Friedrich WY12A33G-A, WY09A33F-A, WE15A33B, WE12A33E-B, WE09A33E-C Service Manual

...
0 (0)

Service & Parts Manual

WallMaster® Thru-the-Wall

2003

WS07A10B

WS10A10B

WS12A10E-B

WS12A10E-C

WS12A30E-B

WS15A30B

WE09A33E-C

WE12A33E-B

WE15A33B

WY09A33F-A

WY12A33G-A

WM0100 (5-03)

TABLE OF CONTENTS

 

 

PAGE

GENERAL

 

Friedrich WallMaster Model Code........................................................................................................

4

Application and Sizing .........................................................................................................................

4

Instructions For Using Cooling Load Estimate Form ............................................................................

5

Cooling Load Estimate Form ...............................................................................................................

6

Heat Load Form ..................................................................................................................................

7

Heating Load From Friedrich Unit Heat Pumps ...................................................................................

8

SPECIFICATIONS/PERFORMANCE DATA

 

Specifications "WS" Models ................................................................................................................

9

Performance Data "WS" Models ..........................................................................................................

9

Specifications "WE" and "WY" Models ................................................................................................

10

Performance Data Heating "WE" Models .............................................................................................

11

Performance Data Heating "WY" Models .............................................................................................

12

COMPONENTS OPERATION/TESTING

 

Compressors .......................................................................................................................................

13

Thermal Overload (External) ...............................................................................................................

13

Thermal Overload (Internal) ................................................................................................................

14

Fan Motor ............................................................................................................................................

14

System Control Switch ("WS" Models) ................................................................................................

15

System Control Switch ("WE" & "WY" Models) ....................................................................................

15

Run, Capacitor ....................................................................................................................................

16

Thermostat ("WS" Models) ..................................................................................................................

17

Thermostat ("WE" & "WY" Models) .....................................................................................................

17

Thermostat Adjustment .......................................................................................................................

18

Heating Element ("WE" & "WY" Models) .............................................................................................

18

Defrost Control ("WY" Models Only) ....................................................................................................

18

Defrost Bulb Location (All "WY" Models) .............................................................................................

19

Solenoid Coil ("WY" Models Only) .......................................................................................................

19

Check Valve .........................................................................................................................................

19

Drain Pan Valve ...................................................................................................................................

20

Reversing Valve ("WY" Models Only) ..................................................................................................

20

Sealed Refrigeration System Repairs ..................................................................................................

21

Hermetic Component Replacement ....................................................................................................

21

Special Procedure in the case of Motor Compressor Burn-Out ...........................................................

22

Rotary Compressor Special Troubleshooting & Service ......................................................................

22

Refrigerant Charge ..............................................................................................................................

22

TABLE OF CONTENTS (Cont.)

 

PAGE

TROUBLESHOOTING

 

Troubleshooting Touch Test Chart ........................................................................................................

23

Troubleshooting (Cooling) ....................................................................................................................

24

Troubleshooting (Heating) ...................................................................................................................

28

Troubleshooting (Cooling/Electric) .......................................................................................................

30

WIRING DIAGRAMS

 

WS07A10E-D ......................................................................................................................................

34

WS09A10 ............................................................................................................................................

34

WS12A10 ............................................................................................................................................

34

WS09A30 ............................................................................................................................................

34

WS12A30 ............................................................................................................................................

34

WS13A30 ............................................................................................................................................

34

WE09A33 ............................................................................................................................................

35

WE12A33 ............................................................................................................................................

35

WE13A33 ............................................................................................................................................

35

WY09A33 ............................................................................................................................................

36

WY12A33 ............................................................................................................................................

36

PARTS LIST

 

"WS" Series Parts List .........................................................................................................................

38

"WE" & "WY" Series Parts List ............................................................................................................

44

WallMaster Sleeve Parts List ...............................................................................................................

47

4

FRIEDRICH ROOM MODEL NUMBER CODE

W S 07 A 1 0 B

1st DIGIT - FUNCTION

W = Thru-The-Wall, WallMaster Series

2nd DIGIT - TYPE

S = Straight Cool

E = Electric Heat

Y = Heat Pump

3rd & 4th DIGITS - APPROXIMATE BTU/HR (Cooling)

Heating BTU/HR capacity listed in Specifications/Performance Data Section

5th DIGIT - ALPHABETICAL MODIFIER

6th DIGIT - VOLTAGE

1 = 115 Volts

2 = 230 Volts

3 = 230-208 Volts

7th DIGIT

0 = Straight Cool & Heat Pump Models ELECTRIC HEAT MODELS

1 = 1 KW Heat Strip, Nominal

3 = 3 KW Heat Strip, Nominal

4 = 4 KW Heat Strip, Nominal

5 = 5 KW Heat Strip, Nominal

8 = 8 KW Heat Strip, Nominal

8th DIGIT

Major Change

APPLICATION AND SIZING

In the application and sizing of room air conditioners for cooling, it is most important to give full consideration to all factors which may contribute to the heat loss or gain of the space to be conditioned. It is therefore necessary to make a survey of the space to be conditioned and calculate the load requirements before a selection of the size of the equipment needed can be made.

The load requirement may be determined very easily by simply using the standard “AHAM” Load Calculating Form, on Page 6. This form is very easy to use and is self explanatory. It is necessary only to insert the proper measurements on the lines provided and multiply by the given factors, then add the result for the total load requirements.

Cooling load requirements are generally based on the cooling load for comfortable air conditioning which does not require specific conditions of inside temperature and humidity. The load calculation form is based on outside design temperature of 95° FDB and 75° FWB. It can be used for areas in the Continental United States having other outside design temperatures by applying a correction factor for the particular locality as determined from the map shown on Page 6.

When sizing a TwinTemp unit for cooling and heating, we must remember that the heating capacity of any given unit varies directly with the outdoor ambient temperature. Also, we must keep in mind the average low temperatures which might be experienced in the locality where the unit is to be installed. Therefore, when sizing a TwinTemp unit, both cooling and heating requirements must be calculated. Do not oversize, or undersize, one phase of the unit’s capacity at the expense of the other. In those cases where the unit will provide satisfactory cooling at all times but will be inadequate for those few times that the outdoor temperature is below the maximum low for the unit, additional auxiliary heating facilities must be provided to insure that adequate heat is available at all times.

5

INSTRUCTIONS FOR USING COOLING LOAD ESTIMATE

FORM FOR ROOM AIR CONDITIONERS

(AHAM PUB. NO. RAC-1)

A.This cooling load estimate form is suitable for estimating the cooling load for comfort air conditioning installations which do not require specific conditions of inside temperature and humidity.

B.The form is based on an outside design temperature of 95°F dry bulb and 75°F wet bulb. It can be used for areas in the continental United States having other outside design temperatures by applying a correction factor for the particular locality as determined from the map.

C.The form includes "day" factors for calculating cooling loads in rooms where daytime comfort is desired (such as living rooms, offices, etc.)

D.The numbers of the following paragraphs refer to the corresponding numbered item on the form:

1.Multiply the square feet of window area for each exposure by the applicable factor. The window area is the area of the wall opening in which the window is installed. For windows shaded by inside shades or venetian blinds, use the factor for "Inside Shades." For windows shaded by outside awnings or by both outside awnings and inside shades (or venetian blinds), use the factor for "Outside Awnings." "Single Glass" includes all types of single thickness windows, and "Double Glass" includes sealed airspace types, storm windows, and glass block. Only one number should be entered in the right hand column for Item 1, and this number should represent only the exposure with the largest load.

2.Multiply the total square feet of all windows in the room by the applicable factor.

3a. Multiply the total length (linear feet) of all walls exposed to the outside by the applicable factor. Doors should be considered as being part of the wall. Outside walls facing due north should be calculated separately from outside walls facing other directions. Walls which are permanently shaded by adjacent structures should be considered “North Exposure.” Do not consider trees and shrubbery as providing permanent shading. An uninsulated frame wall or a masonry wall 8 inches or less in thickness is considered "Light Construction." An insulated wall or masonry wall over 8 inches in thickness is considered "Heavy Construction."

3b. Multiply the total length (linear feet) of all inside walls between the space to be conditioned and any unconditioned spaces by the given factor. Do not include inside walls which separate other air conditioned rooms.

4.Multiply the total square feet of roof or ceiling area by the factor given for the type of construction most nearly describing the particular application (use one line only.)

5.Multiply the total square feet of floor area by the factor given. Disregard this item if the floor is directly on the ground or over a basement.

6.Multiply the number of people who normally occupy the space to be air conditioned by the factor given. Use a minimum of 2 people.

7.Determine the total number of watts for light and electrical equipment, except the air conditioner itself, that will be in use when the room air conditioning is operating. Multiply the total wattage by the factor given.

8.Multiply the total width (linear feet) of any doors or arches which are continually open to an unconditioned space by the applicable factor.

NOTE: Where the width of the doors or arches is more than 5 feet, the actual load may exceed the calculated value. In such cases, both adjoining rooms should be considered as a single large room, and the room air conditioner unit or units should be selected according to a calculation made on this new basis.

9.Total the loads estimated for the foregoing 8 items.

10.Multiply the subtotal obtained in item 9 by the proper correction factor, selected from the map, for the particular locality. The result is the total estimated design cooling load in BTU per hour.

E.For best results, a room air conditioner unit or units having a cooling capacity rating (determined in accordance with the NEMA Standards Publication for Room Air Conditioners, CN 1-1960) as close as possible to the estimated load should be selected. In general, a greatly oversized unit which would operate intermittently will be much less satisfactory than one which is slightly undersized and which would operate more nearly continuously.

F.Intermittent loads such as kitchen and laundry equipment are not included in this form.

6

COOLING LOAD ESTIMATE FORM

HEAT GAIN FROM

 

QUANTITY

FACTORS

 

 

BTU/Hr.

 

 

 

 

 

 

 

 

 

 

 

 

DAY

 

(Quantity x Factor)

 

 

 

 

 

No

Inside

Outside

(Area

 

1.

WINDOWS: Heat gain from the sun.

 

____sq. ft.

Shades*

Shades*

Awnings*

X Factor)

 

 

Northeast *

These factors are for single glass

 

60

25

20 ____

Use

____

 

 

____sq. ft.

80

25 ____

only

____

 

East

only. For glass block, multiply the

 

40

 

Southeast

 

____sq. ft.

75

30

20 ____

the

____

 

above factors by 0.5; for double glass

 

South

____sq. ft.

75

35

20 ____

largest

____

 

or storm windows, multiply the above

 

Southwest

____sq. ft.

110

45

30 ____

load.

____

 

factors by 0.8.

 

 

West

 

 

____sq. ft.

150

65

45 ____

Use

____

 

Northwest

 

 

____sq. ft.

120

50

35 ____

only

____

 

North

 

 

____sq. ft.

0

0

0 ____

one.

____

 

 

 

 

 

 

 

 

 

 

2.

WINDOWS: Heat by conduction

 

 

 

 

 

 

 

 

 

(Total of all windows.)

 

____sq. ft.

 

14

 

 

 

_____

 

Single glass

 

 

 

 

 

 

 

Double glass or glass block

 

____sq. ft.

 

7

 

 

 

_____

 

 

 

 

 

 

 

3.

WALLS: (Based on linear feet of wall)

 

Light Construction

Heavy Construction

 

 

a. Outside walls

 

____ ft.

30

 

20

 

_____

 

North Exposure

 

 

 

 

Other than North exposure

 

____ ft.

60

 

30

 

_____

 

b. Inside Walls (between conditioned and

 

____sq. ft.

 

30

 

 

 

_____

 

unconditioned spaces only.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.

ROOF OR CEILING: (Use one only)

 

____sq. ft.

 

19

 

 

 

_____

 

a. Roof, uninsulated

 

 

 

 

 

 

b. Roof, 1 inch or more insulation

 

____sq. ft.

 

8

 

 

 

_____

 

c. Ceiling, occupied space above

 

____sq. ft.

 

3

 

 

 

_____

 

d. Ceiling, insulated, with attic space above

 

____sq. ft.

 

5

 

 

 

_____

 

e. Ceiling, uninsulated, with attic space above

 

____sq. ft.

 

12

 

 

 

_____

 

 

 

 

 

 

 

 

 

5.

Floor: (Disregard if floor is directly on ground or over

____sq. ft.

 

3

 

 

 

_____

 

a basement.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.

NUMBER OF PEOPLE

 

____

 

600

 

 

 

_____

 

 

 

 

 

 

 

 

 

7.

LIGHTS AND ELECTRICAL EQUIPMENT IN USE

____watts

 

3

 

 

 

_____

 

 

 

 

 

 

 

 

 

8.

DOORS AND ARCHES CONTINUOUSLY OPENED

____ft.

 

300

 

 

 

_____

 

TO UNCONDITIONED SPACE: (TOTAL LINEAR

 

 

 

 

 

 

FEET OF WIDTH.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.

SUBTOTAL

 

 

*****

 

*****

 

 

 

_____

 

 

 

 

 

 

 

 

10. TOTAL COOLING LOAD (BTU per hour to be used

 

 

 

 

 

 

 

 

for selection of room air conditioner(s).)

____ Total in Item 9 X ____(Factor from Map) =

_______

 

 

 

 

 

 

 

 

 

 

 

7

HEAT LOAD FORM

The heat load form, Page 8, may be used by servicing personnel to determine the heat loss of a conditioned space and the ambient winter design temperatures in which the unit will heat the calculated space.

The upper half of the form is for computing the heat loss of the space to be conditioned. It is necessary only to insert the proper measurements on the lines provided and multiply by the given factors, then add this result for the total heat loss in BTU/Hr./°F.

The BTU/Hr. per °F temperature difference is the 70°F inside winter designed temperature minus the lowest outdoor ambient winter temperature of the area where the unit is installed. This temperature difference is used as the multiplier when calculating the heat loss.

The graph shows the following:

Left Hand Scale

Unit capacity BTU/Hr. or heat loss

 

BTU/Hr.

Bottom Scale

Outdoor ambient temperature,

 

base point.

Heat Pump Model

BTU/Hr. capacity heat pump will

 

deliver at outdoor temperatures.

Balance Point

Maximum BTU/Hr. heat pump will

 

deliver at indicated ambient

 

temperature.

Below is an example using the heat load form:

A space to be conditioned is part of a house geographically located in an area where the lowest outdoor ambient winter temperature is 40°F. The calculated heat loss is 184 BTU/Hr./°F.

Subtract 40°F (lowest outdoor ambient temperature for the geographical location) from 70°F (inside design temperature of the unit) for a difference of 30°F. Multiply 184 by 30 for a 5500 BTU/Hr. total heat loss for the calculated space.

On the graph, plot the base point (70°) and a point on the 40°F line where it intersects with the 5500 BTU/Hr. line on the left scale. Draw a straight line from the base point 70 through the point plotted at 40°F. This is the total heat loss line.

Knowing that we have a 5500 BTU/Hr. heat loss, and we expect that our heat pump will maintain a 70°F inside temperature at 40°F outdoor ambient, we plot the selected unit capacity BTU/Hr. of the unit between 35° and 60° on the graph and draw a straight line between these points. Where the total heat loss line and the unit capacity line intersect, read down to the outdoor ambient temperature scale and find that this unit will deliver the required BTU/ Hr. capacity to approximately 30°F.

8

HEATING LOAD FORM

FRIEDRICH ROOM UNIT HEAT PUMPS

 

BTU/HR PER

WALLS: (Linear Feet)

°F TEMP. DIFFERENCE

2" Insulation

Lin. Ft. x 1.6

Average

Lin. Ft. x 2.6

WINDOWS & DOORS (Area, sq. ft.)

 

Single Glass:

Sq. Ft. x 1.13

Double Glass:

Sq. Ft. x 0.61

INFILTRATION - WINDOWS & DOORS: AVG.

Lin. Ft. x 1.0

Loose

Lin. Ft. x 2.0

CEILING: (Area, Sq. Ft.)

 

Insulated (6")

Sq. Ft. x 0.07

Insulated (2")

Sq. Ft. x 0.10

Built-up Roof (2" insulated

Sq. Ft. x 0.10

Built-up Roof (1/2" insulated)

Sq. Ft. x 0.20

No Insulation

Sq. Ft. x 0.33

FLOOR: (Area, Sq. Ft.)

 

Above Vented Crawl space

 

Insulated (1:)

Sq. Ft. x 0.20

Uninsulated

Sq. Ft. x 0.50

* Slab on Ground

Lin. Ft. x 1.70

1" Perimeter insulation

Lin. Ft. x 1.00

* Based on Linear Feet of outside wall

TOTAL HEAT LOSS PER °F BTU/HR/°F

Multiply total BTU/HR/°F X 30 and plot on the graph below at 40°F. Draw a straight line from the 70 base point thru the point plotted at 40°F. The intersection of this heat loss line with the unit capacity line represents the winter design heating load.

9

SPECIFICATIONS

 

WS07A10D

WS10A10B

 

WS12A10E-B

 

WS12A30EB

 

WS15A30B

 

BTUH

 

 

7400

 

10000

 

 

11500

 

12000

 

14700

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11800

 

14500

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E.E.R.

 

 

9.5

 

9.2

 

 

 

9.2

 

9.0

 

8.7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.0

 

8.5

 

Volts

 

 

115

 

115

 

 

 

115

 

230

 

230

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

208

 

208

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amperes

 

 

7.0

 

9.8

 

 

 

11.5

 

6.0

 

7.7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5

 

8.5

 

Total Watts

 

 

773

 

1081

 

 

1280

 

1333

 

1693

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1310

 

1686

 

Hertz

 

 

60

 

60

 

 

 

60

 

60

 

60

 

Fuse/Breaker Size

 

15

 

15

 

 

 

15

 

15

 

15

 

Fan RPM

 

 

1145

 

1140

 

 

1275

 

1275

 

1275

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evaporator Air CFM

 

260

 

260

 

 

 

290

 

290

 

250

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fresh Air CFM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exhaust Air

 

 

 

Yes

Yes

 

 

Yes

 

 

Yes

 

Yes

 

Dehumidification Pts/Hr

 

1.4

 

2.1

 

 

 

2.9

 

2.9

 

4.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Width

 

 

27"

 

27"

 

 

 

27"

 

27"

 

27"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Height

 

 

16-3/4"

 

16-3/4"

 

 

16-3/4"

 

16-3/4"

 

16-3/4"

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depth

 

 

16-3/4"

 

16-3/4"

 

 

16-3/4"

 

16-3/4"

 

16-3/4"

 

Minimum Ext. Into Room

 

7-1/2"

 

7-1/2"

 

 

7-1/2"

 

7-1/2"

 

7-1/2"

 

Minimum Ext. To Outside

 

9/16"

 

9/16"

 

 

9/16"

 

9/16"

 

9/16"

 

Net Weight

 

 

75

 

85

 

 

 

94

 

91

 

101

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shipping Weight

 

 

93

 

103

 

 

 

112

 

109

 

119

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PERFORMANCE

 

EVAPORATOR AIR

 

OPERATING

 

ELECTRICAL

R-22

COMP.

 

TEMP. °F.

 

PRESSURES

 

 

RATINGS

REFRIG.

OIL

DATA*

 

 

 

 

 

DISCHARGE

 

TEMP.

 

SUCTION

DISCHARGE

AMPS

 

LOCKED

CHARGE IN

CHARGE IN

Cooling

 

 

 

 

 

AIR

 

DROP °F.

 

 

 

 

 

 

 

 

 

ROTOR AMPS

OUNCES

FLUID OZ.

 

 

 

 

 

 

 

 

 

 

 

 

WS07A10D

 

59.5

 

 

19.5

 

82

 

280

 

7.0

 

 

32.0

 

19

11.8

WS09A10D

 

58.0

 

 

22.0

 

82

 

295

 

9.8

 

 

44.0

 

20

11.8

WS12A10D

 

55.0

 

 

25.0

 

76

 

295

 

11.5

 

 

54.0

 

36

11.8

WS12A30D

 

55.0

 

 

25.0

 

76

 

295

 

6.0

 

 

26.3

 

36

11.8

 

 

 

 

 

 

 

 

 

 

 

 

6.5

 

 

 

 

 

 

WS13A30D

 

47.1

 

 

32.9

 

73

 

308

 

7.7

 

 

33.0

 

38

11.8

 

 

 

 

 

 

 

 

 

 

 

 

8.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Rating Conditions:

80°F. Room Air Temperature and 50% Relative Humidity with

 

 

 

 

 

 

 

 

95°F. Outside Air Temperature at 40% Relative Humidity.

 

 

 

 

 

 

10

SPECIFICATIONS

 

WE07A33EC

 

WE12A33EB

 

WE15A33B

 

WY09A33FA

 

WY12A33GA

BTUH (Cooling)

 

 

 

9000

 

 

12000

 

14700

 

 

9000

 

 

11500

 

 

 

 

 

8900

 

 

11800

 

14500

 

 

8900

 

 

11000

BTUH (Heating)

 

 

 

7000

 

 

11000

 

11000

 

 

7000

 

 

10500

 

 

 

 

 

7000

 

 

9100

 

9100

 

 

 

7000

 

 

10300

E.E.R. (Cooling)

 

 

 

8.7

 

 

 

9.0

 

8.7

 

 

 

8.6

 

 

 

9.0

 

 

 

 

 

 

 

 

 

 

9.0

 

8.6

 

 

 

9.3

 

 

 

9.0

E.E.R (Heating)

 

 

 

8.7

 

 

 

 

 

 

 

 

 

 

8.7

 

 

 

9.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.7

 

 

 

9.0

Volts

 

 

 

230

 

 

 

230

 

230

 

 

 

230

 

 

 

230

 

 

 

 

 

208

 

 

 

208

 

208

 

 

 

208

 

 

 

208

Amperes (Cooling)

 

 

4.3

 

 

 

6.0

 

7.7

 

 

 

3.6

 

 

 

5.8

 

 

 

 

 

4.6

 

 

 

6.5

 

8.5

 

 

 

4.0

 

 

 

6.2

Amperes (Heating)

 

 

16.0

 

 

16.0

 

16.93

 

 

16.7

 

 

16.0

 

 

 

 

 

14.7

 

 

14.7

 

16.86

 

 

14.7

 

 

14.7

Total Watts (Cooling)

 

973

 

 

1333

 

1693

 

 

 

973

 

 

 

1307

 

 

 

 

 

947

 

 

1310

 

1686

 

 

 

947

 

 

 

1273

Total Watts (Heating)

 

805

 

 

3550

 

3550

 

 

 

805

 

 

 

1167

 

 

 

 

 

805

 

 

2950

 

2950

 

 

 

805

 

 

 

1144

Hertz

 

 

 

60

 

 

 

60

 

60

 

 

 

60

 

 

 

60

Fuse/Breaker Size

 

 

20

 

 

 

20

 

20

 

 

 

20

 

 

 

20

Fan RPM

 

 

 

1140

 

 

1275

 

1275

 

 

 

1140

 

 

1275

Evaporator Air CFM

 

260

 

 

 

290

 

250

 

 

 

270

 

 

 

290

Fresh Air CFM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exhaust Air CFM

 

 

 

Yes

 

 

Yes

 

Yes

 

 

Yes

 

 

 

 

Yes

Dehumidification Pts/Hr

 

2.1

 

 

 

2.9

 

4.0

 

 

 

2.1

 

 

 

2.9

Width

 

 

 

27"

 

 

 

27"

 

27"

 

 

 

27"

 

 

 

27"

Height

 

 

 

16 3/4"

 

 

16 3/4"

 

16 3/4"

 

 

16 3/4"

 

 

16 3/4"

Depth

 

 

 

16 3/4"

 

 

16 3/4"

 

16 3/4"

 

 

16 3/4"

 

 

16 3/4"

Minimum Ext. Into Room

 

7 1/2"

 

 

7 1/2"

 

7 1/2"

 

 

7 1/2"

 

 

7 1/2"

Minimum Ext. To Outside

 

9/16"

 

 

9/16"

 

9/16"

 

 

 

9/16"

 

 

9/16"

Net Weight

 

 

 

84

 

 

 

92

 

102

 

 

 

86

 

 

 

94

Shipping Weight

 

 

 

103

 

 

 

111

 

121

 

 

 

107

 

 

 

116

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PERFORMANCE

 

 

EVAPORATOR AIR

 

 

OPERATING

ELECTRICAL

 

 

R-22

 

 

COMP.

 

 

TEMP. °F.

 

 

PRESSURES

RATINGS

 

 

REFRIG.

 

OIL

DATA*

 

 

 

 

 

 

 

 

DISCHARGE

 

TEMP.

 

SUCTION

 

DISCHARGE

AMPS

 

LOCKED

 

CHARGE IN

 

CHARGE IN

Cooling

 

 

 

 

 

 

 

 

 

AIR

 

DROP °F.

 

 

 

 

 

 

 

ROTOR AMPS

 

OUNCES

 

FLUID OZ.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WE09A33EC

 

 

58.0

 

 

22.0

 

80

 

295

 

4.3

 

20.0

 

 

20

 

 

 

11.8

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6

 

 

 

 

 

 

 

 

 

 

WE12A33EB

 

 

55.0

 

 

25.0

 

76

 

295

 

6.0

 

26.3

 

 

36

 

 

 

11.8

 

 

 

 

 

 

 

 

 

 

 

 

 

6.5

 

 

 

 

 

 

 

 

 

 

WE15A33B

 

 

47.1

 

 

32.9

 

73

 

308

 

7.7

 

33.0

 

 

38

 

 

 

11.8

 

 

 

 

 

 

 

 

 

 

 

 

 

8.5

 

 

 

 

 

 

 

 

 

 

WY09A33FA

 

 

58.0

 

 

22.0

 

80

 

295

 

3.6

 

20.0

 

 

26

 

 

 

11.8

 

 

 

 

 

 

 

 

 

 

 

 

 

5.8

 

 

 

 

 

 

 

 

 

 

WY12A33GA

 

 

55.0

 

 

25.0

 

76

 

295

 

5.8

 

26.3

 

 

43

 

 

 

11.8

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2

 

 

 

 

 

 

 

 

 

 

*Rating Conditions:

80°F. Room Air Temperature and 50% Relative Humidity with

 

 

95°F. Outside Air Temperature at 40% Relative Humidity.

 

 

 

 

 

 

 

PERFORMANCE

 

VOLTS

BTUH

CFM

HEAT RISE

DATA (Heating)

 

 

 

HIGH SPEED

 

WE09A33EC

 

230

11000

260

39.0

 

 

208

9100

 

 

WE12A33E-B

 

230

11000

290

35.0

 

 

208

9100

 

 

WE15A33GA

 

230

11000

250

40.0

 

 

208

9100

 

 

 

 

 

 

 

 

11

PERFORMANCE DATA

*WY09A33FA

*WY12A33GA

(Heating)

 

 

 

 

 

 

 

BTUH

@70°F Inside 62°F Outside

9700

12400

 

 

 

 

 

@70°F Inside 57°F Outside

9300

12000

 

 

 

 

 

@70°F Inside 52°F Outside

8800

11400

 

 

 

** @70°F Inside 47°F Outside

8200/8100

10800/10400

 

 

 

 

 

@70°F Inside 42°F Outside

7600

10000

 

 

 

 

 

@70°F Inside 37°F Outside

6800

9000

 

 

 

 

 

@70°F Inside 35°F Outside

11000/9100

11000/9100

 

 

 

Evaporator Air Temperature Rise

 

 

 

@70°F Inside 62°F Outside

32.00

37.60

 

 

 

 

 

@70°F Inside 57°F Outside

30.75

36.40

 

 

 

 

 

@70°F Inside 52°F Outside

29.10

34.50

 

 

 

** @70°F Inside 47°F Outside

27.10/26.80

32.70/31.50

 

 

 

 

 

@70°F Inside 42°F Outside

25.10

30.30

 

 

 

 

 

@70°F Inside 37°F Outside

22.50

27.30

 

 

 

 

 

@70°F Inside 35°F Outside

36.40/30.10

33.30/27.60

 

 

 

 

AMPS

@70°F Inside 62°F Outside

4.0

5.6

 

@70°F Inside 57°F Outside

3.9

5.5

 

 

 

 

 

@70°F Inside 52°F Outside

3.85

5.4

 

 

 

** @70°F Inside 47°F Outside

3.8/4.1

5.3/5.6

 

 

 

 

 

@70°F Inside 42°F Outside

3.6

5.1

 

 

 

 

 

@70°F Inside 37°F Outside

3.4

4.8

 

 

 

 

 

@70°F Inside 35°F Outside

16.0/14.7

16.0/14.7

 

 

 

 

Watts

@70°F Inside 62°F Outside

880

1280

 

 

 

 

 

@70°F Inside 57°F Outside

870

1260

 

 

 

 

 

@70°F Inside 52°F Outside

860

1220

 

 

 

 

**

@70°F Inside 47°F Outside

835/810

1175/1155

 

 

 

 

 

@70°F Inside 42°F Outside

800

1130

 

 

 

 

 

@70°F Inside 37°F Outside

760

1070

 

 

 

 

 

@70°F Inside 35°F Outside

3550/2950

3550/2950

 

 

 

Suction/Head PSIG

 

 

 

@70°F Inside 62°F Outside

66/315

61/325

 

 

 

 

 

@70°F Inside 57°F Outside

62/285

59/290

 

 

 

 

 

@70°F Inside 52°F Outside

57/285

53/275

 

 

 

** @70°F Inside 47°F Outside

53/265

49/255

 

@70°F Inside 42°F Outside

49/215

45/240

 

 

 

 

 

@70°F Inside 37°F Outside

45/203

41/220

 

 

 

 

 

@70°F Inside 35°F Outside

44/200

40/215

 

 

 

 

*Heating Element comes on at 35°F outside ambient and compressor shuts off.

**AHAM Rating Conditions.

12

COMPONENTS OPERATION & TESTING

WARNING

DISCONNECT ELECTRICAL POWER TO

UNIT BEFORE SERVICING OR TESTING

COMPRESSORS

Compressors are single phase, 115 or 230/208 volt, depending on the model unit. All compressor motors are permanent split capacitor type using only a running capacitor across the start and run terminal.

All compressors are internally spring mounted and externally mounted on rubber isolators.

COMPRESSOR WINDING TEST

Remove compressor terminal box cover and disconnect wires from terminals. Using an ohmmeter, check continuity across the following:

(See Figure 1)

Figure 1: Compressor Winding Test

1.Terminal “C” and “S” - no continuity - open winding - replace compressor.

2.Terminal “C” and “R” - no continuity - open winding - replace compressor.

3.Terminal “R” and “S” - no continuity - open winding - replace compressor.

GROUND TEST

Use an ohmmeter set on its highest scale. Touch one lead to the compressor body (clean point of contact as a good connection is a must) and the other probe in turn to each compressor terminal (see Figure 2.) If a reading is obtained, the compressor is grounded and must be replaced.

Figure 2: Typical Ground Test

CHECKING COMPRESSOR EFFICIENCY

The reason for compressor inefficiency is normally due to broken or damaged suction and/or discharge valves, reducing the ability of the compressor to pump refrigerant gas.

This condition can be checked as follows:

1.Install a piercing valve on the suction and discharge or liquid process tube.

2.Attach gauges to the high and low sides of the system.

3.Start the system and run a “cooling or heating performance test.”

If test shows:

A.Below normal high side pressure.

B.Above normal low side pressure.

C.Low temperature difference across coil.

The compressor valves are faulty - replace the compressor.

THERMAL OVERLOAD (External)

Some compressors are equipped with an external overload which is located in the compressor terminal box adjacent to the compressor body (see Figure 3.)

13

Friedrich WY12A33G-A, WY09A33F-A, WE15A33B, WE12A33E-B, WE09A33E-C Service Manual

The overload is wired in series with the common motor terminal.The overload senses both major amperage and compressor temperature. High motor temperature or amperage heats the disc causing it to open and break the circuit to the common motor terminal.

Figure 3: External Overload

Heat generated within the compressor shell is usually due to:

1.High amperage.

2.Low refrigerant charge.

3.Frequent recycling.

4.Dirty condenser.

TERMINAL OVERLOAD - TEST

(Compressor - External Type)

1.Remove overload.

2.Allow time for overload to reset before attempting to test.

3.Apply ohmmeter probes to terminals on overload wires. There should be continuity through the overload.

TERMINAL OVERLOAD (Internal)

Some model compressors are equipped with an internal overload. The overload is embedded in the motor windings to sense the winding temperature and/or current draw. The overload is connected in series with the common motor terminal.

Should the internal temperature and/or current draw become excessive, the contacts in the overload will open, turning off the compressor.The overload will automatically reset, but may require several hours before the heat is dissipated.

CHECKING THE INTERNAL OVERLOAD (see Figure 4.)

Figure 4

1.With no power to unit, remove the leads from the compressor terminals.

2.Using an ohmmeter, test continuity between terminals C-S and C-R. If not continuous, the compressor overload is open and the compressor must be replaced.

FAN MOTOR

A single phase permanent split capacitor motor is used to drive the evaporator blower and condenser fan. A selfresetting overload is located inside the motor to protect against high temperature and high amperage conditions.

Although fan motors are lubricated at the factory and sealed, oil ports are provided to lubricate to motor annually after the first year of operation (see Figure 5.) To lubricate (oil), remove the oil plugs on each end of the fan motor and put up to 30 drops of SAE10W30 grade motor oil in each hole, then replace oil plugs.

14

Figure 5: Fan Motor

 

Figure 6: System Control Panel

 

 

 

 

 

 

FAN MOTOR - TEST

1.Determine that capacitor is serviceable.

2.Disconnect fan motor wires from fan speed switch or system switch.

3.Apply “live” testcord probes on black wire and common terminal of capacitor. Motor should run at high speed.

4.Apply “live” test cord probes on red wire and common terminal of capacitor. Motor should run at low speed.

5.Apply “live” test cord probes on each of the remaining wires from the speed switch or system switch to test intermediate speeds.

SYSTEM CONTROL SWITCH ("WS" Models)

A five position control switch is used to regulate the operation of the fan motor and compressor. The compressor can be operated with the fan operating at low, medium or high speed. The fan motor can also be operated independently on medium speed. See switch section as indicated on decorative control panel (see Figure 7.)

SYSTEM CONTROL SWITCH - TEST

Disconnect leads from control switch (see Figure 8.) There must be continuity as follows:

1.“Off” Position - no continuity between terminals.

2.“Lo Cool” Position - between terminals“L1”and “C”, “LO” and “MS”.

3.“Med Cool” Position - between terminals “L1” and “C”, “M” and “MS”.

4.“Hi Cool” Position - between terminals “L1” and “C”, “H” and “MS”.

5.“Fan Only” Position -between terminals “L1” and

Figure 7: System Control Switch

SYSTEM CONTROL SWITCH

("WE" & "WY" Models)

An eight position switch is used to regulate the operation of the fan motor, compressor and electric heater.

15

The unit can be operated in cooling or heating mode with the compressor or electric heater on and the fan motor operating on low, medium or high speed.

The fan motor can also be operated independently on medium speed. See switch section as indicated on decorative control panel, in Figure 8.

Figure 8: System Control Panel

SYSTEM CONTROL SWITCH - TEST

Disconnect leads from control switch. Turn control to position being tested (see Figure 8.) There must be continuity as follows:

1."Off" Position-no continuity between terminals.

2."Lo Cool" Position-between terminals "C" and "3", "C2" and "2", "LO" and "M/S", "AR" and "5".

3."Med Cool" Position-between terminals "C" and "3", "C2" and "2", "M" and "M/S", "AR" and "5".

4."Hi Cool" Position-between terminals "C" and "3", "C2" and "2", "H" and "M/S", "AR" and "5".

5."Hi Heat" Position-between terminals "C" and "1", "C2" and "4", "H" and "M/S", "AR" and "5".

6."Med Heat" Position-between terminals "C" and "1", "C2" and "4", "M" and "M/S", "AR" and "5".

7."Lo Cool" Position-between terminals "C" and "1", "C2" and "4", "LO" and "M/S", "AR" and "5".

8."Fan Only" Position-between terminals "L1" and "M".

Figure 9: System Control Switch

(Heat Pump & Electric Heat Models)

“2”.

NOTE:

Units will operate in constant fan in the cooling mode and auto fan in the heating mode.

CAPACITOR, RUN

A run capacitor is wired across the auxiliary and main winding of a single phase permanent split capacitor motor such as the compressor and fan motor. A single capacitor can be used for each motor or a dual rated capacitor can be used for both.

Figure 10: Run Capacitor Hook-Up

The capacitor’s primary function is to reduce the line current while greatly improving the torque characteristics of a motor. The capacitor also reduces the line current to the motor by improving the power factor of the load. The line side of the capacitor is marked with a red dot and is wired to the line side of the circuit (see Figure 10.)

16

Loading...
+ 32 hidden pages