]

0]

 

1]

 

7]

 

1]

#[3]

 

[3]

 

8]

 

]

7]

 

 

 

 

 

 

CTF

 

T_BT3

 

T_BT1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SB_DQ[1

 

SB_DQ[1

 

SB_DQ[1

RSVD_N

 

VSS

 

DC_TES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6]

 

1]

 

0]

CTF

 

 

T_BR1

 

SA_CK#[

 

SA_MA[1

 

 

SB_MA[1

 

 

 

SB_MA[7

 

 

 

SB_DM[3

 

 

SB_DQ[2

 

 

 

SB_DQ[2

 

 

SB_DQ[2

 

 

 

 

 

 

 

 

 

 

 

 

0]

 

]

 

 

]

 

 

 

]

 

 

 

]

 

 

8]

 

 

 

4]

 

 

1]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SA_MA[5

 

SA_MA[8

 

SA_MA[1

 

 

SA_MA[1 SA_DM[3

 

 

SA_DQS[ SA_DQ[2

 

 

SA_DQ[1

 

 

 

SA_DQS

 

SA_DQ[2

 

SA_DQ[1 SA_DQ[1

 

VSS

 

SB_DQS

 

 

VSS

 

 

 

 

]

 

]

 

4]

 

 

5]

]

 

 

3]

4]

 

 

6]

 

 

 

#[2]

 

0]

 

7]

5]

 

 

#[1]

 

 

 

 

SA_CK[0

 

VSS

 

 

 

 

 

 

SB_DQ[6

VSS

 

 

 

 

 

 

VSS

 

SA_DM[2

 

 

 

 

 

 

 

 

 

 

 

SB_DQS

 

 

 

 

]

 

 

 

 

 

 

 

7]

 

 

 

 

 

 

 

]

 

 

 

 

 

 

 

 

 

 

 

[1]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SB_DQ[7

 

VSS

 

 

 

 

 

 

SA_DQS

VSS

 

 

 

 

 

 

SA_DQS[

 

 

 

 

 

 

 

 

SB_DM[1

 

 

VSS

 

 

 

 

 

 

0]

 

 

 

 

 

 

 

#[3]

 

 

 

 

 

 

2]

 

 

 

 

 

 

 

 

]

 

 

 

 

VSS

 

SA_MA[6

 

 

 

 

 

 

SA_DQ[2 SA_CKE[

 

 

 

 

 

 

SA_DQ[2

 

SA_DQ[2

 

 

 

 

VSS

SA_DQ[2

 

SA_DQ[1

 

SA_DM[1

 

 

SB_DQ[1

 

 

 

 

]

 

 

 

 

 

 

6]

1]

 

 

 

 

 

 

3]

 

2]

 

 

 

 

1]

 

4]

 

]

 

 

3]

 

 

 

 

 

 

 

SA_MA[7

 

SA_MA[1

 

 

 

 

 

 

VSS

SA_DQ[2

 

 

 

 

 

 

 

SM_DRA

 

SA_DQ[1

VSS

 

SA_DQS

 

SA_DQS[

SB_DQ[1

 

 

VSS

 

 

 

 

 

 

]

 

2]

 

 

 

 

 

 

8]

 

 

 

 

 

 

 

MRST#

 

0]

 

#[1]

 

1]

2]

 

 

 

 

SA_MA[1

 

SB_DQ[6

 

SA_MA[1

 

SA_DQ[6

 

 

SA_DQ[2

VSS

 

 

SA_DQ[2

VSS

 

 

SA_DQ[1

 

VSS

 

SA_DQ[1

 

 

 

 

 

 

 

 

 

 

SB_DQ[7

 

 

 

0]

 

6]

 

1]

 

9]

 

 

7]

 

 

9]

 

 

8]

 

 

1]

 

 

 

 

 

 

 

 

 

 

]

 

 

 

SA_MA[3

 

SA_MA[4

 

 

 

 

 

 

SA_DQ[3 SA_DQ[3

 

 

 

 

 

 

SA_DQ[1

 

SA_DQ[2

 

 

 

 

 

 

 

 

 

 

SB_DQ[8

 

 

SB_DQ[9

 

 

]

 

]

 

 

 

 

 

 

1]

0]

 

 

 

 

 

 

9]

 

5]

 

 

 

 

 

 

 

 

 

 

]

 

 

]

 

 

 

 

 

 

VSS

 

SA_MA[9

 

 

 

 

 

 

SA_BS[2]

SA_CKE[

 

 

 

VDDQ

VDDQ

 

VSS

 

SA_DQ[9

 

SA_DQ[1

VSS

 

SA_DQ[1

 

 

 

SB_DQ[6

 

 

 

 

 

 

 

 

 

]

 

 

 

 

 

 

 

0]

 

 

 

 

 

 

 

 

]

 

2]

 

 

3]

 

 

 

]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SA_DQ[8

 

VSS

SA_DQ[7

 

SA_DQ[6

 

SB_DQ[3

 

SB_DQS

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

]

 

]

 

]

 

]

 

#[0]

 

VDDQ

 

SA_DQS[ SA_DQS

 

SA_DQ[6

 

SA_DQ[6

 

SA_DQ[6

 

SB_DQ[6 SB_DQ[6

 

SB_DQ[6

 

SB_DQS

 

SB_DQS

 

VDDQ

VSS

 

 

 

 

 

 

 

 

 

SB_DQS

 

 

SB_DQ[2

 

 

8]

#[8]

 

4]

 

5]

 

8]

 

5]

9]

 

4]

 

[8]

 

#[8]

 

 

 

 

 

 

 

 

 

 

[0]

 

 

]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SB_DQ[5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

]

 

 

VDDQ

 

VDDQ

VDDQ

 

VDDQ

 

VDDQ

 

VDDQ

 

VDDQ

VDDQ

 

VDDQ

 

VDDQ

 

VDDQ

 

VDDQ

VDDQ_C

 

VDDQ_C

 

SA_DM[0 SA_DQ[3

 

VSS

 

SA_DQ[2

SB_DM[0

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

 

K

 

]

]

 

 

 

]

]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SB_DQ[0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

]

 

 

VSS

 

VSS

VSS

 

VSS

 

VSS

 

VSS

 

VSS

VSS

 

VSS

 

VSS

 

VSS

 

VSS

VSS

 

VSS

 

VTT0

 

VSS

SA_DQS[

 

SA_DQS

VSS

 

 

SB_DQ[4

 

 

 

 

 

 

 

 

 

 

 

 

 

0]

 

#[0]

 

 

]

 

VTT0

 

VTT0

VTT0_D

 

VTT0_D

 

VTT0_D

 

VTT0_D

 

VTT0_D

VTT0_D

 

VTT0_D

 

VTT0_D

 

VTT0_D

 

VTT0_D

VTT0

 

VTT0

 

 

 

 

 

 

 

 

 

SB_DQ[1

 

 

 

DR

 

DR

 

DR

 

DR

 

DR

DR

 

DR

 

DR

 

DR

 

DR

 

 

 

 

 

 

 

 

 

 

]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

SA_DQ[4 SA_DQ[5

 

RSVD

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

]

]

 

 

 

 

VSS

 

VSS

VSS

 

VSS

 

VSS

 

VSS

 

VSS

VSS

 

VSS

 

VSS

 

VSS

 

VSS

VSS

 

VTT0

 

 

 

 

 

 

 

VSS

 

RSVD

RSVD_T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

SA_DQ[0

 

SA_DQ[1

 

 

 

CFG[6]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

]

 

]

 

 

 

 

 

VSS

 

VSS

VSS

 

VSS

 

VSS

 

VSS

 

VSS

VSS

 

VSS

 

VSS

 

VSS

 

VSS

VSS

 

VTT0

 

 

 

 

 

 

 

VSS

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RSVD_T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

VTT0

 

VTT0

VAXG

 

VAXG

 

VAXG

 

VAXG

 

VAXG

VAXG

 

VAXG

 

VAXG

 

VTT0

 

VTT0

VTT0

 

VTT0

 

 

VTT0

 

RSVD_T

 

VSS

VSS

 

 

VTT_SE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

LECT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VTT0

 

VSS

VCCPW

 

SM_DRA

 

 

CFG[1]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RGOOD

 

MPWRO

 

 

 

 

VSS

 

VSS

VAXG

 

VAXG

 

VAXG

 

VAXG

 

VAXG

VAXG

 

VAXG

 

VAXG

 

VTT0

 

VTT0

VTT0

 

VTT0

 

 

 

 

 

 

 

CFG[0]

 

 

VSS

 

VTT0

 

VTT0

VSS

 

VSS

 

VSS

 

VSS

 

VSS

VSS

 

VSS

 

VSS

 

VSS

 

VSS

VAXG

 

VAXG

 

 

 

BCLK #

BCLK

 

 

CFG[4]

 

CFG[3]

CFG[2]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VAXG

 

 

 

 

 

 

 

CFG[5]

 

 

VSS

 

VSS

VSS

 

VSS

 

VSS

 

VSS

 

VSS

VSS

 

VSS

 

VSS

 

VSS

 

VSS

VAXG

 

VAXG

 

 

 

 

 

 

 

VSS

 

 

CFG[10]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

CFG[7]

VSS

 

 

 

CFG[9]

 

 

VTT0

 

VTT0

VTT0

 

VTT0

 

VAXG

 

VAXG

 

VAXG

VAXG

 

VAXG

 

VAXG

 

VAXG

 

VAXG

VAXG

 

VAXG_S

 

VSSAXG

 

CFG[15]

 

CFG[16]

 

CFG[8]

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

ENSE

 

_SENSE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CFG[13]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VTT0

 

VTT0

VTT0

 

VTT0

 

VAXG

 

VAXG

 

VAXG

VAXG

 

VAXG

 

VAXG

 

VAXG

 

VTT1

VTT1

 

VTT1

 

 

 

 

 

 

 

VSS

 

 

CFG[14]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

FDI_FSY

 

FDI_FSY

 

VSS

CFG[12]

 

CFG[11]

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BV BU BT BR BP BN BM BL BK BJ BH BG BF BE BD BC BB BA AY AW AV AU AT AR AP AN AM AL AK AJ AH AG AF AE AD

AC

29

323178-003

Processor Ball and Signal Information

Figure 7. Intel® CoreTM i7-660UE, i7-620LE/UE, i7-610E, i5-520E, i3-330E and Intel® Celeron® Processor P4505, U3405 Series Ballmap (Top View, Lower-Left Quadrant)

AD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMP3

 

COMP1

 

 

 

 

 

 

VSS

 

VCAP2

VCAP2

 

VSS

 

VCC

 

VSS

 

VCC

VSS

 

VCC

 

VSS

 

VCC

 

VSS

VCC

 

VTT0

 

VTT0

 

 

 

AC

RSVD

COMP2

RSVD

 

VSS

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AB

 

VSS

 

 

 

 

 

 

 

VSS

 

VCAP2

VCAP2

 

VSS

 

VCC

 

VSS

 

VCC

VSS

 

VCC

 

VSS

 

VCC

 

VSS

VCC

 

VSS

 

VSS

 

 

 

AA

RSVD

 

RSVD

 

VCCPW

VSS

 

VSS

 

VSS

 

VCAP2

VCAP2

 

VSS

 

VCC

 

VSS

 

VCC

VSS

 

VCC

 

VSS

 

VCC

 

VSS

VCC

 

VSS

 

VSS

 

 

 

Y

 

TAPPWR

 

 

RGOOD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GOOD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W

DBR#

 

VSS

 

 

RSVD

 

RSVD

 

VSS

 

VCAP2

VCAP2

 

VSS

 

VCC

 

VSS

 

VCC

VSS

 

VCC

 

VSS

 

VCC

 

VSS

VCC

 

VCCPLL

 

VCCPLL

 

 

 

V

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

PRDY#

 

PREQ#

 

 

 

 

VSS

 

VSS

 

VCAP2

VCAP2

 

VSS

 

VCC

 

VSS

 

VCC

VSS

 

VCC

 

VSS

 

VCC

 

VSS

VCC

 

VSS

 

VCCPLL

 

 

 

T

TDO

TDO_M

TDI

 

TCK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

VSS

 

 

 

RSVD

 

RSVD

 

VSS

 

VCAP2

VCAP2

 

VSS

 

VCC

 

VSS

 

VCC

VSS

 

VCC

 

VSS

 

VCC

 

VSS

VCC

 

VCCPLL

 

VCCPLL

 

 

 

P

TDI_M

 

TRST#

 

 

 

 

 

 

 

 

VCC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

RESET_

 

 

PROCH

 

TMS

 

VSS

 

CATERR

 

 

 

VSS

 

VCC

 

VSS

 

VCC

VSS

 

VCC

 

VSS

 

VCC

 

VCC

 

PEG_TX

 

PEG_TX[

 

 

 

 

 

OBS#

 

 

OT#

 

 

 

#

 

 

 

 

 

 

 

 

 

 

 

#[0]

 

1]

 

 

 

 

M

PROC_D

 

BPM#[7]

 

 

 

 

 

 

 

 

VCC

 

 

 

 

 

 

VSS

 

VCC

 

 

 

 

 

 

VCC

 

VSS

 

 

 

 

 

VSS

 

 

ETECT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

VSS

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

VCC

 

 

 

 

 

 

VSS

VSS

 

 

 

 

 

 

PEG_TX[

 

PEG_TX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0]

 

#[1]

 

 

 

 

K

BCLK_IT

 

BPM#[6]

 

 

 

BPM#[3]

VSS

 

BPM#[4]

 

VCC

 

 

 

 

 

 

VSS

 

VCC

 

 

 

 

 

 

VCC

VSS

 

 

 

 

 

 

VSS

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

 

BCLK_IT

BPM#[0]

 

BPM#[1]

 

VSS

BPM#[5]

 

BPM#[2]

 

 

 

 

VSS

 

VCC

 

 

 

 

 

 

VSS

VSS

 

 

 

 

 

 

VSS

 

PEG_RX[

 

 

 

 

 

P #

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1]

 

 

 

 

H

VSS

 

 

 

 

 

 

 

 

 

 

VCC

 

 

 

 

 

 

VSS

 

VCC

 

 

 

 

 

 

VCC

VSS

 

 

 

 

 

 

VSS

 

 

G

 

VSS

 

 

 

 

 

 

 

 

 

VCC

 

 

VSS

 

VCC

 

VSS

 

VCC

 

 

VSS

VSS

 

 

VCC

VSS

 

 

PEG_RX

 

PEG_RX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#[0]

 

#[1]

 

 

 

 

F

VSS

 

 

PSI#

 

PROC_D

 

VCC_SE VSS_SE

 

VSS

 

 

 

 

 

VCC

 

 

 

 

 

 

VSS

VSS

 

 

 

 

 

 

PEG_RX[

 

 

 

 

 

 

 

 

 

PRSLPV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NSE

NSE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0]

 

 

 

 

 

 

E

DC_TES

 

VSS

VSS

 

 

 

 

 

 

 

VCC

 

 

VCC

 

 

 

VCC

 

 

VCC

 

 

 

VCC

 

 

 

VCC

 

 

 

 

VSS

 

 

 

T_E71

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

 

VID[6]

 

VID[5]

 

VID[2]

VID[1]

 

VCC

 

VCC

 

VCC

VCC

 

VCC

 

VCC

 

VCC

VCC

 

VCC

 

VCC

 

VSS

PEG_TX

 

VSS

 

PEG_TX[

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#[3]

 

 

7]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

DC_TES

 

DC_TES

VSS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T_C71

 

T_C69

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

VSS

 

VID[4]

VSS

 

VCC

 

VSS

 

VCC

VSS

 

VCC

 

VSS

 

VCC

VSS

 

VCC

 

VSS

 

VCC

 

VSS

PEG_TX[

 

PEG_TX[

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3]

 

4]

 

 

 

A

DC_TES

 

DC_TES

DC_TES

 

VSS

 

VSS

 

VID[3]

VID[0]

 

VSS

 

VCC

 

VSS

VCC

 

VSS

 

VCC

 

VSS

VCC

 

VSS

 

VCC

 

ISENSE

VSS

 

PEG_TX

 

VSS

 

 

T_A71

 

T_A69

T_A68

 

 

 

 

 

 

 

 

 

 

 

 

 

#[4]

 

 

 

 

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

323178-003

30

Loading...
+ 109 hidden pages