GSI GS8180Q36D-167I, GS8180Q36D-167, GS8180Q36D-133I, GS8180Q36D-133, GS8180Q18D-200I Datasheet

...
0 (0)

Preliminary

GS8180Q18/36D-200/167/133

165-Bump BGA

Commercial Temp

Industrial Temp

18Mb Σ 2x2B2

SigmaQuad SRAM

133 MHz–200 MHz

1.8 V VDD

1.8 V and 1.5 V I/O

Features

Simultaneous Read and Write SigmaQuad™ Interface

JEDEC-standard pinout and package

Dual Double Data Rate interface

Echo Clock outputs track data output drivers

Byte Write controls sampled at data-in time

Burst of 2 Read and Write

1.8 V +150/–100 mV core power supply

1.5 V or 1.8 V HSTL Interface

Pipelined read operation

Fully coherent read and write pipelines

ZQ mode pin for programmable output drive strength

IEEE 1149.1 JTAG-compliant Boundary Scan

165-bump, 13 mm x 15 mm, 1 mm bump pitch BGA package

Pin-compatible with future 36Mb, 72Mb, and 144Mb devices

 

-200

-167

-133

 

 

 

 

tKHKH

5.0 ns

6.0 ns

7.5 ns

 

 

 

 

tKHQV

2.3 ns

2.5 ns

3.0 ns

 

 

 

 

SigmaRAMFamily Overview

GS8180Q18/36 are built in compliance with the SigmaQuad SRAM pinout standard for Separate I/O synchronous SRAMs. They are 18,874,368-bit (18Mb) SRAMs. These are the first in a family of wide, very low voltage HSTL I/O SRAMs designed to operate at the speeds needed to implement economical high performance networking systems.

SigmaQuad SRAMs are offered in a number of configurations. Some emulate and enhance other synchronous separate I/O SRAMs. A higher performance SDR (Single Data Rate) Burst of 2 version is also offered. The logical differences between the protocols employed by these RAMs hinge mainly on various combinations of address bursting, output data registering, and write cueing. Along with the Common I/O family of SigmaRAMs, the SigmaQuad family of SRAMs allows a user to implement the interface protocol best suited to the task at hand.

Bottom View

165-Bump, 13 mm x 15 mm BGA

1 mm Bump Pitch, 11 x 15 Bump Array JEDEC Std. MO-216, Variation CAB-1

Clocking and Addressing Schemes

A Σ 2x2B2 SigmaQuad SRAM is a synchronous device. It employs two input register clock inputs, K and K. K and K are independent single-ended clock inputs, not differential inputs to a single differential clock input buffer. The device also allows the user to manipulate the output register clock inputs quasi independently with the C and C clock inputs. C and C are also independent single-ended clock inputs, not differential inputs. If the C clocks are tied high, the K clocks are routed internally to fire the output registers instead. Each Σ 2x2B2 SigmaQuad SRAM also supplies Echo Clock outputs, CQ and CQ, that are synchronized with read data output. When used in a source synchronous clocking scheme, these Echo Clock outputs can be used to fire input registers at the data’s destination.

Because Separate I/O Σ 2x2B2 RAMs always transfer data in two packets, A0 is internally set to 0 for the first read or write transfer, and automatically incremented by 1 for the next transfer. Because the LSB is tied off internally, the address field of a Σ 2x2B2 RAM is always one address pin less than the advertised index depth (e.g., the 1M x 18 has a 512K addressable index).

Rev: 2.00f 6/2002

1/29

© 2002, Giga Semiconductor, Inc.

Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.

Preliminary

GS8180Q18/36D-200/167/133

1M x 18 SigmaQuad SRAM — Top View

 

1

 

2

3

4

 

 

5

6

 

 

7

8

 

 

9

10

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCL/SA

NC/SA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCL/SA

 

A

 

CQ

 

W

 

BW1

 

 

K

 

NC

 

 

R

 

SA

CQ

 

(144Mb)

(36Mb)

 

 

 

 

 

 

 

 

(72Mb)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

NC

Q9

D9

 

SA

 

NC

 

 

K

 

 

 

SA

 

NC

NC

Q8

 

 

 

BW0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

NC

NC

D10

 

VSS

 

SA

 

SA

 

SA

 

VSS

 

NC

Q7

D8

D

 

NC

D11

Q10

 

VSS

 

VSS

 

VSS

 

VSS

 

VSS

 

NC

NC

D7

E

 

NC

NC

Q11

 

VDDQ

 

VSS

 

VSS

 

VSS

 

VDDQ

 

NC

D6

Q6

F

 

NC

Q12

D12

 

VDDQ

 

VDD

 

VSS

 

VDD

 

VDDQ

 

NC

NC

Q5

G

 

NC

D13

Q13

 

VDDQ

 

VDD

 

VSS

 

VDD

 

VDDQ

 

NC

NC

D5

H

 

NC

VREF

VDDQ

 

VDDQ

 

VDD

 

VSS

 

VDD

 

VDDQ

 

VDDQ

VREF

ZQ

J

 

NC

NC

D14

 

VDDQ

 

VDD

 

VSS

 

VDD

 

VDDQ

 

NC

Q4

D4

K

 

NC

NC

Q14

 

VDDQ

 

VDD

 

VSS

 

VDD

 

VDDQ

 

NC

D3

Q3

L

 

NC

Q15

D15

 

VDDQ

 

VSS

 

VSS

 

VSS

 

VDDQ

 

NC

NC

Q2

M

 

NC

NC

D16

 

VSS

 

VSS

 

VSS

 

VSS

 

VSS

 

NC

Q1

D2

N

 

NC

D17

Q16

 

VSS

 

SA

 

SA

 

SA

 

VSS

 

NC

NC

D1

P

 

NC

NC

Q17

 

SA

 

SA

 

 

C

 

SA

 

SA

 

NC

D0

Q0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

TDO

TCK

SA

 

SA

 

SA

 

 

 

 

 

SA

 

SA

 

SA

TMS

TDI

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 x 15 Bump BGA—13 x 15 mm2 Body—1 mm Bump Pitch

 

 

 

Notes:

1.Expansion addresses: A3 for 36Mb, A10 for 72Mb, A2 for 144Mb

2.BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.

3.MCL = Must Connect Low

4.It is recommended that H1 be tied low for compatibility with future devices.

Rev: 2.00f 6/2002

2/29

© 2002, Giga Semiconductor, Inc.

Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.

Preliminary

GS8180Q18/36D-200/167/133

512K x 36 SigmaQuad SRAM — Top View

 

1

2

3

4

 

5

6

7

8

 

 

9

10

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCL/SA

NC/SA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC/SA

MCL/SA

 

A

 

 

W

 

BW2

 

 

BW1

 

R

 

CQ

 

(288Mb)

(72Mb)

 

 

 

 

 

 

(36Mb)

(144Mb)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

Q27

Q18

D18

 

SA

 

 

 

K

 

 

 

SA

 

D17

Q17

Q8

BW3

BW0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

D27

Q28

D19

 

VSS

 

SA

 

SA

 

SA

 

VSS

 

D16

Q7

D8

D

D28

D20

Q19

 

VSS

 

VSS

 

VSS

 

VSS

 

VSS

 

Q16

D15

D7

E

Q29

D29

Q20

 

VDDQ

 

VSS

 

VSS

 

VSS

 

VDDQ

 

Q15

D6

Q6

F

Q30

Q21

D21

 

VDDQ

 

VDD

 

VSS

 

VDD

 

VDDQ

 

D14

Q14

Q5

G

D30

D22

Q22

 

VDDQ

 

VDD

 

VSS

 

VDD

 

VDDQ

 

Q13

D13

D5

H

NC

VREF

VDDQ

 

VDDQ

 

VDD

 

VSS

 

VDD

 

VDDQ

 

VDDQ

VREF

ZQ

J

D31

Q31

D23

 

VDDQ

 

VDD

 

VSS

 

VDD

 

VDDQ

 

D12

Q4

D4

K

Q32

D32

Q23

 

VDDQ

 

VDD

 

VSS

 

VDD

 

VDDQ

 

Q12

D3

Q3

L

Q33

Q24

D24

 

VDDQ

 

VSS

 

VSS

 

VSS

 

VDDQ

 

D11

Q11

Q2

M

D33

Q34

D25

 

VSS

 

VSS

 

VSS

 

VSS

 

VSS

 

D10

Q1

D2

N

D34

D26

Q25

 

VSS

 

SA

 

SA

 

SA

 

VSS

 

Q10

D9

D1

P

Q35

D35

Q26

 

SA

 

SA

 

C

 

SA

 

SA

 

Q9

D0

Q0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

TDO

TCK

SA

 

SA

 

SA

 

 

 

SA

 

SA

 

SA

TMS

TDI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 x 15 Bump BGA—13 x 15 mm2 Body—1 mm Bump Pitch

 

 

 

Notes:

1.Expansion addresses: A9 for 36Mb, A3 for 72Mb, A10 for 144Mb, A2 for 288Mb

2.BW0 controls writes to D0:D8. BW1 controls writes to D9:D17.

3.BW2 controls writes to D18:D26. BW3 controls writes to D27:D35.

4.MCL = Must Connect Low

5.It is recommended that H1 be tied low for compatibility with future devices.

Rev: 2.00f 6/2002

3/29

© 2002, Giga Semiconductor, Inc.

Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preliminary

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GS8180Q18/36D-200/167/133

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin Description Table

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Description

Type

 

Comments

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SA

 

Synchronous Address Inputs

Input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NC

 

No Connect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Synchronous Read

Input

 

Active Low

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Synchronous Write

Input

 

Active Low

 

W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Active Low

 

 

 

BW0–BW1

 

Synchronous Byte Writes

Input

 

 

 

 

x18 Version

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Active Low

 

 

 

BW0–BW3

 

Synchronous Byte Writes

Input

 

 

 

 

x36 Version

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

 

Input Clock

Input

 

Active High

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Clock

Input

 

Active Low

 

 

 

 

 

 

K

 

 

 

 

C

 

Output Clock

Input

 

Active High

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output Clock

Input

 

Active Low

 

 

 

 

 

C

 

 

TMS

 

Test Mode Select

Input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDI

 

Test Data Input

Input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TCK

 

Test Clock Input

Input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDO

 

Test Data Output

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VREF

 

HSTL Input Reference Voltage

Input

 

 

 

 

 

 

ZQ

 

Output Impedance Matching Input

Input

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCL

 

Must Connect Low

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CQ

 

Synchronous Echo Clock Output

Output

 

Echoes C or K Clock

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Synchronous Echo Clock-bar Output

Output

 

Echoes

 

or

 

Clock

 

 

 

 

CQ

C

K

 

 

Q0–Q35

 

Synchronous Data Outputs

Output

 

x36 Version

 

 

 

 

 

 

 

 

 

 

 

 

D0–D17

 

Synchronous Data Inputs

Input

 

x18 Version

 

 

 

 

 

 

 

 

 

 

 

 

Q0–Q17

 

Synchronous Data Outputs

Output

 

x18 Version

 

 

 

 

 

 

 

 

 

 

 

 

VDD

 

Power Supply

Supply

 

2.5 V Nominal

 

 

 

VDDQ

 

Isolated Output Buffer Supply

Supply

 

1.5 V Nominal

 

 

 

VSS

 

Power Supply: Ground

Supply

 

 

 

Note: NC = Not Connected to die or any other pin

Background

Separate I/O SRAMs, from a system architecture point of view, are attractive in applications where alternating reads and writes are needed. Therefore, the SigmaQuad SRAM interface and truth table are optimized for alternating reads and writes. Separate I/O SRAMs are unpopular in applications where multiple reads or multiple writes are needed because burst read or write transfers from Separate I/O SRAMs can cut the RAM’s bandwidth in half.

Rev: 2.00f 6/2002

4/29

© 2002, Giga Semiconductor, Inc.

Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.

Preliminary

GS8180Q18/36D-200/167/133

A SigmaQuad SRAM can begin an alternating sequence of reads and writes with either a read or a write. In order for any separate I/O SRAM that shares a common address between its two ports to keep both ports running all the time, the RAM must implement some sort of burst transfer protocol. The burst must be at least long enough to cover the time the opposite port is receiving instructions on what to do next. The rate at which a RAM can accept a new random address is the most fundamental performance metric for the RAM. Each of the three SigmaQuad SRAMs support similar address rates because random address rate is determined by the internal performance of the RAM and they are all based on the same internal circuits. Differences between the truth tables of the different SigmaQuad SRAMs, or any other Separate I/O SRAMs, follow from differences in how the RAM’s interface is contrived to interact with the rest of the system. Each mode of operation has its own advantages and disadvantages. The user should consider the nature of the work to be done by the RAM to evaluate which version is best suited to the application at hand.

Alternating Read-Write Operations

SigmaQuad SRAMs follow a few simple rules of operation.

-Read or Write commands issued on one port are never allowed to interrupt an operation in progress on the other port.

-Read or Write data transfers in progress may not be interrupted and re-started.

-R and W high always deselects the RAM but does not disable the CQ or CQ output pins.

-All address, data, and control inputs are sampled on clock edges.

In order to enforce these rules, each RAM combines present state information with command inputs. See the Truth Table for details.

Rev: 2.00f 6/2002

5/29

© 2002, Giga Semiconductor, Inc.

Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.

Preliminary

GS8180Q18/36D-200/167/133

Σ 2x2B2 SigmaQuad SRAM DDR Read

The read port samples the status of the Address Input and R pins at each rising edge of K. A low on the Read Enable-bar pin, R, begins a read cycle. Data can be clocked out one cycle later and again one half cycle after that. A high on the Read Enable-bar pin, R, begins a read port deselect cycle.

Σ 2x2B2 Double Data Rate SigmaQuad SRAM Read First

Dwg Rev. G

No Op

No Op

Read

Write

Read

Write

Read

Write

K

 

 

 

 

 

 

 

 

/K

 

 

 

 

 

 

 

 

Address

XX

XX

B

C

D

E

F

G

/R

 

 

 

 

 

 

 

 

/W

 

 

 

 

 

 

 

 

/BWx

 

 

 

 

 

 

 

 

 

 

 

DC0

DC1

DE0

DE1

DG0

DG1

D

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

/C

 

 

 

 

 

 

 

 

Q

 

 

 

 

 

 

QB0

QB1

CQ

 

 

 

 

 

 

 

 

/CQ

 

 

 

 

 

 

 

 

Rev: 2.00f 6/2002

6/29

© 2002, Giga Semiconductor, Inc.

Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.

GSI GS8180Q36D-167I, GS8180Q36D-167, GS8180Q36D-133I, GS8180Q36D-133, GS8180Q18D-200I Datasheet

Preliminary

GS8180Q18/36D-200/167/133

Σ 2x2B2 SigmaQuad SRAM DDR Write

The write port samples the status of the W pin at each rising edge of K and the Address Input pins on the following rising edge of K. A low on the Write Enable-bar pin, W, begins a write cycle. The first of the data-in pairs associated with the write command is clocked in with the same rising edge of K used to capture the write command. The second of the two data in transfers is captured on the rising edge of K along with the write address. A high on W causes a write port deselect cycle.

Σ 2x2B2 Double Data Rate SigmaQuad SRAM Write First

Dwg Rev. G

No Op

Write

Read

Write

Read

Write

Read

Write

K

 

 

 

 

 

 

 

 

/K

 

 

 

 

 

 

 

 

Address

XX

B

C

D

E

F

G

H

/R

 

 

 

 

 

 

 

 

/W

 

 

 

 

 

 

 

 

/BWx

 

 

 

 

 

 

 

 

 

DB0

DB1

DD0

DD1

DF0

DF1

DH0

DH1

D

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

/C

 

 

 

 

 

 

 

 

Q

 

 

 

 

 

 

QC0

QC1

CQ

 

 

 

 

 

 

 

 

/CQ

 

 

 

 

 

 

 

 

Rev: 2.00f 6/2002

7/29

© 2002, Giga Semiconductor, Inc.

Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.

Preliminary

GS8180Q18/36D-200/167/133

Special Functions

Byte Write Control

Byte Write Enable pins are sampled at the same time that Data In is sampled. A high on the Byte Write Enable pin associated with a particular byte (e.g., BW0 controls D0–D8 inputs) will inhibit the storage of that particular byte, leaving whatever data may be stored at the current address at that byte location undisturbed. Any or all of the Byte Write Enable pins may be driven high or low during the data in sample times in a write sequence.

Each write enable command and write address loaded into the RAM provides the base address for a 2 beat data transfer. The x18 version of the RAM, for example, may write 36 bits in association with each address loaded. Any 9-bit byte may be masked in any write sequence.

Example x18 RAM Write Sequence using Byte Write Enables

Data In Sample

 

 

 

 

 

 

 

 

BW0

BW1

D0–D8

D9–D17

Time

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beat 1

 

0

 

1

 

Data In

Don’t Care

 

 

 

 

 

 

 

 

Beat 2

 

1

 

0

 

Don’t Care

Data In

 

 

 

 

 

 

 

 

 

Resulting Write Operation

Byte 1

Byte 2

Byte 3

Byte 4

D0–D8

D9–D17

D0–D8

D9–D17

 

 

 

 

Written

Unchanged

Unchanged

Written

 

 

 

 

Output Register Control

SigmaQuad SRAMs offer two mechanisms for controlling the output data registers. Typically, control is handled by the Output Register Clock inputs, C and C. The Output Register Clock inputs can be used to make small phase adjustments in the firing of the output registers by allowing the user to delay driving data out as much as a few nanoseconds beyond the next rising edges of the K and K clocks. If the C and C clock inputs are tied high, the RAM reverts to K and K control of the outputs, allowing the RAM to function as a conventional pipelined read SRAM.

Echo Clock

SigmaQuad SRAMs feature Echo Clock outputs, CQ and CQ, that track the performance of the output drivers. The Echo Clocks are delayed copies of the Output Register clocks, C and C or K and K (if the C and C clock inputs are tied high). Echo Clocks are designed to track changes in output driver delays due to variance in die temperature and supply voltage. The Echo Clocks are designed to fire with the rest of the data output drivers. SigmaQuad SRAMs provide both in-phase, or true, Echo Clock output, CQ and inverted Echo Clock output CQ.

Echo Clocks are always active. Neither inhibiting reads via holding R high, nor deselection of the RAM via holding R and W high will deactivate the Echo Clocks.

Rev: 2.00f 6/2002

8/29

© 2002, Giga Semiconductor, Inc.

Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.

Preliminary

GS8180Q18/36D-200/167/133

Example Four Bank Depth Expansion Schematic

R3

W3

R2

W2

R1

W1

R0

W0

A0–An

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D1–Dn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bank 0

 

 

 

 

 

 

 

 

 

Bank 1

 

 

 

 

 

 

 

 

Bank 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

W

 

 

 

 

 

 

 

 

 

 

W

 

 

 

 

 

 

 

 

 

W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

R

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

 

 

 

 

 

 

 

 

 

 

K

 

 

 

 

 

 

 

 

 

 

K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

Q

 

 

 

 

 

 

 

 

 

D

Q

 

 

 

 

 

 

 

 

 

D

Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

C

CQ

 

 

 

 

 

 

 

 

 

C

CQ

 

 

 

 

 

 

 

 

 

C

CQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CQ0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CQ1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CQ2

CQ3

Q1–Qn

Bank 3

A

W

R

K

D Q C CQ

Note: For simplicity BWn, K, C and CQ are not shown.

Rev: 2.00f 6/2002

9/29

© 2002, Giga Semiconductor, Inc.

Specifications cited are design targets and are subject to change without notice. For latest documentation contact your GSI representative.

Loading...
+ 20 hidden pages