HIT HA13152, HA13151 Datasheet

HA13151, HA13152

14 W × 4-Channel BTL Power IC

ADE-207-116 1st. Edition

Description

The HA13151/HA13152 are high output and low distortion 4 ch BTL power IC designed for digital car audio.

At 13.2 V to 4 Ω load, this power IC provides output power 14 W with 10% distortion.

Functions

4 ch BTL power amplifiers

Built-in standby circuit

Built-in muting circuit

Built-in protection circuit (surge, T.S.D, and ASO)

Features

Few external parts lead to compact set-area possibility

Popping noise minimized

Low output noise

Built-in high reliability protection circuit

HIT HA13152, HA13151 Datasheet

HA13151, HA13152

Block Diagram

Absolute Maximum Ratings (Ta = 25°C)

Item

Symbol

Rating

Unit

Remarks

2

 

 

 

 

HA13151, HA13152

 

Operating supply voltage

VCC

18

V

 

 

Supply voltage when no signal*1

VCC (DC)

26

V

 

 

 

 

 

 

Peak supply voltage*2

VCC (PEAK)

50

V

 

 

 

 

 

 

Output current*3

IO (PEAK)

3

A

 

 

 

 

 

 

Power dissipation*4

PT

83

W

 

 

 

 

 

 

Junction temperature

Tj

150

°C

 

 

 

 

 

 

Operating temperature

Topr

–30 to +85

°C

 

 

 

 

 

 

Storage temperature

Tstg

–55 to +125

°C

Notes: 1. Tolerance within 30 seconds

2.Tolerance in surge pulse waveform

3.Value per 1 channel

4.Value when attached on the infinite heat sink plate at Ta = 25 °C. The derating carve is as shown in the graph below.

3

HA13151, HA13152

Electrical Characteristics (VCC = 13.2 V, f = 1 kHz, RL = 4 Ω, Rg = 600 Ω, Ta = 25°C)

HA13151

Item

Symbol

Min

Typ

Max

Unit

Test Conditions

Quiescent current

IQ1

270

mA

Vin = 0

 

 

 

 

 

 

 

Output offset voltage

VQ

–300

0

+300

mV

 

 

 

 

 

 

 

 

Gain

GV

30.5

32

33.5

dB

 

 

 

 

 

 

 

 

Gain difference between

GV

–1.5

0

+1.5

dB

 

channels

 

 

 

 

 

 

 

 

 

 

 

 

 

Rated output power

Po

14

W

VCC = 13.2 V

 

 

 

 

 

 

THD = 10%, RL = 4 Ω

Max output power

Pomax

22

W

VCC = 13.7 V

 

 

 

 

 

 

THD = Max, RL = 4 Ω

Total harmonic distortion

T.H.D.

0.05

%

Po = 3 W

 

 

 

 

 

 

 

Output noise voltage

WBN

0.15

mVrms

Rg = 0 Ω

 

 

 

 

 

 

BW = 20 to 20 kHz

 

 

 

 

 

 

 

Ripple rejection

SVR

55

dB

Rg = 600 Ω, f = 120 Hz

Channel cross talk

C.T.

70

dB

Rg = 600 Ω

 

 

 

 

 

 

Vout = 0 dBm

 

 

 

 

 

 

 

Input impedance

Rin

25

kΩ

 

Standby current

IQ2

200

µA

 

 

 

 

 

 

 

 

Standby control voltage

VSTH

3.5

VCC

V

 

(high)

 

 

 

 

 

 

 

 

 

 

 

 

 

Standby control voltage

VSTL

0

1.5

V

 

(low)

 

 

 

 

 

 

 

 

 

 

 

 

 

Muting control voltage

VMH

3.5

VCC

V

 

(high)

 

 

 

 

 

 

 

 

 

 

 

 

 

Muting control voltage

VML

0

1.5

V

 

(low)

 

 

 

 

 

 

 

 

 

 

 

 

 

Muting attenuation

ATTM

70

dB

Vout = 0 dBm

 

 

 

 

 

 

 

4

HA13151, HA13152

HA13152

Item

Symbol

Min

Typ

Max

Unit

Test Conditions

Quiescent current

IQ1

270

mA

Vin = 0

 

 

 

 

 

 

 

Output offset voltage

VQ

–300

0

+300

mV

 

 

 

 

 

 

 

 

Gain

GV

38.5

40

41.5

dB

 

 

 

 

 

 

 

 

Gain difference between

GV

–1.5

0

+1.5

dB

 

channels

 

 

 

 

 

 

 

 

 

 

 

 

 

Rated output power

Po

14

W

VCC = 13.2 V

 

 

 

 

 

 

THD = 10%, RL = 4 Ω

Max output power

Pomax

22

W

VCC = 13.7 V

 

 

 

 

 

 

THD = Max, RL = 4 Ω

Total harmonic distortion

T.H.D.

0.05

%

Po = 3%

 

 

 

 

 

 

 

Output noise voltage

WBN

0.25

mVrms

Rg = 0 Ω

 

 

 

 

 

 

BW = 20 to 20 kHz

 

 

 

 

 

 

 

Ripple rejection

SVR

45

dB

Rg = 600 Ω, f = 120 Hz

Channel cross talk

C.T.

60

dB

Rg = 600 Ω

 

 

 

 

 

 

Vout = 0 dBm

 

 

 

 

 

 

 

Input impedance

Rin

25

kΩ

 

Standby current

IQ2

200

µA

 

 

 

 

 

 

 

 

Standby control voltage

VSTH

3.5

VCC

V

 

(high)

 

 

 

 

 

 

 

 

 

 

 

 

 

Standby control voltage

VSTL

0

1.5

V

 

(low)

 

 

 

 

 

 

 

 

 

 

 

 

 

Muting control voltage

VMH

3.5

VCC

V

 

(high)

 

 

 

 

 

 

 

 

 

 

 

 

 

Muting control voltage

VML

0

1.5

V

 

(low)

 

 

 

 

 

 

 

 

 

 

 

 

 

Muting attenuation

ATTM

60

dB

Vout = 0 dBm

 

 

 

 

 

 

 

5

HA13151, HA13152

Pin Explanation

Pin

 

 

Input

DC

 

No.

Symbol

Functions

Impedance

Voltage

Equivalence Circuit

 

 

 

 

 

 

1

IN1

CH1 INPUT

25 kΩ (Typ)

0 V

 

11

IN2

CH2 INPUT

 

 

13

IN3

CH3 INPUT

 

 

 

 

 

 

 

23

IN4

CH4 INPUT

 

 

 

 

 

 

 

2

STBY

Standby control

90 kΩ

 

 

 

(at Trs. cutoff)

 

3

OUT1 + CH1 OUTPUT

VCC/2

5

OUT1 –

 

 

 

7

OUT2 +

CH2 OUTPUT

 

 

 

 

 

 

 

9

OUT2 –

 

 

 

 

 

 

 

 

15

OUT3 +

CH3 OUTPUT

 

 

 

 

 

 

 

17

OUT3 –

 

 

 

 

 

 

 

 

19

OUT4 +

CH4 OUTPUT

 

 

 

 

 

 

 

21

OUT4 –

 

 

 

 

 

 

 

 

10

MUTE

Muting control

25 kΩ (Typ)

 

 

 

 

 

6

 

 

 

 

 

HA13151, HA13152

 

Pin Explanation (cont)

 

 

 

 

Pin

 

 

Input

DC

 

No.

Symbol

Functions

Impedance

Voltage Equivalence Circuit

 

 

 

 

 

 

 

22

RIPPLE

Bias stability

VCC/2

6

PVCC1

Power of output stage

VCC

18

PVCC2

 

 

 

 

 

 

 

 

 

 

14

INVCC

Power of input stage

VCC

4

CH1 GND

CH1 power GND

 

 

 

 

 

 

8

CH2 GND

CH2 power GND

 

 

 

 

 

 

 

 

 

16

CH3 GND

CH3 power GND

 

 

 

 

 

 

 

 

 

20

CH4 GND

CH4 power GND

 

 

 

 

 

 

 

 

 

12

IN GND

Input signal GND

 

 

 

 

 

 

7

HA13151, HA13152

Point of Application Board Design

1. Notes on Application Board’s Pattern Design

For increasing stability, the connected line of VCC and OUTGND is better to be made wider and lower impedance.

For increasing stability, it is better to place the capacitor between VCC and GND (0.1 µF) close to IC.

For increasing stability, it is better to place C1 to C8 and R1 to R8, which are for stopping oscillation, close to IC.

It is better to place the grounding of resistor (Rg), between input line and ground, close to INGND (Pin 12) because if OUTGND is connected to the line between Rg and INGND, THD will become worse due to current from OUTGND.

Figure 1 Notes on Application Board’s Pattern Design

8

Loading...
+ 16 hidden pages