Emerson Fisher FIELDVUEDVC6200 Instruction Manual

4 (1)
www.Fisher.com
Fisherr FIELDVUE
DVC6200 Digital Valve
Controller
This manual applies to
Instrument Level HC, AD, PD, ODV
Device Type 09
Hardware Revision 2
Firmware Revision 2, 3, 4, 5 & 6
DD Revision 1, 2, 3, 4 & 5
Contents
Section 1 Introduction 3.................
Installation, Pneumatic and Electrical Connections,
and Initial Configuration 3.....................
Scope of Manual 3..............................
Conventions Used in this Manual 3................
Description 3..................................
Specifications 5................................
Related Documents 5...........................
Educational Services 8...........................
Section 2 Wiring Practices 9..............
Control System Requirements 9..................
HART Filter 9.................................
Voltage Available 9............................
Compliance Voltage 11........................
Auxiliary Terminal Wiring Length Guidelines 12....
Maximum Cable Capacitance 12.................
Installation in Conjunction with a Rosemountt
333 HART Tri‐Loopt HART‐to‐Analog
Signal Converter 13.........................
Section 3 Configuration 15...............
Guided Setup 15...............................
Manual Setup 15...............................
Mode and Protection 16........................
Instrument Mode 16.......................
Write Protection 16........................
Instrument 16................................
Identification 16...........................
Serial Numbers 17.........................
Units 17..................................
Terminal Box 17...........................
Input Range 17............................
Spec Sheet 18.............................
Edit Instrument Time 18....................
W9713
Travel/Pressure Control 18......................
Travel/Pressure Select 18...................
Cutoffs and Limits 19.......................
End Point Pressure Control 19................
Pressure Control 20........................
Pressure Fallback 20........................
Control Mode 21..........................
Characterization 21........................
Dynamic Response 23......................
Tuning 24....................................
Travel Tuning 24...........................
Pressure Tuning 27........................
Travel/Pressure Integral Settings 27..........
Valve and Actuator 28..........................
Partial Stroke Test 30..........................
Outputs 33...................................
Output Terminal Configuration 33............
Switch Configuration 33....................
HART Variable Assignments 34..............
Transmitter Output 34.....................
Alert Setup 35.................................
Change to HART 5 / HART 7 36....................
Instruction Manual
D103605X012
DVC6200 Digital Valve Controller
January 2015
Instruction Manual
D103605X012
DVC6200 Digital Valve Controller
January 2015
2
Contents (continued)
Section 4 Calibration 37.................
Calibration Overview 37.........................
Travel Calibration 38...........................
Auto Calibration 38........................
Manual Calibration 39......................
Pushbutton Calibration 40..................
Sensor Calibration 41..........................
Pressure Sensors 41........................
Analog Input Calibration 42.................
Relay Adjustment 43...........................
Double‐Acting Relay 43.....................
Single‐Acting Relays 44.....................
PST Calibration 45.............................
Section 5 Device Information,
Diagnostics, and Alerts 47...............
Overview 47...................................
Status & Primary Purpose Variables 47............
Device Information 47.........................
Service Tools 48................................
Device Status 48..............................
Alert Record 48...............................
Electronics 48.............................
Pressure 49...............................
Travel 50.................................
Travel History 51..........................
Alert Record 51............................
Status 52.................................
Diagnostics 52................................
Stroke Valve 52............................
Partial Stroke Test (ODV only) 52.............
Variables 53...................................
Section 6 Maintenance and
Troubleshooting 55.....................
Replacing the Magnetic Feedback Assembly 56......
Module Base Maintenance 56.....................
Tools Required 56.............................
Component Replacement 57....................
Removing the Module Base 57..................
Replacing the Module Base 58...................
Submodule Maintenance 58......................
I/P Converter 59...............................
Printed Wiring Board (PWB) Assembly 61..........
Pneumatic Relay 63............................
Gauges, Pipe Plugs or Tire Valves 63..............
Terminal Box 64................................
Removing the Terminal Box 64..................
Replacing the Terminal Box 65...................
Troubleshooting 65.............................
Checking Voltage Available 65....................
Restart Processor 66............................
DVC6200 Technical Support Checklist 68...........
Section 7 Parts 69......................
Parts Ordering 69...............................
Parts Kits 69...................................
PWB Assembly 69.............................
Parts List 70...................................
Housing 70...................................
Common Parts 71.............................
Module Base 71...............................
I/P Converter Assembly 71......................
Relay 71.....................................
Terminal Box 72...............................
Feedback Connection Terminal Box 72............
Pressure Gauges, Pipe Plugs, or Tire
Valve Assemblies 72.........................
DVC6215 Feedback Unit 72.....................
HART Filters 72...............................
Appendix A Principle of Operation 79......
HART Communication 79........................
DVC6200 Digital Valve Controller 79...............
Appendix B Field Communicator
Menu Tree 83........................
Glossary 91............................
Index 97..............................
The FIELDVUE DVC6200 Digital Valve Controller is a core component of the PlantWeb™ digital plant
architecture. The digital valve controller powers PlantWeb by capturing and delivering valve
diagnostic data. Coupled with ValveLink™ software, the DVC6200 provides users with an accurate
picture of valve performance, including actual stem position, instrument input signal, and pneumatic
pressure to the actuator. Using this information, the digital valve controller diagnoses not only itself,
but also the valve and actuator to which it is mounted.
Instruction Manual
D103605X012
Introduction
January 2015
3
Section 1 Introduction
Installation, Pneumatic and Electrical Connections,
and Initial Configuration
Refer to the DVC6200 Series Quick Start Guide (D103556X012) for DVC6200
installation, connection and initial configuration information. If a copy of this quick
start guide is needed scan or click the QR code at the right, contact your Emerson
Process Management sales office, or visit our website at www.Fisher.com.
Scope of Manual
This instruction manual is a supplement to the DVC6200 Series Quick Start Guide that ships with every instrument.
This instruction manual includes product specifications, reference materials, custom setup information, maintenance
procedures, and replacement part details.
This instruction manual describes using the 475 Field
Communicator to set up and calibrate the instrument. You can
also use Fisher ValveLink software or ValveLink Mobile software to setup, calibrate, and diagnose the valve and
instrument. For information on using ValveLink software with the instrument refer to ValveLink software help or
documentation.
Do not install, operate, or maintain a DVC6200 digital valve controller without being fully trained and qualified in
valve, actuator, and accessory installation, operation, and maintenance. To avoid personal injury or property damage,
it is important to carefully read, understand, and follow all of the contents of this manual, including all safety cautions
and warnings. If you have any questions about these instructions, contact your Emerson Process Management sales
office before proceeding.
Conventions Used in this Manual
Navigation paths and fast‐key sequences are included for procedures and parameters that can be accessed using the
Field Communicator.
For example, to access Device Setup:
Field Communicator Configure > Guided Setup > Device Setup (2‐1‐1)
Refer to Appendix B for Field Communicator menu trees.
Description
DVC6200 digital valve controllers (figures 1‐1 and 1‐2) are communicating, microprocessor‐based
current‐to‐pneumatic instruments. In addition to the normal function of converting an input current signal to a
pneumatic output pressure, the DVC6200 digital valve controller, using the HARTr communications protocol, gives
easy access to information critical to process operation. You can gain information from the principal component of the
process, the control valve itself, using the Field Communicator at the valve, or at a field junction box, or by using a
personal computer or operator's console within the control room.
Using a personal computer and ValveLink software or AMS Suite: Intelligent Device Manager, or a Field Communicator,
you can perform several operations with the DVC6200 digital valve controller. You can obtain general information
concerning software revision level, messages, tag, descriptor, and date.
Scan or click
to access
field support
Instruction Manual
D103605X012
Introduction
January 2015
4
Figure 1‐1. FIELDVUE DVC6200 Digital Valve
Controller Mounted on a Fisher Sliding-Stem Valve
Actuator
W9643
Figure 1‐2. FIELDVUE DVC6200 Digital Valve
Controller Integrally Mounted to a Fisher GX Control
Valve
W9616
Diagnostic information is available to aid you when troubleshooting. Input and output configuration parameters can
be set, and the digital valve controller can be calibrated. Refer to table 1‐1 for details on the capabilities of each
diagnostic tier.
Using the HART protocol, information from the field can be integrated into control systems or be received on a single
loop basis.
The DVC6200 digital valve controller is designed to directly replace standard pneumatic and electro‐pneumatic valve
mounted positioners.
Table 1‐1. Instrument Level Capabilities
CAPABILITY
DIAGNOSTIC LEVEL
(2)
HC AD PD ODV
Auto Calibration X X X X
Custom Characterization X X X X
Burst Communication X X X X
Alerts X X X X
Step Response, Drive Signal Test & Dynamic Error Band X X X
Advanced Diagnostics (Valve Signature) X X X
Performance Tuner X X X
Travel Control ‐ Pressure Fallback X X X
Supply Pressure Sensor X X X
Performance Diagnostics X X
Solenoid Valve Testing X X
Lead/Lag Set Point Filter
(1)
X
1. Refer to brochure part # D351146X012 for information on Fisher optimized digital valves for compressor antisurge applications.
2. HC = HART Communicating ; AD = Advanced Diagnostics ; PD = Performance Diagnostics ; ODV = Optimized Digital Valve.
Instruction Manual
D103605X012
Introduction
January 2015
5
Specifications
WARNING
Refer to table 1‐2 for specifications. Incorrect configuration of a positioning instrument could result in the malfunction of
the product, property damage or personal injury.
Specifications for DVC6200 digital valve controllers are shown in table 1‐2. Specifications for the Field Communicator
can be found in the product manual
for the Field Communicator.
Related Documents
This section lists other documents containing information related to the DVC6200 digital valve controller. These
documents include:
DBulletin 62.1:DVC6200 - Fisher FIELDVUE DVC6200 Digital Valve Controller (D103415X012)
DBulletin 62.1:DVC6200 HC - Fisher FIELDVUE DVC6200 Digital Valve Controller (D103423X012)
DBulletin 62.1:DVC6200(S1) Fisher FIELDUVE DVC6200 Digital Valve Controller Dimensions (D103543X012)
DFisher FIELDVUE DVC6200 Series Digital Valve Controller Quick Start Guide (D103556X012)
DFIELDVUE Digital Valve Controller Split Ranging (D103262X012)
DUsing FIELDVUE Instruments with the Smart HART Loop Interface and Monitor (HIM) (D103263X012)
DUsing FIELDVUE Instruments with the Smart Wireless THUMt Adapter and a HART Interface Module (HIM)
(D103469X012)
DAudio Monitor for HART Communications (D103265X012)
DHART Field Device Specification - Supplement to Fisher FIELDVUE DVC6200 Digital Valve Controller (D103639X012)
DUsing the HART Tri‐Loop HART‐to‐Analog Signal Converter with FIELDVUE Digital Valve Controllers (D103267X012)
DImplementation of Lock‐in‐Last Strategy (D103261X012)
DFisher HF340 Filter Instruction Manual (D102796X012)
D475 Field Communicator User's Manual
D ValveLink Software Help or Documentation
All documents are available from your Emerson Process Management sales office. Also visit our website at
www.FIELDVUE.com.
Instruction Manual
D103605X012
Introduction
January 2015
6
Table 1‐2. Specifications
Available Mounting
DVC6200 digital valve controller or DVC6215
feedback unit:
J Integral mounting to the Fisher GX
Control Valve and Actuator System
J Window
mounting to Fisher rotary actuators
J Sliding‐stem
linear applications
J Quarter‐turn rotary applications
DVC6205 base unit for 2 inch pipestand or wall
mounting (for remote‐mount)
The DVC6200 digital valve controller or DVC6215
feedback unit can also be mounted on other
actuators that comply with IEC 60534‐6-1, IEC
60534-6-2, VDI/VDE 3845 and NAMUR mounting
standards.
Communication Protocol
J HART 5 or J HART 7
Input Signal
Point-to-Point
Analog Input Signal: 4-20 mA DC, nominal; split
ranging available
Minimum Voltage Available at Instrument Terminals
must be 9.5 VDC for analog control, 10 VDC for HART
communication
Minimum Control Current: 4.0 mA
Minimum Current w/o Microprocessor Restart: 3.5 mA
Maximum Voltage: 30 VDC
Overcurrent protected
Reverse Polarity protected
Multi-drop
Instrument Power: 11 to 30 VDC at 10 mA
Reverse Polarity protected
Supply Pressure
(1)
Minimum Recommended: 0.3 bar (5 psig) higher
than maximum actuator requirements
Maximum: 10.0 bar (145 psig) or maximum pressure
rating of the actuator, whichever is lower
Medium: Air or Natural Gas
Air: Supply pressure must be clean, dry air that meets
the requirements of ISA Standard 7.0.01.
Natural Gas: Natural Gas must be clean, dry, oil-free
and noncorrosive. H
2
S content should not exceed 20
ppm.
A maximum 40 micrometer particle size in the air
system is acceptable. Further filtration down to 5
micrometer particle size is recommended. Lubricant
content is not to exceed 1 ppm weight (w/w) or
volume (v/v) basis. Condensation in the air supply
should be minimized.
Per ISO 8573-1
Maximum particle density size: Class 7
Oil content: Class 3
Pressure Dew Point: Class 3 or at least 10 K less than
the lowest ambient temperature expected
Output Signal
Pneumatic signal, up to full supply pressure
Minimum Span: 0.4 bar (6 psig)
Maximum Span: 9.5 bar (140 psig)
Action:
J Double, J Single Direct or J Reverse
Steady‐State Air Consumption
(2)(3)
Standard Relay
At 1.4 bar (20 psig) supply pressure:
Less than 0.38 normal m
3
/hr (14 scfh)
At 5.5 bar (80 psig) supply pressure:
Less than 1.3 normal m
3
/hr (49 scfh)
Low Bleed Relay
At 1.4 bar (20 psig) supply pressure:
Average value 0.056 normal m
3
/hr (2.1 scfh)
At 5.5 bar (80 psig) supply pressure:
Average value 0.184 normal m
3
/hr (6.9 scfh)
Maximum Output Capacity
(2)(3)
At 1.4 bar (20 psig) supply pressure:
10.0 normal m
3
/hr (375 scfh)
At 5.5 bar (80 psig) supply pressure:
29.5 normal m
3
/hr (1100 scfh)
Operating Ambient Temperature Limits
(1)(4)
-40 to 85_C (-40 to 185_F)
-52 to 85_C (-62 to 185_F) for instruments utilizing
the Extreme Temperature option (fluorosilicone
elastomers)
-52 to 125_C (-62 to 257_F) for remote‐mount
feedback unit
Independent Linearity
(5)
Typical Value: ±0.50% of output span
Electromagnetic Compatibility
Meets EN 61326-1 (First Edition)
Immunity—Industrial locations per Table 2 of
the EN 61326-1 standard. Performance is
shown in table 1‐3 below.
Emissions—Class A
ISM equipment rating: Group 1, Class A
-continued-
Instruction Manual
D103605X012
Introduction
January 2015
7
Table 1‐2. Specifications (continued)
Lightning and Surge Protection—The degree of
immunity to lightning is specified as Surge immunity
in table 1‐3. For additional surge protection
commercially available transient protection devices
can be used.
Vibration Testing Method
Tested per ANSI/ISA-S75.13.01 Section 5.3.5. A
resonant frequency search is performed on all three
axes. The instrument is subjected to the ISA specified
1/2 hour endurance test at each major resonance.
Input Impedance
An equivalent impedance of 500 ohms may be used.
This value corresponds to 10V @ 20 mA.
Humidity Testing Method
Tested per IEC 61514‐2
Electrical Classification
Hazardous Area Approvals
CSA— Intrinsically Safe, Explosion‐proof,
Division 2, Dust Ignition-proof
FM— Intrinsically Safe, Explosion‐proof,
Dust Ignition-proof, Non-Incendive
ATEX— Intrinsically Safe, Flameproof, Type n
IECEx— Intrinsically Safe, Flameproof, Type n
Electrical Housing
CSA— Type 4X, IP66
FM— Type 4X, IP66
ATEX— IP66
IECEx— IP66
Other Classifications/Certifications
CUTR— Customs Union Technical Regulations
(Russia, Kazakhstan and Belarus)
INMETRO— National Institute of Metrology, Quality,
and Technology (Brazil)
PESO CCOE— Petroleum and Explosives Safety
Organisation - Chief Controller of Explosives (India)
Contact your Emerson Process Management sales
office for classification/certification specific
information.
Connections
Supply Pressure: 1/4 NPT internal and integral pad for
mounting 67CFR regulator
Output Pressure: 1/4 NPT internal
Tubing: 3/8‐inch recommended
Vent: 3/8 NPT internal
Electrical: 1/2 NPT internal, M20 adapter optional
Actuator Compatibility
Stem Travel (Sliding‐Stem Linear)
Minimum: 6.5 mm (0.25 inch)
Maximum: 606 mm (23.875 inches)
Shaft Rotation (Quarter‐Turn Rotary)
Minimum: 45_
Maximum: 90_
Weight
DVC6200
Aluminum: 3.5 kg (7.7 lbs)
Stainless Steel: 8.6 kg (19 lbs)
DVC6205: 4.1 kg (9 lbs)
DVC6215: 1.4 kg (3.1 lbs)
Construction Materials
Housing, module base and terminal box:
A03600 low copper aluminum alloy (standard)
Stainless steel (optional)
Cover: Thermoplastic polyester
Elastomers: Nitrile (standard)
Fluorosilicone (extreme temperature)
Options
J Supply and output pressure gauges or
J Tire valves J Integral mounted filter regulator
J Low‐Bleed Relay J Extreme Temperature
J Remote Mount
(6)
J Stainless Steel
J Integral 4‐20 mA Position Transmitter
(7)
:
4‐20 mA output, isolated
Supply Voltage: 8‐30 VDC
Fault Indication: offrange high or low
Reference Accuracy: 1% of travel span
J Integral Switch
(7)
:
One isolated switch, configurable throughout the
calibrated travel range or actuated from a device alert
Off State: 0 mA (nominal)
On State: up to 1 A
Supply Voltage: 30 VDC maximum
Reference Accuracy: 2% of travel span
Contact your Emerson Process Management sales
office or go to www.FIELDVUE.com for additional
information
-continued-
Instruction Manual
D103605X012
Introduction
January 2015
8
Table 1‐2. Specifications (continued)
Declaration of SEP
Fisher Controls International LLC declares this
product to be in compliance with Article 3 paragraph
3 of the Pressure Equipment Directive (PED) 97 / 23 /
EC. It was designed and manufactured in accordance
with Sound Engineering Practice (SEP) and cannot
bear the CE marking related to PED compliance.
However, the product may bear the CE marking to
indicate compliance with other applicable European
Community Directives.
NOTE: Specialized instrument terms are defined in ANSI/ISA Standard 51.1 - Process Instrument Terminology.
1. The pressure/temperature limits in this document and any other applicable code or standard should not be exceeded.
2. Normal m
3
/hour - Normal cubic meters per hour at 0_C and 1.01325 bar, absolute. Scfh - Standard cubic feet per hour at 60_F and 14.7 psia.
3. Values at 1.4 bar (20 psig) based on a single-acting direct relay; values at 5.5 bar (80 psig) based on double-acting relay.
4. Temperature limits vary based on hazardous area approval.
5. Not applicable for travels less than 19 mm (0.75 inch) or for shaft rotation less than 60 degrees. Also not applicable for digital valve controllers in long‐stroke applications.
6. 4‐conductor shielded cable, 18 to 22 AWG minimum wire size, in rigid or flexible metal conduit, is required for connection between base unit and feedback unit. Pneumatic tubing between base
unit output connection and actuator has been tested to 91 meters (300 feet). At 15 meters (50 feet) there was no performance degradation. At 91 meters there was minimal pneumatic lag.
7. The electronic output is available with either the position transmitter or the switch.
Table 1‐3. EMC Summary Results—Immunity
Port Phenomenon Basic Standard Test Level
Performance
Criteria
(1)
Enclosure
Electrostatic discharge (ESD) IEC 61000‐4‐2
4 kV contact
8 kV air
A
Radiated EM field IEC 61000‐4‐3
80 to 1000 MHz @ 10V/m with 1 kHz AM at 80%
1400 to 2000 MHz @ 3V/m with 1 kHz AM at 80%
2000 to 2700 MHz @ 1V/m with 1 kHz AM at 80%
A
Rated power frequency
magnetic field
IEC 61000‐4‐8 30 A/m at 50/60Hz A
I/O signal/control
Burst IEC 61000‐4‐4 1 kV A
Surge IEC 61000‐4‐5 1 kV B
Conducted RF IEC 61000‐4‐6 150 kHz to 80 MHz at 3 Vrms A
Performance criteria: +/- 1% effect.
1. A = No degradation during testing. B = Temporary degradation during testing, but is self‐recovering.
Educational Services
For information on available courses for the DVC6200 digital valve controller, as well as a variety of other products,
contact:
Emerson Process Management
Educational Services - Registration
Phone: +1-641‐754‐3771 or +1-800‐338‐8158 or
e‐mail: education@emerson.com
http://www.emersonprocess.com/education
Instruction Manual
D103605X012
Wiring Practices
January 2015
9
Section 2 Wiring Practices22
Control System Requirements
There are several parameters that should be checked to ensure the control system is compatible with the DVC6200
digital valve controller.
HART Filter
Depending on the control system you are using, a HART filter may be needed to allow HART communication. The
HART filter is a passive device that is inserted in field wiring from the HART loop. The filter is normally installed near the
field wiring terminals of the control system I/O (see figure 2‐1). Its purpose is to effectively isolate the control system
output from modulated HART communication signals and raise the impedance of the control system to allow HART
communication. For more information on the description and use of the HART filter, refer to the appropriate HART
filter instruction manual.
To determine if your system requires a filter contact your Emerson Process Management sales office.
Note
A HART filter is typically NOT required for any of the Emerson Process Management control systems, including PROVOXt, RS3t,
and DeltaVt systems.
Figure 2‐1. HART Filter Application
DIGITAL VALVE
CONTROLLER
4‐20 mA + HART
VALVE
Tx Tx
I/O I/O
HART
FILTER
NON‐HART BASED DCS
A6188‐1
Voltage Available
The voltage available at the DVC6200 digital valve controller must be at least 10 VDC. The voltage available at the
instrument is not the actual voltage measured at the instrument when the instrument is connected. The voltage
measured at the instrument is limited by the instrument and is typically less than the voltage available.
Instruction Manual
D103605X012
Wiring Practices
January 2015
10
As shown in figure 2‐2, the voltage available at the instrument depends upon:
D the control system compliance voltage
D if a filter, wireless THUM adapter, or intrinsic safety barrier is used, and
D the wire type and length.
The control system compliance voltage is the maximum voltage at the control system output terminals at which the
control system can produce maximum loop current.
The voltage available at the instrument may be calculated from the following equation:
Voltage Available = [Control System Compliance Voltage (at maximum current)] - [filter voltage drop (if a HART filter is
used)] - [total cable resistance maximum current] - [barrier resistance x maximum current].
The calculated voltage available should be greater than or equal to 10 volts DC.
Table 2‐1 lists the resistance of some typical cables.
The following example shows how to calculate the voltage available for a Honeywellt TDC2000 control system with a
HF340 HART filter, and 1000 feet of Beldent 9501 cable:
Voltage available = [18.5 volts (at 21.05 mA)] - [2.3 volts] - [48 ohms 0.02105 amps]
Voltage available = [18.5] - [2.3] - [1.01]
Voltage available = 15.19 volts
Figure 2‐2. Determining Voltage Available at the Instrument
The voltage available at the instrument is not the voltage measured at the instrument terminals. Once the instrument is
connected, the instrument limits the measured voltage to approximately 8.0 to 9.5 volts.
Obtain filter voltage drop. The measured drop will be different than this value. The measured filter voltage drop
depends upon control system output voltage, the intrinsic safety barrier (if used), and the instrument. See note 3.
HART FILTER
(if used)
CONTROL
SYSTEM
+
-
COMPLIANCE VOLTAGE
VOLTAGE
AVAILABLE AT THE
INSTRUMENT
+
-
R
INTRINSIC SAFETY
BARRIER
(if used)
Control system compliance voltage
= Voltage available at the instrument
– Filter voltage drop (if used)
Example Calculation
18.5 volts (at 21.05 mA)
– 2.3 volts (for HF300 filter)
– Intrinsic safety barrier resistance (if used) x maximum loop current – 2.55 volts (121 ohms x 0.02105 amps)
TOTAL LOOP
CABLE RESISTANCE
– Total loop cable resistance x maximum loop current – 1.01 volts (48 ohms x 0.02105 amps for
1000 feet of Belden 9501 cable)
= 15.19 volts, available—if safety barrier (2.55 volts)
is not used
1
3
NOTES:
1
2
Calculate Voltage Available at the Instrument as follows:
THUM ADAPTER
(IF USED)
– Smart Wireless THUM adapter voltage drop (if used)
2
The voltage drop of the THUM adapter is linear from 2.25 volts at 3.5 mA to 1.2 volts at 25 mA.
3
Instruction Manual
D103605X012
Wiring Practices
January 2015
11
Table 2‐1. Cable Characteristics
Cable Type
Capacitance
(1)
pF/Ft
Capacitance
(1)
pF/m
Resistance
(2)
Ohms/ft
Resistance
(2)
Ohms/m
BS5308/1, 0.5 sq mm 61.0 200 0.022 0.074
BS5308/1, 1.0 sq mm 61.0 200 0.012 0.037
BS5308/1, 1.5 sq mm 61.0 200 0.008 0.025
BS5308/2, 0.5 sq mm 121.9 400 0.022 0.074
BS5308/2, 0.75 sq mm 121.9 400 0.016 0.053
BS5308/2, 1.5 sq mm 121.9 400 0.008 0.025
BELDEN 8303, 22 awg 63.0 206.7 0.030 0.098
BELDEN 8441, 22 awg 83.2 273 0.030 0.098
BELDEN 8767, 22 awg 76.8 252 0.030 0.098
BELDEN 8777, 22 awg 54.9 180 0.030 0.098
BELDEN 9501, 24 awg 50.0 164 0.048 0.157
BELDEN 9680, 24 awg 27.5 90.2 0.048 0.157
BELDEN 9729, 24 awg 22.1 72.5 0.048 0.157
BELDEN 9773, 18 awg 54.9 180 0.012 0.042
BELDEN 9829, 24 awg 27.1 88.9 0.048 0.157
BELDEN 9873, 20 awg 54.9 180 0.020 0.069
1. The capacitance values represent capacitance from one conductor to all other conductors and shield. This is the appropriate value to use in the cable length calculations.
2. The resistance values include both wires of the twisted pair.
Compliance Voltage
If the compliance voltage of the control system is not known, perform the following compliance voltage test.
1. Disconnect the field wiring from the control system and connect equipment as shown in figure 2‐3 to the control
system terminals.
Figure 2‐3. Voltage Test Schematic
CIRCUIT
UNDER
TEST
VOLTMETER
MILLIAMMETER
1
kW POTENTIOMETER
A6192‐1
2. Set the control system to provide maximum output current.
3. Increase the resistance of the 1 kW potentiometer, shown in figure 2‐3, until the current observed on the
milliammeter begins to drop quickly.
4. Record the voltage shown on the voltmeter. This is the control system compliance voltage.
For specific parameter information relating to your control system, contact your Emerson Process Management sales
office.
Instruction Manual
D103605X012
Wiring Practices
January 2015
12
Auxiliary Terminal Wiring Length Guidelines
The Auxiliary Input Terminals of a DVC6200 with instrument level ODV can be used with a locally‐mounted switch for
initiating a partial stroke test. Some applications require that the switch be installed remotely from the DVC6200.
The length for wiring connected to the Auxiliary Input Terminals is limited by capacitance. For proper operation of the
Auxiliary Input Terminals capacitance should not exceed 100,000 pF. As with all control signal wiring, good wiring
practices should be observed to minimize adverse effect of electrical noise on the Aux Switch function.
Example Calculation: Capacitance per foot or per meter is required to calculate the length of wire that may be
connected to the Aux switch input. The wire should not exceed the capacitance limit of 100,000 pF. Typically the wire
manufacturer supplies a data sheet which provides all of the electrical properties of the wire. The pertinent parameter
is the highest possible capacitance. If shielded wire is used, the appropriate number is the “Conductor to Other
Conductor & Shield” value.
Example — 18AWG Unshielded Audio, Control and Instrumentation Cable
Manufacturer's specifications include:
Nom. Capacitance Conductor to Conductor @ 1 KHz: 26 pF/ft
Nom. Conductor DC Resistance @ 20 Deg. C: 5.96 Ohms/1000 ft
Max. Operating Voltage - UL 200 V RMS (PLTC, CMG),150 V RMS (ITC)
Allowable Length with this cable = 100,000pF /(26pF/ft) = 3846 ft
Example — 18AWG Shielded Audio, Control and Instrumentation Cable
Manufacturer's specifications include:
Nom. Characteristic Impedance: 29 Ohms
Nom. Inductance: .15 μH/ft
Nom. Capacitance Conductor to Conductor @ 1 KHz: 51 pF/ft
Nom. Cap. Cond. to other Cond. & Shield @ 1 KHz 97 pF/ft
Allowable Length with this cable = 100,000pF /(97pF/ft) = 1030 ft
The AUX switch input passes less than 1 mA through the switch contacts, and uses less than 5V, therefore, neither the
resistance nor the voltage rating of the cable are critical. Ensure that switch contact corrosion is prevented. It is
generally advisable that the switch have gold‐plated or sealed contacts.
Maximum Cable Capacitance
The maximum cable length for HART communication is limited by the characteristic capacitance of the cable.
Maximum length due to capacitance can be calculated using the following formulas:
Length(ft) = [160,000 - C
master
(pF)] [C
cable
(pF/ft)]
Length(m) = [160,000 - C
master
(pF)] [C
cable
(pF/m)]
where:
160,000 = a constant derived for FIELDVUE instruments to ensure that the HART network RC time constant will be no
greater than 65 μs (per the HART specification).
C
master
= the capacitance of the control system or HART filter
Instruction Manual
D103605X012
Wiring Practices
January 2015
13
C
cable
= the capacitance of the cable used (see table 2‐1)
The following example shows how to calculate the cable length for a Foxboro
t
I/A control system (1988) with a C
master
of 50, 000 pF and a Belden 9501 cable with characteristic capacitance of 50pF/ft.
Length(ft) = [160,000 - 50,000pF] [50pF/ft]
Length = 2200 ft.
The HART communication cable length is limited by the cable characteristic capacitance. To increase cable length,
select a wire with lower capacitance per foot. Contact your Emerson Process Management sales office for specific
information relating to your control system.
Installation in Conjunction with a Rosemount 333 HART Tri‐Loop
HART‐to‐Analog Signal Converter
Use the DVC6200 digital valve controller in operation with a Rosemount 333 HART Tri‐Loop HART‐to‐Analog Signal
Converter to acquire an independent 4‐20 mA analog output signal for the analog input, travel target, pressure, or
travel. The HART Tri‐Loop accepts any three of these digital signals and converts them into three separate 4‐20 mA
analog channels.
Refer to figure 2‐4 for basic installation information. Refer to the 333 HART Tri‐Loop HART‐to‐Analog Signal Converter
Product Manual for complete installation information.
Figure 2‐4. HART Tri‐Loop Installation Flowchart
START HERE
DONE
Digital valve
controller
Installed?
Unpack the
HART Tri‐Loop
Review the
HART Tri‐Loop
Product Manual
Set the digital
valve controller
Burst Option
Set the digital
valve controller
Burst Mode
No
Yes
Install the digital
valve controller.
Install the HART Tri‐
Loop. See HART Tri‐
Loop product manual
Mount the HART
Tri‐Loop to the
DIN rail.
Wire the digital
valve controller to
the HART Tri‐Loop.
Install Channel 1
wires from HART
Tri‐Loop to the
control room.
(Optional) Install
Channel 2 and 3 wires
from HART Tri‐Loop to
the control room.
Configure the HART
Tri‐Loop to receive
digital valve controller
burst commands
Pass system
test?
Check
troubleshooting
procedures in
HART Tri‐Loop
product manual.
No
Yes
E0365
Instruction Manual
D103605X012
Wiring Practices
January 2015
14
Commissioning the Digital Valve Controller for use with the HART
Tri‐Loop Signal Converter
To prepare the digital valve controller for use with a 333 HART Tri‐Loop, you must configure the digital valve controller
to burst mode, and select Burst Command 3. In burst mode, the digital valve controller provides digital information to
the HART Tri‐Loop HART‐to‐Analog Signal Converter. The HART Tri‐Loop converts the digital information to a 4 to 20
mA analog signal. Each burst message contains the latest value of the primary (analog input), secondary (travel
target), tertiary (configured output pressure), and quaternary (travel) variables.
To commission a DVC6200 for use with a HART Tri‐Loop, perform the following procedures.
Note
The DVC6200 must be in HART 5 compatibility mode to use burst communications.
Enable Burst Operation
Field Communicator
With I/O Package
Configure > Manual Setup > Outputs > Burst Mode (2‐2‐6‐5) HC, AD, PD or (2-2-7-5) ODV
Without I/O Package
Configure > Manual Setup > Outputs > Burst Mode (2‐2‐6‐2) HC, AD, PD or (2-2-7-2) ODV
Select Burst Enable and follow the prompts to enable burst mode. Then select Burst Command and follow the prompts
to configure Loop Current/PV/SV/TV/QV.
Select the HART Variable Assignments
Field Communicator
With I/O Package
Configure > Manual Setup > Outputs > HART Variable Assignments (2-2-6-4) HC, AD, PD or (2-2-7-4) ODV
Without I/O Package
Configure > Manual Setup > Outputs > HART Variable Assignments (2-2-6-1) HC, AD, PD or (2-2-7-1) ODV
Configure the HART Variable Assignments. The Primary Variable (PV) is always Analog Input. The Secondary Variable
(SV), Tertiary Variable (TV) and Quaternary Variable (QV) can be configured to any of the following variables.
D Setpoint
D Travel (see note below)
D Pressure A
D Pressure B
D Pressure AB
D Supply Pressure
D Drive Signal
D Analog Input
Note
If the instrument is configured to operate in pressure control mode, or detects an invalid travel sensor reading, the Travel variable
will report pressure in percent of bench set range.
Instruction Manual
D103605X012
Configuration
January 2015
15
Section 3 Configuration
Guided Setup
Field Communicator Configure > Guided Setup (2‐1)
To quickly setup the instrument, the following procedures will guide you through the process.
DDevice SetupThis procedure is used to configure actuator and valve information, calibrate the valve assembly, and
assign the tuning set for the valve assembly.
DPerformance Tuner (instrument level AD, PD, ODV)This procedure executes a simple step response test and then
calculates a recommended set of gain values based on the response of the control valve. See page 26 for additional
information.
DStabilize Optimize (instrument level HC)—This procedure permits you to adjust valve response by changing the
digital valve controller tuning. See page 26 for additional information.
Manual Setup33
Manual Setup allows you to configure the digital valve controller to your application. Table 3‐1 lists the default settings
for a standard factory configuration. You can adjust actuator response, set the various modes, alerts, ranges, travel
cutoffs and limits. You can also restart the instrument and set the protection.
Table 3‐1. Default Detailed Setup Parameters
Setup Parameter Default Setting
(1)
Instrument
Configuration
Control Mode Analog
Restart Control Mode Resume Last
Analog In Range Low 4 mA
Analog In Range High 20 mA
Analog Input Units mA
Local AutoCal Button Disabled
Polling Address 0
Burst Mode Enable No
Burst Command 3
Cmd 3 (Trending) Pressure A-B
Dynamic Response and
Tuning
Input Characterization Linear
Travel Limit High 125%
Travel Limit Low -25%
Travel/Pressure Cutoff High 99.46%
Travel/Pressure Cutoff Low 0.50%
Set Point Rate Open 0%/sec
Set Point Rate Close 0%/sec
Set Point Filter Time (Lag Time) 0 sec
Integrator Enable Yes
Integral Gain 9.4 repeats/minute
Integral Deadzone 0.26%
-continued on next page-
Instruction Manual
D103605X012
Configuration
January 2015
16
Table 3‐1. Default Detailed Setup Parameters (continued)
Setup Parameter Default Setting
(1)
Deviation & Other Alerts
Travel Deviation Alert Enable Yes
Travel Deviation Alert Point 5%
Travel Deviation Time 9.99 sec
Pressure Deviation Alert Enable Yes
Pressure Deviation Alert Point 5 psi
(2)
Pressure Deviation Alert Time 5.0 sec
Drive Signal Alert Enable Yes
Supply Pressure Alert Enable Yes
1. The settings listed are for standard factory configuration. DVC6200 instruments can also be ordered with custom configuration
settings. Refer to the order requisition for the custom settings.
2. Adjust to bar, kPa, or Kg/cm
2
if necessary
Mode and Protection
Field Communicator Configure > Manual Setup > Mode and Protection (2‐2‐1)
Instrument Mode
There are two instrument modes for the DVC6200; In Service or Out of Service. In Service is the normal operating
mode such that the instrument follows the 420 mA control signal. Out of Service is required in some cases to modify
configuration parameters or to run diagnostics.
Note
Some changes that require the instrument to be taken Out Of Service will not take effect until the instrument is placed back In
Service or the instrument is restarted.
Write Protection
There are two Write Protection modes for the DVC6200: Not Protected or Protected. Protected prevents configuration
and calibration changes to the instrument. The default setting is Not Protected. Write Protection can be changed to
Protected remotely. However, to change Write Protection to Not Protected, you must have physical access to the
instrument. The procedure will require you to press a button ( ) on the terminal box as a security measure.
Instrument
Field Communicator Configure > Manual Setup > Instrument (2‐2‐2)
Follow the prompts on the Field Communicator display to configure the following Instrument parameters:
Identification
DHART TagA tag name up to 8 characters is available for the instrument. The HART tag is the easiest way to
distinguish between instruments in a multi‐instrument environment. Use the HART tag to label instruments
electronically according to the requirements of your application. The tag you assign is automatically displayed
when the Field Communicator establishes contact with the digital valve controller at power‐up.
DHART Long Tag (HART Universal Revision 7 only)—A tag name up to 32 characters is available for the instrument.
Instruction Manual
D103605X012
Configuration
January 2015
17
DDescription—Enter a description for the application with up to 16 characters. The description provides a longer
user‐defined electronic label to assist with more specific instrument identification than is available with the HART
tag.
DMessageEnter any message with up to 32 characters. Message provides the most specific user‐defined means for
identifying individual instruments in multi‐instrument environments.
DPolling Address—If the digital valve controller is used in point‐to‐point operation, the Polling Address is 0. When
several devices are connected in the same loop, such as for split ranging, each device must be assigned a unique
polling address. The Polling Address is set to a value between 0 and 63 for HART 7 and 0 and 15 for HART 5. To
change the polling address the instrument must be Out Of Service.
For the Field Communicator to be able to communicate with a device whose polling address is not 0, it must be
configured to automatically search for all or specific connected devices.
Serial Numbers
DInstrument Serial Number—Enter the serial number on the instrument nameplate, up to 12 characters.
DValve Serial Number—Enter the serial number for the valve in the application, up to 12 characters.
Units
DPressure UnitsDefines the output and supply pressure units in either psi, bar, kPa, or kg/cm
2
.
DTemperature Units—Degrees Fahrenheit or Celsius. The temperature measured is from a sensor mounted on the
digital valve controller's printed wiring board.
DAnalog Input Units—Permits defining the Analog Input Units in mA or percent of 4-20 mA range.
Terminal Box
DCalibration (CAL) Button—This button is near the wiring terminals in the terminal box and provides a quick means to
autocalibrate the instrument. The button must be pressed for 3 to 10 seconds. Autocalibration will move the valve
through the full range of travel whether the Instrument Mode is In Service or Out of Service. However, if the Write
Protection is Protected, this button will not be active. To abort, press the button again for 1 second. The calibration
button is disabled by default.
DAuxiliary Terminal Action—These wire terminals can be configured to initiate a partial stroke test upon detection of
a short across the (+) and (-) terminals. The terminals must be shorted for 3 to 10 seconds.
Note
Auxiliary Terminal Action is only available for instrument level ODV.
Analog Input Range
DInput Range Hi—Permits setting the Input Range High value. Input Range High should correspond to Travel Range
High, if the Zero Power Condition is configured as closed. If the Zero Power Condition is configured as open, Input
Range High corresponds to Travel Range Low. See figure 3‐1.
Instruction Manual
D103605X012
Configuration
January 2015
18
DInput Range Lo—Permits setting the Input Range Low value. Input Range Low should correspond to Travel Range
Low, if the Zero Power Condition is configured as closed. If the Zero Power Condition is configured as open, Input
Range Low corresponds to Travel Range High. See figure 3‐1.
Figure 3‐1. Calibrated Travel to Analog Input Relationship
TRAVEL
RANGE
HIGH
TRAVEL
RANGE
LOW
THE SHAPE OF THESE LINES
DEPENDS ON THE INPUT
CHARACTERISTICS LINEAR
CHARACTERISTIC SHOWN
INPUT RANGE
LOW
INPUT RANGE
HIGH
ANALOG INPUT
mA OR % OF 4‐20 mA
CALIBRATED TRAVEL, %
A6531‐1
ZPC = CLOSED
ZPC = OPEN
NOTE:
ZPC = ZERO POWER CONDITION
Spec Sheet
The Spec Sheet provides a means to store the entire control valve specifications on board the DVC6200.
Edit Instrument Time
Permits setting the instrument clock. When alerts are stored in the alert record, the record includes the time and date.
The instrument clock uses a 24‐hour format.
Travel/Pressure Control
Field Communicator Configure > Manual Setup > Travel/Pressure Control (2‐2-3)
Travel/Pressure Select
This defines the operating mode of the instrument as well as the behavior of the instrument should the travel sensor
fail. There are four choices.
D Travel ControlThe instrument is controlling to a target travel. Fallback is not enabled.
D Pressure ControlThe instrument is controlling to a target pressure. Fallback is not enabled.
D Fallback-Sensor FailureThe instrument will fallback to pressure control if a travel sensor failure is detected.
Instruction Manual
D103605X012
Configuration
January 2015
19
D Fallback-Sensor/Tvl DeviationThe instrument will fallback to pressure control if a travel sensor failure is detected,
or if the Tvl Dev Press Fallback setting is exceeded for more than the Tvl Dev Press Fallback Time.
Note
Travel / Pressure Select must be set to Travel for double‐acting actuators
Cutoffs and Limits
DHi Limit/Cutoff SelectWhen the Hi Cutoff/Limit Select is configured for Cutoff, the Travel Target is set to 123%
when the Travel exceeds the Hi Cutoff Point. When the Hi Cutoff/Limit Select is configured for Limit, the Travel
Target will not exceed the Hi Limit Point.
DHi Limit/Cutoff Point—This is the point within the calibrated travel range above which the Limit or Cutoff is in effect.
When using cutoffs, a Cutoff Hi of 99.5% is recommended to ensure valve goes fully open. The Hi Cutoff/Limit is
deactivated by setting it to 125%.
DLo Limit/Cutoff Select—When the Lo Cutoff/Limit Select is configured for Cutoff, the Travel Target is set to 23%
when the Travel is below the Lo Cutoff Point. When the Hi Cutoff/Limit Select is configured for Limit, the Travel
Target will not fall below the Lo Limit Point.
DLo Limit/Cutoff Point—This is the point within the calibrated travel range below which the Limit or Cutoff is in effect.
When using cutoffs, a Cutoff Lo of 0.5% is recommended to help ensure maximum shutoff seat loading. The Lo
Limit/Cutoff is deactivated by setting it to 25%.
End Point Pressure Control (EPPC)
Note
End Point Pressure Control is available for instrument level ODV.
DEPPC Enable—Select Yes or No. End Point Pressure Control allows the digital valve controller to pull back from
saturation of the pneumatic output after reaching the travel extreme. Rather than having the instrument provide
full supply pressure (saturation) continuously at the travel extreme, the digital valve controller switches to an End
Point Pressure Control where the output pressure (pressure controller set point) to the actuator is maintained at a
certain value. This value is configured through the Upper Operating Pressure feature. Because the digital valve
controller is constantly in control and not allowed to reach a dormant or saturated state, it is constantly testing its
own pneumatic system. If there is an output pressure deviation, for example, the instrument will issue an alert. To
ensure there is an alert when an output pressure deviation occurs, setup the alert as described under Pressure
Deviation Alert.
Instruction Manual
D103605X012
Configuration
January 2015
20
DEPPC Set Point—Used in conjunction with End Point Pressure Control, End Point Pressure Control Set Point allows
the user to select a pressure to be delivered by the instrument at the travel extreme. For a fail‐closed valve, this
pressure must be sufficient to maintain the fully open position. For a fail‐open valve, this pressure (which is
automatically set to supply pressure) must be sufficient to fully close the valve and maintain its rated shutoff
classification. For double‐acting spring return actuators, this is the differential pressure required to either maintain
the fully open or fully closed position, depending on the valve and actuator configuration. For a double‐acting
actuator without springs with a fail‐close valve, this is 95% of the supply pressure. If the valve is fail‐open, the upper
operating pressure for all actuator is set to the supply pressure.
DEPPC Saturation Time—End Point Pressure Control Saturation Time is the time the digital valve controller stays in
hard cutoff before switching to pressure control. Default is 45 seconds.
Pressure Control
DPressure Range High—The high end of output pressure range. Enter the pressure that corresponds with 100% valve
travel when Zero Power Condition is closed, or 0% valve travel when Zero Power Condition is open. This pressure
must be greater than the Pressure Range Lo.
DPressure Range Lo—The low end of the output pressure range. Enter the pressure that corresponds to 0% valve
travel when Zero Power Condition is closed, or 100% valve travel when Zero Power Condition is open. This pressure
must be less than the Pressure Range Hi.
Pressure Fallback
Note
Pressure Fallback is available for instrument level AD, PD, ODV.
DTvl Dev Press FallbackWhen the difference between the travel target and the actual travel exceeds this value for
more than the Tvl Dev Press Fallback Time, the instrument will disregard the travel feedback and control based on
output pressure.
DTvl Dev Press Fallback TimeThis is the time, in seconds, that the travel target and the actual travel must be
exceeded before the instrument falls back into pressure control.
DFallback RecoveryIf the instrument has fallen into pressure control and the feedback problem is resolved, recovery
to travel control can occur automatically or with manual intervention. To return to travel control when Manual
Recovery is selected, change the Fallback Recovery to Auto Recovery, and then back to Manual Recovery (if
desired).
Instruction Manual
D103605X012
Configuration
January 2015
21
Control Mode
DControl ModeThis displays the current control mode of the instrument. This will show Analog if the instrument is
in PointtoPoint mode and is using a 420 mA signal for its power and set point. This will show Digital if the
instrument is in Multidrop mode and is using 24 VDC for power and a digital set point for control.
Note
Another mode, Test, may be displayed. Normally the instrument should not be in the Test mode. The digital valve controller
automatically switches to this mode whenever it needs to stroke the valve during calibration or stroke valve, for example.
However, if you abort from a procedure where the instrument is in the test mode, it may remain in this mode. To take the
instrument out of the Test mode, select Change Control Mode and enter Analog or Digital.
DChange Control ModeThis allows the user to configure the control mode to Analog or Digital.
DRestart Control ModeThis defines the Control Mode of the instrument after a restart (e.g. power cycle). Available
choices are Resume Last, Analog and Digital.
Characterization
DInput Characterization
Input Characterization defines the relationship between the travel target and ranged set point. Ranged set point is the
input to the characterization function. If the zero power condition equals closed, then a set point of 0% corresponds to
a ranged input of 0%. If the zero power condition equals open, a set point of 0% corresponds to a ranged input of 100%.
Travel target is the output from the characterization function.
To select an input characterization, select Input Characterization from the Characterization menu. You can select from
the three fixed input characteristics shown in figure 3‐2 or you can select a custom characteristic. Figure 3‐2 shows the
relationship between the travel target and ranged set point for the fixed input characteristics, assuming the Zero
Power Condition is configured as closed.
You can specify 21 points on a custom characteristic curve. Each point defines a travel target, in % of ranged travel, for
a corresponding set point, in % of ranged set point. Set point values range from -6.25% to 106.25%. Before
modification, the custom characteristic is linear.
DCustom Characterization
To define a custom input character, select Custom Characterization from the Characterization menu. Select the point
you wish to define (1 to 21), then enter the desired set point value. Press Enter then enter the desired travel target for
the corresponding set point. When finished, select point 0 to return to the Characterization menu.
With input characterization you can modify the overall characteristic of the valve and instrument combination.
Selecting an equal percentage, quick opening, or custom (other than the default of linear) input characteristic
modifies the overall valve and instrument characteristic. However, if you select the linear input characteristic, the
overall valve and instrument characteristic is the characteristic of the valve, which is determined by the valve trim (i.e.,
the plug or cage).
Instruction Manual
D103605X012
Configuration
January 2015
22
Figure 3‐2. Travel Target Versus Ranged Set Point, for Various Input Characteristics (Zero Power Condition = Closed)
Travel Target, %
Ranged Set Point, %
-25 0 125100
-25 0 125100
-25 0 125100
Input Characteristic = Linear
Input Characteristic = Equal Percentage
Input Characteristic = Quick Opening
100
0
-25
125
Travel Target, %
100
0
-25
125
Ranged Set Point, %
Travel Target, %
100
0
-25
125
Ranged Set Point, %
A6535‐1
Instruction Manual
D103605X012
Configuration
January 2015
23
Dynamic Response
DSP Rate Open—Maximum rate (% of valve travel per second) at which the digital valve controller will move to the
open position regardless of the rate of input current change. A value of 0 will deactivate this feature and allow the
valve to stroke open as fast as possible. In firmware 2, 3, and 4 this parameter should be set to 0.
DSP Rate Close—Maximum rate (% of valve travel per second) at which the digital valve controller will move to the
close position regardless of the rate of input current change. A value of 0 will deactivate this feature and allow the
valve to stroke close as fast as possible. In firmware 2, 3, and 4 this parameter should be set to 0.
DSet Point Filter Time (Lag Time)—The Set Point Filter Time (Lag Time) slows the response of the digital valve
controller. A value ranging from 0.2 to 10.0 can be used for noisy or fast processes to improve closed loop process
control. Entering a value of 0.0 will deactivate the lag filter. In firmware 2, 3, and 4 this parameter should be set to 0.
Note
Set Point Filter Time (Lag Time) is available for instrument level HC, AD, and PD.
DLead/Lag Set Point Filter—ODV devices have access to a lead‐lag set point filter that can be used to improve a valve's
dynamic response. The lead‐lag filter is part of the set point processing routine that reshapes the input signal before
it becomes travel set point. Lead‐lag filters are characterized by lead and lag time constants.
Note
Lead/Lag is only available for instrument level ODV.
When the valve is in its active control region (off the seat), the lead‐lag filter improves small amplitude response by
momentarily overdriving the travel set point. This is useful when the actuator is large and equipped with accessories.
As a result, any volume boosters that are present will be activated. The longer the lag time, the more pronounced the
overdrive. Since the lead‐lag input filter is used to enhance the dynamic response of a control valve, filter parameters
should be set after the tuning parameters have been established.
When the valve is at its seat, the lead‐lag filter also has a boost function that sets the initial conditions of the filter
artificially low so that small amplitude signal changes appear to be large signal changes to the filter. The boost
function introduces a large spike that momentarily overdrives the instrument and activates any external volume
boosters that may be present. The lead‐lag boost function is normally disabled except for those cases where the valve
must respond to small command signals off the seat. By setting the lead/lag ratio in the opening and closing directions
to 1.0, the boost function can be enabled without introducing lead‐lag dynamics in the active control region. See table
3‐2 for typical lead‐lag filter settings.
Table 3‐2. Typical Lead/Lag Filter Settings for Instrument Level ODV
Parameter Description Typical Value
Lag Time First order time constant. A value of 0.0 will disable the lead‐lag filter. 0.2 sec
Opening Lead/Lag Ratio Initial response to the filter in the opening direction. 2.0
Closing Lead/Lag Ratio Initial response to the filter in the closing direction. 2.0
Lead‐Lag Boost Initial conditions of the lead‐lag filter when the lower travel cutoff is active. Off
Instruction Manual
D103605X012
Configuration
January 2015
24
Tuning
Field Communicator Configure > Manual Setup > Tuning (2‐2-4)
Travel Tuning
WARNING
Changes to the tuning set may cause the valve/actuator assembly to stroke. To avoid personal injury and property damage
caused by moving parts, keep hands, tools, and other objects away from the valve/actuator assembly.
DTravel Tuning Set
There are eleven tuning sets to choose from. Each tuning set provides a preselected value for the digital valve
controller gain settings. Tuning set C provides the slowest response and M provides the fastest response.
Table 3‐3 lists the proportional gain, velocity gain and minor loop feedback gain values for preselected tuning sets.
Table 3‐3. Gain Values for Preselected Travel Tuning Sets
Tuning Set Proportional Gain Velocity Gain Minor Loop Feedback Gain
C
D
E
F
G
4.4
4.8
5.5
6.2
7.2
3.0
3.0
3.0
3.1
3.6
35
35
35
35
34
H
I
J
K
L
M
8.4
9.7
11.3
13.1
15.5
18.0
4.2
4.85
5.65
6.0
6.0
6.0
31
27
23
18
12
12
X (Expert) User Adjusted User Adjusted User Adjusted
In addition, you can specify Expert tuning and individually set the proportional gain, velocity gain, and minor loop
feedback gain. Individually setting or changing any tuning parameter or running the Performance Tuner or Stabilize
Optimize routint will automatically change the tuning set to X (expert).
Note
Use Expert tuning only if standard tuning has not achieved the desired results.
Stabilize/Optimize or Performance Tuner may be used to achieve the desired results more rapidly than manual Expert tuning.
Table 3‐4 provides tuning set selection guidelines for Fisher and Baumann actuators. These tuning sets are only
recommended starting points. After you finish setting up and calibrating the instrument, you may have to select either
a higher or lower tuning set to get the desired response. You can use the Performance Tuner to optimize tuning.
Instruction Manual
D103605X012
Configuration
January 2015
25
Table 3‐4. Actuator Information for Initial Setup
Actuator
Manufacturer
Actuator Model Actuator Size Actuator Style
Starting
Tuning Set
Travel Sensor Motion
(2)
Relay A or C
(3)
Fisher
585C & 585CR
25
50
60
68, 80
100, 130
Piston Dbl w/ or w/o
Spring. See actuator
instruction manual and
nameplate.
E
I
J
L
M
User Specified
657
30
34, 40
45, 50
46, 60, 70, 76, &
80‐100
Spring & Diaphragm
H
K
L
M
Away from the top of the instrument
667
30
34, 40
45, 50
46, 60, 70, 76, &
80‐100
Spring & Diaphragm
H
K
L
M
Towards the top of the instrument
1051 & 1052
20, 30
33
40
60, 70
Spring & Diaphragm
(Window‐mount)
H
I
K
M
Away from the top of the instrument
1061
30
40
60
68, 80, 100, 130
Piston Dbl w/o Spring
J
K
L
M
Depends upon pneumatic connections. See
description for Travel Sensor Motion
1066SR
20
27, 75
Piston Sgl w/Spring
G
L
Mounting Style Travel Sensor Motion
A
Away from the top of
the instrument
B
Towards the top of the
instrument
C
Towards the top of the
instrument
D
Away from the top of
the instrument
2052
1
2
3
Spring & Diaphragm
(Window‐mount)
H
J
M
Away from the top of the instrument
3024C
30, 30E
34, 34E, 40, 40E
45, 45E
Spring & Diaphragm
E
H
K
For P
o
operating mode (air opens):
Towards the top of the instrument
For P
s
operating mode (air closes):
Away from the top of the instrument
GX
225
Spring & Diaphragm
X
(1)
Air to Open
Towards the top of
the instrument
Air to Close
Away from the top of
the instrument
750 K
1200 M
Baumann
Air to Extend
16
32
54
Spring & Diaphragm
C
E
H
Towards the top of the instrument
Air to Retract Away from the top of the instrument
Rotary
10
25
54
E
H
J
Specify
NOTE: Refer to figure table 3‐6 for feedback connection (magnet assembly) information.
1. X = Expert Tuning. Proportional Gain = 4.2; Velocity Gain = 3.0; Minor Loop Feedback Gain = 18.0
2. Travel Sensor Motion in this instance refers to the motion of the magnet assembly.
3. Values shown are for Relay A and C. Reverse for Relay B.
DProportional Gain—the proportional gain for the travel control tuning set. Changing this parameter will also change
the tuning set to Expert.
DVelocity Gain—the velocity gain for the travel control tuning set. Changing this parameter will also change the
tuning set to Expert.
Instruction Manual
D103605X012
Configuration
January 2015
26
DMLFB Gain—the minor loop feedback gain for the travel control tuning set. Changing this parameter will also change
the tuning set to Expert.
DIntegral Enable—Yes or No. Enable the integral setting to improve static performance by correcting for error that
exists between the travel target and actual travel. Travel Integral Control is enabled by default.
DIntegral Gain—Travel Integral Gain is the ratio of the change in output to the change in input, based on the control
action in which the output is proportional to the time integral of the input.
DPerformance Tuner
WARNING
During performance tuning the valve may move, causing process fluid or pressure to be released. To avoid personal injury
and property damage caused by the release of process fluid or pressure, isolate the valve from the process and equalize
pressure on both sides of the valve or bleed off the process fluid.
Note
The Performance Tuner is available for instrument level AD, PD, and ODV, and can only be run while in Travel control mode.
The Performance Tuner is used to determine digital valve controller tuning. It can be used with digital valve controllers
mounted on most sliding‐stem and rotary actuators, including Fisher and other manufacturers' products. Moreover,
because the performance tuner can detect internal instabilities before they become apparent in the travel response, it
can generally optimize tuning more effectively than manual tuning. Typically, the performance tuner takes 3 to 5
minutes to tune an instrument, although tuning instruments mounted on larger actuators may take longer.
DStabilize/Optimize
WARNING
During Stabilize/Optimize the valve may move, causing process fluid or pressure to be released. To avoid personal injury
and property damage caused by the release of process fluid or pressure, isolate the valve from the process and equalize
pressure on both sides of the valve or bleed off the process fluid.
Stabilize/Optimize permits you to adjust valve response by changing the digital valve controller tuning. During this
routine the instrument must be out of service, however, the instrument will respond to setpoint changes.
If the valve is unstable, select Decrease Response to stabilize valve operation. This selects the next lower tuning set
(e.g., F to E). If the valve response is sluggish, select Increase Response to make the valve more responsive. This selects
the next higher tuning set (e.g., F to G).
If after selecting Decrease Response or Increase Response the valve travel overshoot is excessive, select Decrease
Damping to select a damping value that allows more overshoot. Select Increase Damping to select a damping value that
will decrease the overshoot. When finished, select done.
Instruction Manual
D103605X012
Configuration
January 2015
27
Pressure Tuning
DPressure Tuning Set
There are twelve Pressure Tuning Sets to choose from. Each tuning set provides a preselected value for the digital valve
controller gain settings. Tuning set C provides the slowest response and M provides the fastest response.
Tuning set B is appropriate for controlling a pneumatic positioner. Table 3‐5 lists the proportional gain, pressure
integrator gain and minor loop feedback gain values for preselected tuning sets.
Table 3‐5. Gain Values for Preselected Pressure Tuning Sets
Tuning Set Proportional Gain Integrator Gain Minor Loop Feedback Gain
B
C
D
E
F
G
0.5
2.2
2.4
2.8
3.1
3.6
0.3
0.1
0.1
0.1
0.1
0.1
35
35
35
35
35
34
H
I
J
K
L
M
4.2
4.8
5.6
6.6
7.8
9.0
0.1
0.1
0.1
0.1
0.1
0.1
31
27
23
18
12
12
X (Expert) User Adjusted User Adjusted User Adjusted
In addition, you can specify Expert tuning and individually set the pressure proportional gain, pressure integrator gain,
and pressure minor loop feedback gain. Individually setting or changing any tuning parameter will automatically
change the tuning set to X (expert).
Note
Use Expert tuning only if standard tuning has not achieved the desired results.
Stabilize/Optimize or Performance Tuner may be used to achieve the desired results more rapidly than Expert tuning.
DProportional Gain—the proportional gain for the pressure control tuning set. Changing this parameter will also
change the tuning set to Expert.
DMLFB Gain—the minor loop feedback gain for the pressure control tuning set. Changing this parameter will also
change the tuning set to Expert.
DIntegral Enable—Yes or No. Enable the pressure integral setting to improve static performance by correcting for
error that exists between the pressure target and actual pressure. Pressure Integral Control is disabled by default.
DIntegral Gain—Pressure Integral Gain (also called reset) is the gain factor applied to the time integral of the error
signal between desired and actual pressure. Changing this parameter will also change the tuning set to Expert.
Travel/Pressure Integral Settings
DIntegral Dead Zone—A window around the Primary Setpoint in which integral action is disabled. This feature is used
to eliminate friction induced limit cycles around the Primary Setpoint when the integrator is active. The Dead Zone
Instruction Manual
D103605X012
Configuration
January 2015
28
is configurable from 0% to 2%, corresponding to a symmetric window from 0% to +/-2% around the Primary
Setpoint. Default value is 0.25%.
DIntegrator Limit—The Integrator Limit provides an upper limit to the integrator output. The high limit is configurable
from 0 to 100% of the I/P drive signal.
Valve and Actuator
Field Communicator Configure > Manual Setup > Valve and Actuator (2‐2‐5)
Valve StyleEnter the valve style, rotary or sliding‐stem
Actuator StyleEnter the actuator style, spring and diaphragm, piston double‐acting without spring, piston
single‐acting with spring, or piston double‐acting with spring.
Feedback Connection—Refer to table 3‐6 for Feedback Connection options. Choose the assembly that matches the
actuator travel range.
Note
As a general rule, do not use less than 60% of the magnet assembly travel range for full travel measurement. Performance will
decrease as the assembly is increasingly subranged.
The linear magnet assemblies have a valid travel range indicated by arrows molded into the piece. This means that the hall sensor
(on the back of the DVC6200 housing) has to remain within this range throughout the entire valve travel. The linear magnet
assemblies are symmetrical. Either end may be up.
Table 3‐6. Feedback Connection Options
Magnet Assembly
Travel Range
mm Inch Degrees
SStem #7 4.2-7 0.17-0.28 -
SStem #19 8-19 0.32-0.75 -
SStem #25 20-25 0.76-1.00 -
SStem #38 26-38 1.01-1.50 -
SStem #50 39-50 1.51-2.00 -
SStem #110 51-110 2.01-4.125 -
SStem #210 110-210 4.125-8.25
SStem #1 Roller > 210 > 8.25 60-90_
RShaft Window #1 - - 60-90_
RShaft Window #2 - - 60-90_
RShaft End Mount - - 60-90_
Relay Type—There are three categories of relays that result in combinations from which to select.
Relay Type: The relay type is printed on the label affixed to the relay body.
A = double‐acting or single‐acting
B = single‐acting, reverse
C= single‐acting, direct
Special App: This is used in single‐acting applications where the “unused” output port is configured to read the
pressure downstream of a solenoid valve.
Lo Bleed: The label affixed to the relay body indicates whether it is a low bleed version.
Instruction Manual
D103605X012
Configuration
January 2015
29
Zero Power Condition—The position of the valve (open or closed) when the electrical power to the instrument is
removed. Zero Power Condition (ZPC) is determined by relay type, as shown in figure 3‐3.
Figure 3‐3. Zero Power Condition
A
B
Single‐Acting Direct (Relay A or C)
Port A pressure to zero.
Single‐Acting Reverse (Relay B)
Double‐Acting (Relay A)
Loss of Electrical Power
Port B pressure to full supply.
Port A pressure to zero.
Port B pressure to full supply.
Relay Type
Travel Sensor Motion
WARNING
If you answer YES to the prompt for permission to move the valve when determining travel sensor motion, the instrument
will move the valve through a significant portion of its travel range. To avoid personal injury and property damage caused
by the release of process fluid or pressure, isolate the valve from the process and equalize pressure on both sides of the
valve or bleed off the process fluid.
Select Clockwise/Toward Bottom, or Counterclockwise/Toward Top. Travel Sensor Motion establishes the proper
travel sensor rotation. For quarter‐turn actuators determine rotation by viewing the rotation of the magnet assembly
from the back of the instrument.
Note
Travel Sensor Motion in this instance refers to the motion of the magnet assembly. Note that the magnet assembly may be
referred to as a magnetic array in user interface tools.
DFor instruments with Relay A and C: If increasing air pressure at output A causes the magnet assembly to move
down or the rotary shaft to turn clockwise, enter CW/To Bottom Inst. If it causes the magnet assembly to move up,
or the rotary shaft to turn counterclockwise, enter CCW/To Top Inst.
DFor instruments with Relay B: If decreasing air pressure at output B causes the magnet assembly to down, or the
rotary shaft to turn clockwise, enter CW/To Bottom Inst. If it causes the magnet assembly to move up, or the rotary
shaft to turn counterclockwise, enter CCW/To Top Inst.
Maximum Supply Pressure
Enter the maximum supply pressure that is required to fully stroke the valve.
Instruction Manual
D103605X012
Configuration
January 2015
30
Partial Stroke Test (PST) (Instrument Level ODV only)
Field Communicator Configure > Manual Setup > Partial Stroke (2-2-6)
Note
Partial Stroke is only available for instrument level ODV.
Partial Stroke Test (PST)
DPST Pressure Limit This defines the actuator pressure at which a partial stroke test will abort. This prevents the
DVC6200 from exhausting (or building) excessive pressure to the actuator in an attempt to move a stuck valve.
During Device Setup or Auto Travel Calibration, the Partial Stroke Pressure Limit will be set automatically as follows:
Single Acting Actuators - For those actuators that exhaust pressure from the partial test start point, the Pressure
Limit will be a minimum value. For those actuators that build pressure from the partial test start point, the Pressure
Limit will be a maximum value.
Double Acting Actuators - The Pressure Limit will be set to a negative value for actuators where the partial stroke
start point is opposite of the Zero Power Condition (e.g., Partial Stroke Start Point = Open and Zero Power
Condition = Closed) and to a positive valve for actuators where the partial stroke start point is the same as the Zero
Power Condition.
The pressure signal used to determine this parameter depends on relay type and is summarized below.
Relay Type Pressure Signal
A or C Port A - Port B
B Port B - Port A
B Special App. Port B
C Special App. Port A
To manually set the partial stroke pressure limit, you must examine current partial stroke test results using ValveLink
software. The following steps will guide you through the process:
1. Connect the DVC6200 to a system running ValveLink software.
2. Disable the following parameters:
D Travel Deviation Alert - set to 125%.
D End Point Pressure Control - disable
D Partial Stroke Pressure Limit - disable by setting the appropriate value shown in table 3‐7.
Loading...
+ 74 hidden pages