Emerson 752I User Manual

User’s Manual from Emerson Network Power Embedded Computing
Katana®752i: Intelligent CompactPCI Blade for cPSB
April 2008
Emerson. Consider It Solved is a trademark, and Business-Critical Continuity, Emerson Net­work Power, and the Emerson Network Power logo are trademarks and service marks of Emerson Network Power, Embedded Computing, Inc. © 2008 Emerson Network Power, Embedded Computing, Inc.
Revision Level: Principal Changes: Date:
10006024-00 Original release February 2006 10006024-01 Updates to page 10-4 March 2006 10006024-02 ECR01059: Added MTBF and RoHS cable info January 2007 10006024-03 Updated block diagram and FRU info July 2007 10006024-04 Updated format, Emerson contact and
regulatory info, and monitor section; changed 750GX to 750GL
Copyright © 2006-2008 Emerson Network Power, Embedded Computing, Inc. All rights reserved.
April 2008

Regulatory Agency Warnings & Notices

!
!
The Emerson Katana752i meets the requirements set forth by the Federal Communications Commission (FCC) in Title 47 of the Code of Federal Regulations. The following information is provided as required by this agency.
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
FCC RULES AND REGULATIONS — PART 15
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reason­able protection against harmful interference when the equipment is operated in a commer­cial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful inter­ference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interfer­ence at his own expense.
Caution: Making changes or modifications to the Katana752i hardware without the explicit consent
of Emerson Network Power could invalidate the user’s authority to operate this equipment.
EMC COMPLIANCE
The electromagnetic compatibility (EMC) tests used a Katana752i model that includes a front panel assembly from Emerson Network Power.
Caution: For applications where the Katana752i is provided without a front panel, or where the front
panel has been removed, your system chassis/enclosure must provide the required electromagnetic interference (EMI) shielding to maintain EMC compliance.
10006024-04 Katana®752i User’s Manual
i
(continued)
EC Declaration of Conformity
According to EN 45014:1998
Manufacturer’s Name: Emerson Network Power
Embedded Computing
Manufacturer’s Address: 8310 Excelsior Drive
Madison, Wisconsin 53717
Declares that the following product, in accordance with the requirements of 2004/108/EEC, EMC Directive and 1999/5/EC, RTTE Directive and their amending directives,
Product: Real-Time Processing Blade
Model Name/Number: Katana752i/10006008-xx
has been designed and manufactured to the following specifications:
EN55022:1998 Information Technology Equipment, Radio disturbance characteristics, Limits and methods of measurement
EN55024:1998 Information Technology Equipment, Immunity characteristics, Limits and methods of measurement
EN300386 V.1.3.2:2003-05 Electromagnetic compatibility and radio spectrum matters (ERM); Telecommunication network equipment; EMC requirements
As manufacturer we hereby declare that the product named above has been designed to comply with the relevant sections of the above referenced specifications. This product complies with the essential health and safety requirements of the EMC Directive and RTTE Directive. We have an inter­nal production control system that ensures compliance between the manufactured products and the technical documentation.
Issue date: April 21, 2008
Bill Fleury Compliance Engineer
ii
Katana®752i User’s Manual 10006024-04

Contents

1Overview
Components and Features . . . . . . . . . . . 1-1
Functional Overview . . . . . . . . . . . . . . . . 1-4
Additional Information . . . . . . . . . . . . . . 1-5
Product Certification . . . . . . . . . . . . .1-5
RoHS Compliance. . . . . . . . . . . . . . . .1-6
Terminology and Notation. . . . . . . .1-6
Technical References. . . . . . . . . . . . .1-6
2Setup
Electrostatic Discharge . . . . . . . . . . . . . . 2-1
Katana®752i Circuit Board. . . . . . . . . . . 2-1
Identification Numbers. . . . . . . . . . . 2-7
Connectors . . . . . . . . . . . . . . . . . . . . .2-7
Fuses. . . . . . . . . . . . . . . . . . . . . . . . . . .2-8
LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . .2-8
Katana®752i Setup . . . . . . . . . . . . . . . . . 2-9
Power Requirements. . . . . . . . . . . .2-10
Environmental Requirements . . . .2-10
Troubleshooting. . . . . . . . . . . . . . . . . . . 2-10
Technical Support . . . . . . . . . . . . . .2-11
Product Repair . . . . . . . . . . . . . . . . .2-11
3 Reset Logic
General Overview . . . . . . . . . . . . . . . . . . . 3-1
Reset Sources . . . . . . . . . . . . . . . . . . . . . . 3-3
CompactPCI Reset Enable . . . . . . . . 3-3
Power Monitor . . . . . . . . . . . . . . . . . . 3-3
750GL Processor Reset . . . . . . . . . . . 3-3
Exception Processing. . . . . . . . . . . . . . . . .4-9
Cache Memory . . . . . . . . . . . . . . . . . . . . 4-11
L1 Cache . . . . . . . . . . . . . . . . . . . . . . 4-11
L2 Cache . . . . . . . . . . . . . . . . . . . . . . 4-11
JTAG/COP Headers. . . . . . . . . . . . . . . . . 4-13
5System Controller
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1
CPU Interface . . . . . . . . . . . . . . . . . . . . . . .5-2
SDRAM Controller . . . . . . . . . . . . . . . . . . .5-3
Device Controller Interface. . . . . . . . . . . .5-3
Internal (IDMA) Controller . . . . . . . . . . . .5-4
Timer/Counters . . . . . . . . . . . . . . . . . . . . .5-4
PCI Interface . . . . . . . . . . . . . . . . . . . . . . . .5-4
PCI Configuration Space. . . . . . . . . . 5-4
PCI Identification . . . . . . . . . . . . . . . . 5-5
PCI Read/Write. . . . . . . . . . . . . . . . . . 5-5
PCI Interface Registers . . . . . . . . . . . 5-5
Doorbell Registers . . . . . . . . . . . . . . . . . . .5-6
Outbound Doorbells . . . . . . . . . . . . . 5-6
Inbound Doorbells. . . . . . . . . . . . . . . 5-6
Watchdog Timer . . . . . . . . . . . . . . . . . . . .5-6
Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-6
On-Card Memory . . . . . . . . . . . . . . . . . . . .5-7
User Flash . . . . . . . . . . . . . . . . . . . . . . 5-7
SDRAM. . . . . . . . . . . . . . . . . . . . . . . . . 5-7
EEPROMs. . . . . . . . . . . . . . . . . . . . . . . 5-8
I2C Interface . . . . . . . . . . . . . . . . . . . . . . . .5-8
GPIO Signal Definitions . . . . . . . . . . . . . 5-10
Console Serial Port . . . . . . . . . . . . . . . . . 5-11
4Processor
Processor Overview . . . . . . . . . . . . . . . . . 4-1
Features . . . . . . . . . . . . . . . . . . . . . . . .4-1
Physical Memory Map . . . . . . . . . . . . 4-2
Processor Reset. . . . . . . . . . . . . . . . . . . . . 4-4
Processor Initialization. . . . . . . . . . . . . . . 4-4
Hardware Implementation Dependent
0 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Hardware Implementation Dependent
1 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Hardware Implementation Dependent
2 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Exception Handling . . . . . . . . . . . . . . . . . 4-8
10006024-04 Katana®752i User’s Manual
6 Device Bus PLD
Reset Registers . . . . . . . . . . . . . . . . . . . . . .6-1
Interrupt Registers. . . . . . . . . . . . . . . . . . .6-2
Product Identification . . . . . . . . . . . . . . . .6-3
PCI Enumeration. . . . . . . . . . . . . . . . . . . . .6-3
Revision Registers . . . . . . . . . . . . . . . . . . .6-4
Board Configuration Registers. . . . . . . . .6-4
Other Registers. . . . . . . . . . . . . . . . . . . . . .6-6
7 Real-Time Clock
Block Diagram. . . . . . . . . . . . . . . . . . . . . . .7-1
Operation . . . . . . . . . . . . . . . . . . . . . . . . . .7-1
Clock Operation . . . . . . . . . . . . . . . . . . . . .7-2
iii
8Local PCI Bus
PCI Enumeration. . . . . . . . . . . . . . . . . . . . .8-1
PCI ID Select and Interrupts . . . . . . . . . . .8-1
Geographical Addressing . . . . . . . . . . . . .8-2
PCI Bus Control Signals . . . . . . . . . . . . . . .8-2
9 PTMC Interface
PTMC Installation . . . . . . . . . . . . . . . . . . . .9-1
PTMC Connector Pinouts . . . . . . . . . . . . .9-3
10Ethernet Interfaces
Ethernet Address . . . . . . . . . . . . . . . . . . 10-1
Ethernet Ports . . . . . . . . . . . . . . . . . . . . . 10-2
Front Panel Ethernet Connector Pinouts . . .
10-2
Optional RMII PHY Devices. . . . . . . . . . 10-3
11IPMI Controller
SMB/IPMI Overview . . . . . . . . . . . . . . . . 11-1
I/O Interface . . . . . . . . . . . . . . . . . . . . . . 11-4
I2C Interfaces . . . . . . . . . . . . . . . . . . . . . 11-5
IPMI Message Protocol . . . . . . . . . . . . . 11-6
IPMI Network Function Codes . . . .11-8
IPMI Completion Codes . . . . . . . . .11-9
Zircon PM IPMI Commands . . . . .11-10
Get Sensor Reading (Sensor/Event) . . .
11-11
Master Write-Read I2C (Application) . .
11-14
Write Setting (OEM) . . . . . . . . . . .11-15
Read Setting (OEM) . . . . . . . . . . . .11-16
Set Heartbeat (OEM) . . . . . . . . . . .11-17
Get Heartbeat (OEM). . . . . . . . . . .11-18
IPMI FRU Information . . . . . . . . . .11-19
IPMI Device SDR Repository . . . . .11-20
IPMI Event Messages . . . . . . . . . . .11-20
(blank page)
12Hot Swap
Hot Swap Logic (HSL) PLD. . . . . . . . . . . 12-1
cPCI Functionality. . . . . . . . . . . . . . . . . . 12-2
Hot Swap LED and Ejector Switch Control . .
12-2
cPCI Hot Swap. . . . . . . . . . . . . . . . . .12-2
Non-cPCI Hot Swap . . . . . . . . . . . . . 12-4
Timing Considerations . . . . . . . . . . . . . 12-5
HEALTHY* Signal . . . . . . . . . . . . . . . . . . 12-6
13CT Bus Interface
PICMG 2.15 Configuration 2 . . . . . . . . 13-1
Katana®752i CT Bus Options. . . . . . . . 13-2
Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
Signal Control . . . . . . . . . . . . . . . . . . . . . 13-3
CT Bus Routing Without the T8110 (option
1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4
CT Bus Routing With the T8110 Installed
(option 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Local CT Bus Operation. . . . . . . . . . 13-7
H.110 CT Bus Operation. . . . . . . . . 13-8
14Backplane Signals
Overview . . . . . . . . . . . . . . . . . . . . . . . . . 14-1
Pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2
15Monitor
Command-Line Features. . . . . . . . . . . . 15-1
Basic Operation . . . . . . . . . . . . . . . . . . . 15-3
Power-Up/Reset Sequence . . . . . . 15-3
Power-Up Timing. . . . . . . . . . . . . . . 15-5
POST Diagnostic Results . . . . . . . . 15-6
Monitor SDRAM Usage. . . . . . . . . . 15-6
Monitor Recovery and Updates . . . . . . 15-7
Recovering the Monitor . . . . . . . . . 15-7
Updating the Monitor via TFTP . . . 15-7 Resetting Environment Variables . 15-8
Monitor Command Reference . . . . . . . 15-8
Command Syntax . . . . . . . . . . . . . . 15-8
Command Help . . . . . . . . . . . . . . . . 15-9
Typographic Conventions . . . . . . . 15-9
Boot Commands . . . . . . . . . . . . . . . . . . 15-9
bootbus. . . . . . . . . . . . . . . . . . . . . . . 15-9
bootcrc . . . . . . . . . . . . . . . . . . . . . . 15-10
bootd . . . . . . . . . . . . . . . . . . . . . . . .15-10
bootelf. . . . . . . . . . . . . . . . . . . . . . .15-10
bootm . . . . . . . . . . . . . . . . . . . . . . .15-10
bootp . . . . . . . . . . . . . . . . . . . . . . . .15-10
bootv . . . . . . . . . . . . . . . . . . . . . . . .15-11
bootvx . . . . . . . . . . . . . . . . . . . . . . . 15-11
rarpboot . . . . . . . . . . . . . . . . . . . . . 15-11
tftpboot. . . . . . . . . . . . . . . . . . . . . . 15-11
iv
Katana®752i User’s Manual 10006024-04
Contents (continued)
JFFS2 File Systems. . . . . . . . . . . . . . . . . 15-12
ls . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-12
fsinfo. . . . . . . . . . . . . . . . . . . . . . . . .15-12
fsload . . . . . . . . . . . . . . . . . . . . . . . .15-12
chpart. . . . . . . . . . . . . . . . . . . . . . . .15-12
Memory Commands . . . . . . . . . . . . . . 15-12
cmp. . . . . . . . . . . . . . . . . . . . . . . . . .15-13
cp . . . . . . . . . . . . . . . . . . . . . . . . . . .15-13
find . . . . . . . . . . . . . . . . . . . . . . . . . .15-13
md. . . . . . . . . . . . . . . . . . . . . . . . . . .15-13
mm . . . . . . . . . . . . . . . . . . . . . . . . . .15-14
nm. . . . . . . . . . . . . . . . . . . . . . . . . . .15-14
mw . . . . . . . . . . . . . . . . . . . . . . . . . .15-14
Flash Commands . . . . . . . . . . . . . . . . . 15-15
cp . . . . . . . . . . . . . . . . . . . . . . . . . . .15-15
erase. . . . . . . . . . . . . . . . . . . . . . . . .15-15
flinfo . . . . . . . . . . . . . . . . . . . . . . . . .15-15
protect . . . . . . . . . . . . . . . . . . . . . . .15-16
EEPROM / I2C Commands. . . . . . . . . . 15-16
eeprom . . . . . . . . . . . . . . . . . . . . . .15-16
icrc32 . . . . . . . . . . . . . . . . . . . . . . . .15-17
iloop . . . . . . . . . . . . . . . . . . . . . . . . .15-17
imd . . . . . . . . . . . . . . . . . . . . . . . . . .15-17
ipmifirmload . . . . . . . . . . . . . . . . . .15-17
imm . . . . . . . . . . . . . . . . . . . . . . . . .15-17
imw. . . . . . . . . . . . . . . . . . . . . . . . . .15-17
inm . . . . . . . . . . . . . . . . . . . . . . . . . .15-17
iprobe. . . . . . . . . . . . . . . . . . . . . . . .15-18
Ethernet Controller EEPROM Commands . .
15-18
initeth4rom. . . . . . . . . . . . . . . . . . .15-18
filleth4rom . . . . . . . . . . . . . . . . . . .15-18
showeth4rom . . . . . . . . . . . . . . . . .15-18
Environment Parameter Commands 15-18
envinit . . . . . . . . . . . . . . . . . . . . . . .15-19
printenv . . . . . . . . . . . . . . . . . . . . . .15-19
saveenv . . . . . . . . . . . . . . . . . . . . . .15-19
setenv. . . . . . . . . . . . . . . . . . . . . . . .15-19
Test Commands . . . . . . . . . . . . . . . . . . 15-20
diags . . . . . . . . . . . . . . . . . . . . . . . . .15-20
mtest . . . . . . . . . . . . . . . . . . . . . . . .15-20
um. . . . . . . . . . . . . . . . . . . . . . . . . . .15-20
Other Commands. . . . . . . . . . . . . . . . . 15-20
autoscr . . . . . . . . . . . . . . . . . . . . . . .15-20
base . . . . . . . . . . . . . . . . . . . . . . . . .15-20
bdinfo . . . . . . . . . . . . . . . . . . . . . . .15-20
coninfo . . . . . . . . . . . . . . . . . . . . . . 15-21
crc16 . . . . . . . . . . . . . . . . . . . . . . . . 15-21
crc32 . . . . . . . . . . . . . . . . . . . . . . . . 15-21
echo . . . . . . . . . . . . . . . . . . . . . . . . . 15-21
enumpci . . . . . . . . . . . . . . . . . . . . .15-21
fpledoff . . . . . . . . . . . . . . . . . . . . . . 15-21
fruget. . . . . . . . . . . . . . . . . . . . . . . .15-21
frugetuser . . . . . . . . . . . . . . . . . . . . 15-21
frusetuser . . . . . . . . . . . . . . . . . . . . 15-22
gethvr . . . . . . . . . . . . . . . . . . . . . . .15-22
getmonver . . . . . . . . . . . . . . . . . . . 15-22
getpcimemsize . . . . . . . . . . . . . . . 15-22
getpcimode . . . . . . . . . . . . . . . . . . 15-23
getphysloc . . . . . . . . . . . . . . . . . . .15-23
getspr . . . . . . . . . . . . . . . . . . . . . . . 15-23
go . . . . . . . . . . . . . . . . . . . . . . . . . . .15-23
help . . . . . . . . . . . . . . . . . . . . . . . . .15-23
iminfo . . . . . . . . . . . . . . . . . . . . . . . 15-23
isdram . . . . . . . . . . . . . . . . . . . . . . .15-24
loop . . . . . . . . . . . . . . . . . . . . . . . . . 15-24
memmap . . . . . . . . . . . . . . . . . . . . 15-24
moninit . . . . . . . . . . . . . . . . . . . . . . 15-24
pci. . . . . . . . . . . . . . . . . . . . . . . . . . . 15-24
reset. . . . . . . . . . . . . . . . . . . . . . . . . 15-25
run . . . . . . . . . . . . . . . . . . . . . . . . . .15-25
setpcimemsize. . . . . . . . . . . . . . . . 15-25
setpcimode. . . . . . . . . . . . . . . . . . . 15-25
setspr . . . . . . . . . . . . . . . . . . . . . . . .15-26
script . . . . . . . . . . . . . . . . . . . . . . . . 15-26
showmac. . . . . . . . . . . . . . . . . . . . .15-26
showpci . . . . . . . . . . . . . . . . . . . . . . 15-26
showtemp. . . . . . . . . . . . . . . . . . . . 15-26
sleep. . . . . . . . . . . . . . . . . . . . . . . . . 15-26
vdhcp. . . . . . . . . . . . . . . . . . . . . . . . 15-26
version. . . . . . . . . . . . . . . . . . . . . . . 15-27
Environment Variables . . . . . . . . . . . . 15-27
Troubleshooting. . . . . . . . . . . . . . . . . . 15-30
Download Formats. . . . . . . . . . . . . . . . 15-30
Binary. . . . . . . . . . . . . . . . . . . . . . . .15-30
Motorola S-Record . . . . . . . . . . . . 15-30
16Acronyms
10006024-04 Katana®752i User’s Manual
v
(blank page)
vi
Katana®752i User’s Manual 10006024-04

Figures

Figure 1-1: General System Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Figure 2-1: Katana®752i Front Panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Figure 2-2: Component Map, Top (Rev. 03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Figure 2-3: Component Map, Bottom (Rev. 03). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Figure 2-4: Jumper, Fuse, and Switch Locations, Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Figure 2-5: Fuse, and LED Locations, Bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Figure 3-1: Katana®752i Reset Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Figure 3-2: 750GL Reset Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Figure 4-1: 750GL Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Figure 4-2: 750GL Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Figure 5-1: MV64460 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Figure 5-2: I2C Interface Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
Figure 5-3: Standard Console Cable Wiring, #10007665-00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Figure 7-1: M41T00 Real-Time Clock Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Figure 9-1: PTMC Module Location on Baseboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
Figure 10-1: RMII PHY to Transition Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4
Figure 11-1: IPMB Connections Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3
Figure 12-1: Hot Swap Controller Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4
Figure 13-1: Typical System Clocking Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
Figure 13-2: CT Signal Routing Diagram —T8110 Not Installed (option 1) . . . . . . . . . . . . . . . . . . . 13-5
Figure 13-3: CT Signal Routing Diagram —T8110 Installed (option 2) . . . . . . . . . . . . . . . . . . . . . . . 13-8
Figure 14-1: cPCI Connector Pin Assignments, J5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-6
Figure 15-1: Example Monitor Start-up Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2
Figure 15-2: Power-up/Reset Sequence Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4
10006024-04 Katana®752i User’s Manual
vii
(blank page)
viii
Katana®752i User’s Manual 10006024-04

Tables

Table 1-1: Regulatory Agency Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Table 1-2: Technical References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Table 2-1: Circuit Board Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Table 2-2: LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Table 4-1: Katana®752i CPU Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Table 4-2: Katana®752i Address Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Table 4-3: CPU Internal Register Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Table 4-4: 750GL Exception Priorities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8
Table 4-5: Floating Point Exception Mode Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10
Table 4-6: 750GL JTAG/COP Interface Pin Assignments, (P3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
Table 5-1: PCI Identification Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Table 5-2: NVRAM Allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Table 5-3: GPIO Signals Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Table 5-4: Serial Console Port Pin Assignments, (P2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Table 7-1: RTC Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Table 8-1: ID Select Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Table 8-2: Interrupt Connections for Katana®752i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Table 8-3: Geographical Address Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Table 9-1: J1x PTMC Connector Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Table 9-2: J2x PTMC Connector Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5
Table 10-1: GbE Port LEDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
Table 10-2: 82544EI Ethernet Port Pin Assignments, ETH4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Table 10-3: MV64460 Ethernet Port Pin Assignments, ETH3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Table 10-4: PTMC PHY Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Table 11-1: Zircon PM General Purpose I/O Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4
Table 11-2: Zircon PM Analog-to-Digital Input Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5
Table 11-3: IPMB Slave Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6
Table 11-4: Format for IPMI Request Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6
Table 11-5: Format for IPMI Response Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7
Table 11-6: Network Function Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8
Table 11-7: Completion Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9
Table 11-8: Zircon PM IPMI Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-10
Table 11-9: Get Sensor Reading Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12
Table 11-10: Master Write-Read I2C Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-14
Table 11-11: Write Setting Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-15
Table 11-12: Read Setting Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16
Table 11-13: Set Heartbeat Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17
Table 11-14: Get Heartbeat Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18
Table 11-15: FRU Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-19
Table 11-16: IPMI Event Messages Generating Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-20
10006024-04 Katana®752i User’s Manual
ix
Tables (continued)
Table 11-17: Event Message Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-20
Table 11-18: System Firmware Progress OEM Event Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-21
Table 12-1: HSL PLD Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
Table 13-1: CT Clock Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
Table 13-2: Local CT Bus Bit Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Table 14-1: cPCI Connector Pin Assignments, J1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2
Table 14-2: cPCI Connector Pin Assignments, J2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3
Table 14-3: cPSB Connector Pin Assignments, J3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4
Table 14-4: cPSB Connector Pin Assignments, J4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-5
Table 15-1: Power-Up Timing for Booting from Soldered Flash. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5
Table 15-2: Power-Up Timing for Booting from Socketed Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-5
Table 15-3: POST Diagnostics Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6
Table 15-4: Standard Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-27
Table 15-5: Optional Environment Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-29
x
Katana®752i User’s Manual 10006024-04

Registers

Register 4-1: 750GL Hardware Implementation Dependent, HID0. . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Register 4-2: 750GL Hardware Implementation Dependent, HID1. . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Register 4-3: 750GL Hardware Implementation Dependent, HID2. . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Register 4-4: CPU Machine State (MSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
Register 4-5: L2 Cache Control Register (L2CR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11
Register 6-1: Reset Event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Register 6-2: Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Register 6-3: Interrupt Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Register 6-4: Interrupt Pending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Register 6-5: Product ID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Register 6-6: EReady. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Register 6-7: Hardware Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Register 6-8: PLD Version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Register 6-9: Board Configuration 3.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Register 6-10: Board Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Register 6-11: Board Configuration 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Register 6-12: IPMI Port Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
Register 6-13: Programmable LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
Register 10-1: MAC Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
10006024-04 Katana®752i User’s Manual
i
(blank page)
ii
Katana®752i User’s Manual 10006024-04

Overview

Section 1
The Emerson Katana®752i is an intelligent input/output (I/O) processing blade for use in a CompactPCI backplane. It is compatible with the CompactPCI Packet-Switched Backplane (cPSB) and has two PCI Telecom Mezzanine Card (PTMC) sites that can support two tele­communications interface cards, such as the Emerson PM/3Gv. The Katana®752i draws processing power from its IBM PowerPC to 1GHz. A Marvell system controller serves as a PCI bridge. In the standard configuration, the Katana®752i connects two Gigabit Ethernet ports to the front panel and two Gigabit Ethernet ports to the J3 backplane connector, which (depending upon the configuration) provides access to a rear transition module or cPSB. The Katana®752i supports various memory configurations, user Flash memory, a front-panel serial port, and user I/O from the PTMC sites. Optionally, the Katana®752i supports the H.110 Computer Telephony (CT) bus and various clocking signals.

COMPONENTS AND FEATURES

The following is a brief summary of the Katana®752i hardware components and features:
®
750GL microprocessor, running at a speed of up
CPU: The Katana®752i features an IBM 750GL central processing unit (CPU), operating at a rate
of up to 1GHz. The CPU is a 32-bit PowerPC RISC microprocessor with 32-kilobyte, Level-1, data and instruction caches, as well as a one-megabyte, four-way, set-associative, Level-2 cache.
System Controller/PCI Bridge:
The Katana®752i employs a system controller/PCI bridge device from Marvell. The Discov-
ery bus interface, double-data rate (DDR) SDRAM controller, two 66-MHz PCI interfaces (64 bits for CompactPCI, 32 bits for PTMC sites), three 10/100/1000BaseT Ethernet MAC con­trollers, two multi-protocol serial controllers (MPSC), an interrupt controller, and 32 gen­eral-purpose input/output (I/O) signals. The MV64460 also includes an inter-integrated circuit (I
III MV64460 is a single-chip solution that provides a high-speed (up to 200MHz) 60x
2
C) interface.
10006024-04 Katana®752i User’s Manual
1-1
Overview: Components and Features
SDRAM: The Katana®752i allows for a 72-bit Small-Outline Dual In-Line Memory Module (SO-
DIMM) of up to two gigabytes to support the CPU. (Please contact Emerson for the avail­ability of one- and two-gigabyte SO-DIMMs.) This SDRAM operates at a speed of up to 200 MHz and has Error Checking and Correction (ECC) code.
Flash: The Katana®752i supports up to 128 megabytes soldered user Flash memory for the CPU.
The Flash bank is 32 bits wide, using two or four 16-bit wide devices. The Katana®752i also supports 512 kilobytes of socketed Flash. The Flash memory conforms to the Intel StrataFlash
H.110: The Katana®752i has an optional configuration that supports the H.110 Computer Tele-
phony (CT) bus in accordance with the PICMG 2.5 Computer Telephony Specification and ECTF H.110 Specification, and it complies with Configuration 2 of the PICMG 2.15 PCI Tele­com Mezzanine/Carrier Card Specification. The optional Agere Systems T8110 Time Slot Interchanger (TSI) serves as a bridge between the H.110 and local CT bus.
Ethernet Ports: The Katana®752i provides four, 10/100/1000BaseT, Gigabit Media-Independent Interface
(GMII) Ethernet ports (three from the MV64460 system controller, one from the 82544EI Ethernet controller). Two ports route to the front panel RJ45 connectors, and two ports route to the J3 CompactPCI (cPCI) connector for use either by a rear transition module or a cPCI packet-switched backplane (cPSB). Four PHY devices (three Broadcom BCM5461S, one Intel 82544EI) provide the physical interface for these ports. Optionally, the Katana®752i can support two Reduced Media-Independent (RMII) 10/100BaseT Ethernet ports routed from the PTMC sites to connector J5. Two Micrel KS8721CL PHYs support these ports.
architecture. The CPU is capable of booting from either Flash memory.
Serial I/O: The MV64460 system controllers provides an asynchronous console serial port, which sup-
ports EIA-232 signal levels. This serial port is accessible via a mini-DB9 connector on the Katana®752i front panel and the backplane connector J5.
CT Bus Clocks: Optionally, the Katana®752i can provide computer telephony (CT) bus clocking. One
option supports only the CT clocks (C8A, C8B, FRAMEA, FRAMEB, NETREF1, and NETFER2) between J4 and the PTMC sites. A second option supports CT bus clocking plus CT data traf­fic via an Agere Systems T8110 Time Slot Interchanger (TSI). This routes H.110 to the back­plane connector J4.
1-2
Katana®752i User’s Manual 10006024-04
Overview: Components and Features
PTMC Sites: The Katana®752i has two standard PCI Telecom Mezzanine Card (PTMC) slots, which allow
for the use of two compatible PTMC boards, such as the Emerson PM/3Gv telecommunica­tions interface card. (Refer to the PM/3Gv User’s Manual for details on the PM/3Gv.) The Katana®752i complies with Configuration 2 of the PCI Telecom Mezzanine/Carrier Card Spec- ification, PICMG 2.15.
IPMI: The Katana®752i supports an Intelligent Platform Management Interface (IPMI) by using a
Zircon PM controller device from QLogic Corporation.
Rear Transition Module:
An optional TmPIM rear transition module (RTM) can host two PCI Mezzanine Card Input/Output Modules (PIMs). This RTM routes input/output signals from the Katana®752i PMC slots to the PIM slots. It can also route two Ethernet ports and an EIA-232 serial port from the J3 backplane connector to its rear panel. The Katana®752i also supports the TM/cSpan-P16 and TM/cSpan-P8E RTMs from Emerson. See the appropriate RTM user man­uals more information.
10006024-04 Katana®752i User’s Manual
1-3
Overview: Functional Overview
J1 J2
J3 cPSB & I/O
Marvell
D-III
System
Controller
32/64/128
MB Flash
256/512MB
1GB/2GB
DDR SDRAM
512KB
Socketed
Flash
PMC Site #1
32 bit/33/66MHz PCI
64 User I/O
CT Bus per PT2MC
PMC Site #2
32 bit/33/66MHz PCI
64 User I/O
CT Bus per PT2MC
Opt J4 H.110 J5 I/O
RS232
μDB-9
RJ45
1000BaseT
CT Bus Clocks
User I/O
User I/O
NVRAM
IPMI
CTRL
FRU ROM
Voltage
Monitors
Temp
Sensors
Power Supply
& Monitoring
Switch
BCM
5461S
MAG
RTC
BCM
5461S
MAG
IBM
750GX
BCM
5461S
MAG
RJ45
1000BaseT
MAG
GbE
MAC/PHY
GMII
Clock
Buffer
Opt. TSI
T8110
PCI
Opt.
KS8721CL
Opt.
KS8721CL
J12
J11
J13
J22
J21 J23
J24
J14
RMII
RMII
3.3V
2.5V
1.5V
PCI
RS232
1000BaseT
I
2
C
CT Bus
CPCI
Power
PTMC Ethernet

FUNCTIONAL OVERVIEW

The following block diagram provides a functional overview for the Katana®752i.
Figure 1-1: General System Block Diagram
1-4
Katana®752i User’s Manual 10006024-04
Overview: Additional Information

ADDITIONAL INFORMATION

This section lists the Katana®752i hardware’s regulatory certifications and briefly discusses the terminology and notation conventions used in this manual. It also lists general technical references.
Mean time between failures (MTBF) has been calculated at 500,674 hours using Telcordia SR-232, Issue 1, Reliability Prediction for Electronic Equipment at 40

Product Certification

The Katana®752i hardware has been tested to comply with various safety, immunity, and emissions requirements as specified by the Federal Communications Commission (FCC), Underwriters Laboratories (UL), and others. The following table summarizes this compli­ance.
Table 1-1: Regulatory Agency Compliance
Type: Specification:
Safety IEC60950/EN60950 – Safety of Information Technology
Equipment (Western Europe)
UL60950, CSA C22.2 No. 60950, Third Edition – Safety of Information Technology Equipment, including Electrical Business Equipment (BI-National)
Global IEC – CB Scheme Report IEC 60950, all country deviations
Environmental NEBS: Telecordia GR-63 –
Section 4.1.1 Transportation and Storage Environmental
Criteria;
Section 4.3 Equipment Handling Criteria; Section 4.4.1 Earthquake Environment and Criteria; Section 4.4.3 Office Vibration Environment and Criteria; Section 4.4.4 Transportation Vibration Criteria Section 4.5 Airborne Contaminants
EMC FCC Part 15, Class A – Title 47, Code of Federal Regulations,
Radio Frequency Devices
ICES 003, Class A – Radiated and Conducted Emissions, Canada
NEBS: Telecordia GR-1089 level 3 – Emissions and Immunity (circuit pack level testing only)
ETSI EN300386 – Electromagnetic Compatibility and Radio Spectrum Matters (ERM), Telecommunication Network Equipment, Electromagnetic Compatibility (EMC) Requirements
°C.
10006024-04 Katana®752i User’s Manual
1-5
Overview: Additional Information
Emerson maintains test reports that provide specific information regarding the methods and equipment used in compliance testing. Unshielded external I/O cables, loose screws, or a poorly grounded chassis may adversely affect the Katana®752i hardware’s ability to com­ply with any of the stated specifications.
The UL web site at ul.com has a list of Emerson’s UL certifications. To find the list, search in the online certifications directory using Emerson’s UL file number, E190079. There is a list for products distributed in the United States, as well as a list for products shipped to Can­ada. To find the Katana®752i, search in the list for 10006008-xx, where xx changes with each revision of the printed circuit board.

RoHS Compliance

The Katana®752i is compliant with the European Union’s RoHS (Restriction of Use of Haz­ardous Substances) directive, created to limit harm to the environment and human health by restricting the use of harmful substances in electrical and electronic equipment. Effec­tive July 1, 2006, RoHS restricts the use of six substances: cadmium (Cd), mercury (Hg), hexavalent chromium (Cr (VI)), polybrominated biphenyls (PBBs), polybrominated diphe­nyl ethers (PBDEs), and lead (Pb). Configurations that are RoHS compliant are built with lead-free solder. Configurations that are 5-of-6 are built with tin-lead solder per the lead-in­solder RoHS exemption.
To obtain a certificate of conformity (CoC) for the Katana®752i, send an e-mail to sales@artesyncp.com or call 1-800-356-9602. Please have the part number(s) (e.g., C000####-##) for your configuration(s) available when contacting Emerson.

Terminology and Notation

Active low signals: An active low signal is indicated with an asterisk * after the signal name.
Byte, word: Throughout this manual byte refers to 8 bits, word refers to 16 bits, and long word refers to
32 bits, double long word refers to 64 bits.
PLD: This manual uses the acronym, PLD, as a generic term for programmable logic device (also
known as FPGA, CPLD, EPLD, etc.).
Radix 2 and 16: Hexadecimal numbers end with a subscript 16. Binary numbers are shown with a subscript
2.

Technical References

Further information on basic operation and programming of the Katana®752i components can be found in the following documents.
1-6
Katana®752i User’s Manual 10006024-04
Overview: Additional Information
Table 1-2: Technical References
Device/Interface:Type: Document: 1
CompactPCI CompactPCI® Specification
CPU 750GL IBM PowerPC™ 750GX and 750GL RISC Microprocessor User’s
(PCI Industrial Computers Manufacturers Group, PICMG
®
2.0
R3.0, Oct. 1, 1999)
Hot Swap Specification
®
(PICMG
System Management Specification
(PICMG
PCI Telecom Mezzanine/Carrier Card Specification
(PICMG
Packet Switching Backplane Specification
(PICMG
2.1 R2.0, Jan. 17, 2001)
®
2.9 R1.0, Feb. 2, 2000)
®
2.15 R1.0, Apr. 11, 2001)
®
2.16 R1.0, Sept. 5, 2001)
http://www.picmg.org
Manual
(IBM Corporation, Version 1.2, March 27, 2006)
IBM PowerPC™ 750GL RISC Microprocessor Revision Level DD1.X Datasheet
(IBM Corporation, Preliminary, Version 1.2, March 13, 2006)
PowerPC™ Microprocessor Family: The Programming Environments for 32-Bit Microprocessors
(IBM Corporation, G522-0290-01)
PowerPC™ Microprocessor Family: The Bus Interface for 32-Bit Microprocessors
(IBM Corporation, G522-0291-00)
http://www.ibm.com
10006024-04 Katana®752i User’s Manual
1-7
Overview: Additional Information
Device/Interface:Type: Document: 1 (continued)
Ethernet BCM5461S BCM5461S 10/100/1000Base-T Gigabit Ethernet Transceiver
82544EI 82544EI Gigabit Ethernet Controller Datasheet and Hardware
KS8721CL KS8721CL 3.3V Single Power Supply 10/100BASE-TX/FX MII
Hot Swap Controller
IPMI/IPMB IPMI — Intelligent Platform Management Interface
IPMI Controller Zircon PM Zircon PM Technical Manual
PCI PCI Local Bus Specification
PMC IEEE Standard for a Common Mezzanine Card (CMC) Family: IEEE
LTC1643L LTC1643L/LTC1643L-1/LTC1643H PCI-Bus Hot Swap Controller
Advance Data Sheet
(Broadcom Corp., 5461S-DS04-R, April 27, 2004)
http://www.broadcom.com
Design Guide; Application Note (AP-422)
(Intel Corp., Doc. No. A44740-005, Rev. 0.80, Dec. 2003)
http://www.intel.com
Physical Layer Transceiver Data Sheet, Rev. 1.2
(Micrel, Inc., M9999-041405, April 2005)
http://www.micrel.com
IEEE Standard for Information Technology: IEEE Std 802.3, 2000 Edition
(IEEE: New York, NY)
http://www.ieee.org
Data Sheet
(Linear Technology Corp., 1998)
http://www.linear.com
Specification v1.5
(Intel Corp., Hewlett-Packard Co., NEC Corp., Dell Computer Corp., Rev. 1.1, Feb. 20, 2002)
IPMI — Intelligent Platform Management Bus Communications Protocol Specification v1.0
(Intel Corp., Hewlett-Packard Co., NEC Corp., Dell Computer Corp., Rev. 1.0, Sept. 16, 1998)
http://www.intel.com/design/servers/ipmi/spec.htm
(QLogic Corp., 36000-510-03, Rev. C, Apr. 2002)
http://www.qlogic.com
(PCI Special Interest Group, Revision 2.3, March 29, 2002)
http://www.pcisig.com
Std 1386-2001
(IEEE: New York, NY)
IEEE Standard for Physical and Environmental Layers for PCI Mezzanine Cards: IEEE Std 1386.1-2001
(IEEE: New York, NY)
http://www.ieee.org
1-8
Katana®752i User’s Manual 10006024-04
Overview: Additional Information
Device/Interface:Type: Document: 1 (continued)
H.110 T8110 Ambassador® T8110 PCI-Based H.100/H.110 Switch and Packet
Serial Interface
System Controller MV64460 MV6446x System Controller for PowerPC Processors
PTMC Module PM/3Gv
Transition Module TmPIM
1. Frequently, the most current information regarding addenda/errata for specific documents may be found on the corresponding web site.
EIA-232-F TIA/EIA-232-F: Interface Between Data Terminal Equipment and
TM/cSpan-P16 TM/cSpan-P8E
Payload Engine
(Agere Systems, April 2001 AY01-021CT1)
http://www.agere.com
H.110 Hardware Compatibility Specification: CT Bus
(ECTF, revision 1.0)
http://www.ectf.org
Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange
(Electronic Industries Association, October 1997)
http://www.eia.com/
(Marvell, MV-S101286-01, Rev. A, June 19, 2003)
http://www.marvell.com
PM/3Gv User’s Manual
(Emerson Network Power, Embedded Computing #10003035-xx)
http://www.emersonembeddedcomputing.com
TmPIM User’s Manual
(Emerson Network Power, Embedded Computing #10005691-xx)
TM/cSpan-P16 User’s Manual
(Emerson Network Power, Embedded Computing #10001320-xx)
TM/cSpan-P8E User’s Manual
(Emerson Network Power, Embedded Computing #10005363-xx)
http://www.emersonembeddedcomputing.com
If you have questions, please call Emerson Technical Support at 1-800-327-1251, visit the web site at http://www.emersonembeddedcomputing.com, or send e-mail to support@artesyncp.com.
10006024-04 Katana®752i User’s Manual
1-9
(blank page)
1-10
Katana®752i User’s Manual 10006024-04

Setup

!
Section 2
This chapter describes the physical layout of the boards, the setup process, and how to check for proper operation once the boards have been installed. This chapter also includes troubleshooting, service, and warranty information.

ELECTROSTATIC DISCHARGE

Before you begin the setup process, please remember that electrostatic discharge (ESD) can easily damage the components on the Katana especially those with programmable parts, are susceptible to ESD, which can result in oper­ational failure. Unless you ground yourself properly, static charges can accumulate in your body and cause ESD damage when you touch the board.
Caution: Use proper static protection and handle Katana
necessary. Always wear a wriststrap to ground your body before touching a board. Keep your body grounded while handling the board. Hold the board by its edges–do not touch any components or circuits. When the board is not in an enclosure, store it in a static­shielding bag.
To ground yourself, wear a grounding wriststrap. Simply placing the board on top of a static-shielding bag does not provide any protection–place it on a grounded dissipative mat. Do not place the board on metal or other conductive surfaces.

KATANA®752I CIRCUIT BOARD

The Katana®752i circuit board is a 6U CompactPCI card assembly. It uses a 14-layer printed circuit board with the following dimensions.
Table 2-1: Circuit Board Dimensions
Width: Depth: Height:
9.19 in. (233.35 mm) 6.30 in. (160 mm) < 0.8 in. (< 20.32 mm)
The figures on the following pages show the front panel, component maps, and jumper locations for the Katana
®
752i circuit board.
®
752i hardware. Electronic devices,
®
752i boards only when absolutely
10006024-04 Katana®752i User’s Manual
2-1
PMC Site #2
PMC Site #1
EIA-232 Serial Port
Reset Switch
Programmable LEDs 14, Green
Speed LED, ETH4
GbE Port, 82544EI (ETH4)
Fault LED, Red
Activity LED, ETH4
Speed LED, ETH3
Activity LED, ETH3
GbE Port, MV64460 (ETH3)
Hot Swap LED, Blue
Ethernet LED Coding
ACT SP green green 1000BASE-T green yellow 100BASE-T green off 10BASE-T flash green yellow or green activity off off no link
Note: PMC Site #1 is not available for standard 2-GB SO-DIMM configurations. However, it may be available for some custom 2-GB configurations. Please contact Artesyn for details.
Setup: Katana®752i Circuit Board
Figure 2-1: Katana®752i Front Panel
2-2
Katana®752i User’s Manual 10006024-04
Setup: Katana®752i Circuit Board
J6
CR1
U15
C98
C62
C97
C88
C66
C71
C75
U34
F4
F3
C9
C124
C123
C8
Y2
C93
C114
C115
C94
C85
Y1
C122
C638
C113
C112
C120
C116
C119
C118
C5C4
C43
C42
C52
C50
C14
C99
C61
C58
C91
U23HC
C546
C548
C552
C553
C550
C544
C543
C540
C541
C538
C539
U23H
C32
F1
F2
C59
C41
C20
C49
C19
C24
C13
C110
C109
C111
C90
C101
C107
C102
C103
C100
C104
C106
C121
C688
C689
C691
C690
C692
J7
JP1
JP2
J1
J5
J3
J4
J11
J12
J13
J14
J21
J22
J23
J24
CR7
U27
R288
R831
R2 R3 R4 R5
R1
U5S
SW1
R10
R11
R13
R16
R7R8R9
U17
U18
U36
U52
U54
P2
L1
L2
L3
L4
U19
U4
U26
C86
C87
P3
RN3
RN19 RN20 RN21 RN22 RN23
RN24
RN25
RN26 RN27 RN28 RN29
RN30
RN31 RN32 RN33
RN34 RN35
RN36 RN37 RN38 RN39
R19
R20
U5
U35
U13
RN1
RN10
RN11
RN12
RN13
RN14
RN2
RN4 RN5
RN6
RN7
RN8
RN9
R12
R14
R15
R17
R18
R21
U14U16
R262
R284
R6
U24
U1 U2
U32
U33
CR3
CR4
CR5
CR6
CR2
M5
L9
U21
U22
U3
U20
R263
P1
C105
C108
C11
C117
C18
C21
C23
C25
C29
C3
C31
C36
C38
C39
C40
C44
C45
C48
C51
C53
C6
C60
C63
C64
C65
C68
C69
C7
C70
C73
C74
C76
C77
C82
C89
C92
C95
C96
R873
R886
C717
C722
C733
C734
U75
U76
U6U10
U11 U7
U8
U29
JP3
R904
R911
R914
C735
C736
C72
C78
C772
C779
C800
R920
R921
R928
R929
R936
R937
C770
C775
C776
C781
C798
C803
R932
R933
R941
R919
R930
R935
C774
C777
C802
R918
R931
R934
C768
C769
C773
C778
C782
C783
C796
C797
C801
C762
C763
C764
C765
C766
C767
C784
C785
C786
C787
C788
C789
C790
C791
C792
C793
C794
C795
L26
L27
L28
U77
U78
U79
R924
R940
R923
R926
R939
R943
R942
R945
R944
R946
R950
R951
R947
C804
R952
R948
R949
R925
C805
C806
C807
C808
C809
C810
R953
J1 – cPCI ConnectorJ2 – cPCI ConnectorJ3 – cPSB ConnectorJ4 – cPCI ConnectorJ5 – cPCI Connector
J22 – PMC Site #2
J21 – PMC Site #2
J24 – PMC Site #2
J23 – PMC Site #2
J12 – PMC Site #1
J11 – PMC Site #1
J14 – PMC Site #1
J13 – PMC Site #1
P1
Dual RJ45
Connector with
LEDs
P2
Micro DB9
LP1
U15
SO-DIMM
DDR
SDRAM
U28
MV64460
System Controller
U29
T8110
TSI
U23
IBM 750GX
CPU
U20
82544EI
Ethernet
Controller
U5
Socketed
Flash
U7
Soldered
Flash
U11
Soldered
Flash
U6
Soldered
Flash
U10
Soldered
Flash
P3
JTAG
(750GX)
J6
HotSwap
U8
Device
Bus
PLD
U24 HSL PLD
J7
JTAG
(ISP)
Figure 2-2: Component Map, Top (Rev. 03)
10006024-04 Katana®752i User’s Manual
2-3
Setup: Katana®752i Circuit Board
C171
C347
C641
C627
C626
C657
C193
C182
C400
C386
C414
C472
C439
C441
C456
C454
C420
C432
C708
C709
C710
C707
C661
C132
C127 C126
C125
C508
C587
C640
C662
C637
C639
C669
C656
C458
C150
C216
C412
C403
C422
C455
C470
C655
C660
C649
C672
C673
C666 C665
C675
C648 C647
C654
C659
C670
C528
C169
C188
C523
C174
C594
C388
C133
C592
C562
C131
C306
C424
C343
C288
C304
C361
C312
C303
C338
C331
C380
C302
C362
C370
C308
C381
C339
C372
C259
C341
C313
C333
C348
C344
C334
C309
C391
C374
C394
C392
C256
C335
C342
C360
C585
C371
C314
C332
C260
C281
C379
C287
C395
C340
C373
C286
C305
C336
C559
C301
C393
C337
C396
C228
C199
C241
C206
C527
C231
C248
C328
C289
C290
C190
C130
C263
C283
C645
C365
C194
C200
C327
C187
C202
C663
C411
C650
C224
C262
C221
C214
C233
C246
C226
C222
C244
C250
C234
C184
C355
C377
C522
C236
C243
C220
C185
C208
C227
C201
C242
C223
C270
C319
C320
C274
C275
C325
C277
C326
C317
C318
C292
C235
C225
C212
C186
C431
C273
C299
C324
C278
C269
C215
C384
C413
C357
C457
C298
C257
C276
C300
C268
C272
C430
C442
C418
C211
C402
C421
C210
C267
C459
C378
C297
C323
C322
C293
C271
C183
C463
C469
C632
C475
C440
C307
C294
C406
C295
C321
C296
C364
C363
C426
C452
C471
C399
C385
C490
C465
C351
C410
C461
C460
C526
C429
C383
C229
C382
C427
C531
C207
C608
C642
C329
C604
C437
C425
C481
C474
C417
C230
C613
C615
C614
C618
C617
C619
C407
C398
C350
C511
C451
C534
C480
C436
C168
C644
C512
C521
C453
C204
C213
C556
C195
C664
C674
C643
C646
C167
C616
C438
C477
C505
C504
C428
C409
C476
C676
C671
C572
C558
C588
C609
C180
C177
C176 C175
C179 C178
C713
C731
C719
C718
C714
C720
C730
C712
C711
C723
C715 C716
C634
C462
C356
C354
C376
C375
C464
C515
C261
C621
C500
C519
C502
C501
C448
C574
C560
C579
C625
C568
C569
C181
C567
C566
C630
C611
C564
C467
C598
C173
C578
C602
C631
C525
C584
C479
C582
C597
C554
C575
C561
C596
C629
C589
C191
C600
C601
C620
C555
C633
C366
Y3
C310
C192
C129
C128
C172
C510
C576
C449
C565
C444
C583
C577
C599
C532
C591
C533
C492
C494
C498
C491
C495
C497
C486
C484
C487
C489
C483
C485
C482
C488
C153
C155
C493
C496
C547
C549
C551
C542
C135
C134
C136
C139
C138
C141
C140
C137
C143
C142
C144
C147
C146
C149
C148
C145
C154
C152
C158
C156
C157
C151
C164
C166
C162
C160
Y5
C367
C651
C607
C368
C433
C389
C359
C557
C580
C503
C590
C349
C316
C408
C346
Y4
C161
C163
C165
C159
C265
C315
C285
C390
C405
C311
C240
C612
C610
C330
C628
C369
C434
C447
C445
C450
C435
C239
C264
C266
C249
C423
C258
C291
C509
C397
C624
C443
C570
C573
C446
C468
C282
C245
C401
C658
C218
C668 C653
C652C667
C677
C678
C478
C507
C693
C622
C623
C635
C636
C1
C2
C694
C695
C696
C697
C698
C699
C700
C701
C702
C703
C704
C705
C706
CR11
CR15
CR19
F5
F6
F7
U69
U55
U65
U46
U49
R152
R211
R22
R24
R25
R26
R264
R28
R29
R30R31
R329
R330
R334
R34
R343
R344
R35
R36
R37
R39
R437
R452
R453
R481
R487
R488
R519
R520
R530
R531
R568
R590
R595
R596
R597
R598
R599
R600
R601
R615
R616
R617
R618
R619
R620
R621
R622
R623
R624
R625
R626
R627
R636
R647
R648
R649
R650
R651
R652
R653
R654
R655
R656
R657
R658
R659
R660
R661
R662
R663
R664
R665
R666
R671
R713
R727
R768
R770
R832
R92
R643
R133
R134
R169
R171
R212
R213
R215
R216
R230
R231
R234
R253
R265
R269
R270
R271
R272
R273
R274
R275
R276
R277
R278
R279
R298
R313
R314
R318
R319
R320
R321
R322
R323
R324
R325
R326
R327
R328
R337
R371
R372
R386
R387
R464
R465
R466
R467
R500
R501
R508
R511
R515
R518
R554
R575
R602
R734
R791
R792
R514
R41
R486
R491
R69
R799
R806
R127
R217
R218
R219
R220
R368
R392
R400
R410
R428
R490
R694
R235
R268
R408
R412
R451
R456
R743
R762
R763
R78R79
R793
R797
R798
R801
R802
R764
R781
R338
R154
R170
R182
R198
R199
R200
R201
R202
R222
R233
R236
R242
R374
R405
R473
R489
R509
R51
R510
R529
R539
R552
R553
R559
R562
R574
R634
R675
R679
R683
R686
R690
R697
R700
R702
R722
R724
R725
R744
R746
R753
R754
R757
R758
R769
R787
R800
R807
R808
R809
R810
R811
R104
R107
R108
R109
R123
R145
R147
R153
R164
R167
R173
R174
R176
R177
R178
R184
R188
R197
R205
R246
R282
R283
R290
R306
R308
R341
R354
R355
R360
R384
R391
R393
R396
R40
R402
R414
R416
R420
R424
R426
R427
R43
R435
R436
R438
R439
R441
R454
R455
R459
R460
R461
R462
R463
R47
R471
R48
R483
R485
R49
R492
R497
R498
R499
R503
R513
R567
R578
R58
R580
R581
R585
R588
R589
R60
R638
R682
R684
R693
R698
R703
R704
R705
R706
R73
R739
R741
R750
R751
R760
R761
R785
R789
R790
R794
R795
R796
R80
R81
R82
R83
R84
R85
R86
R93
U60
Y6
R105
R117
R118
R125
R155
R156
R157
R158
R159
R160
R166
R168
R175
R317
R340
R357
R359
R376
R411
R418
R425
R512
R544
R606
R607
R637
R670
R70
R709
R710
R717
R726
R737
R738
R740
R748
R752
R755
R756
R759
R782
R786
R87
R88
L11
L13
L14
L18
L19
L20
L23
L24
L25
U58
U61
U63
U66
U67
U68
R179
R180
R221
RN100
RN101
RN113 RN114
RN115RN116
RN117RN118
RN119
RN120RN121RN122RN123
RN124RN125
RN126
RN127
RN139
RN140RN141
RN142
RN143
RN144
RN145RN146RN147RN148
RN149RN150
RN154 RN163
RN164
RN165
RN166
RN168
RN171RN172RN173RN174RN175RN176RN177RN178
RN179
RN182RN185
RN186
RN187
RN188
RN198
RN199
RN201
RN202
RN225RN226RN227
RN251RN252
RN253RN254RN255RN256
RN257
RN258
RN64
RN68
RN72
RN75
RN77
RN80
RN85 RN87
RN92RN93
RN94
RN95RN96RN97RN98
RN99
RN228
RN102RN103
RN104RN105
RN106RN107RN108RN109RN110
RN111RN112
RN128RN129
RN130RN131
RN132RN133RN134RN135RN136
RN137RN138
RN51
RN52
RN53
RN54RN57
RN60
RN61RN65
RN66
RN69
RN70
RN73
RN78
RN81
RN82
RN88
RN89
RN90RN91
RN190
RN191
RN192
RN193
RN194
RN195
RN196
RN197
RN42
RN43
RN44
RN45
RN46
RN47
RN48
RN49
R549
R730
R731
R732
R733
R803
R804R805
R223
R74
U50
U70
R742
CR16
CR24
CR29
CR30
CR36
CR42
CR8
CR9
U71
U74
RN151
RN152
RN153
RN160
RN161RN162
RN205
RN206
RN207
RN208
RN209
RN210
RN40RN41RN50
RN155
RN156
RN157
RN158
RN159
RN167
RN169
RN170
RN180
RN181
RN200
RN203
RN204
RN211
RN213
RN214
RN215
RN216
RN217RN218
RN219RN220
RN221
RN222
RN223
RN224
RN55RN58
RN62
RN63
RN67
RN71
RN74
RN76
RN79
RN83
RN84
RN86
U64
U38
U40
U51
U53
R101
R119
R124
R128
R135
R136
R137
R141
R146
R150
R151
R161
R162
R189
R190
R191
R192
R193
R195
R204
R206
R207
R208
R209
R210
R214
R227
R228
R229
R23
R239
R243
R244
R245
R261
R267
R280
R285
R286
R287
R289
R291
R307
R309
R310
R311
R315
R316
R331
R332
R333
R335R336
R342
R345R346
R347
R348
R349
R350
R351
R352R353
R356
R358
R361
R362R363
R364
R367
R370
R373
R378R379
R385
R389R390
R395
R397R398
R399
R403
R404
R407
R409
R413
R417
R419
R421
R433
R434
R44
R440
R442R443
R444
R445
R447
R448
R449
R45
R450
R457R458
R46
R472
R479
R480
R493
R494
R502
R504
R505
R506
R516
R52
R526
R527
R528
R53
R545
R546
R547
R548
R55
R555R556
R56
R569
R57
R570
R576
R582R583
R586
R587
R59
R592R593
R609
R61
R610
R62
R63
R632R633
R64
R640
R641
R642
R65
R66
R67
R673
R680
R681
R691
R692
R711
R712
R714
R718
R719
R721
R728
R747
R76
R77
R784
R788
R96
R97
R98
R99
R736
R771
R773
R774
R745
R203
R50
R75
R89R90
R91
R94
R339
R394
R468
R72
R830
R834
U37
U73
R312
R644
R126
R27
R32
R33
R38
R423
R475
R478
R71
R674
R676
R677
R685
R687
R688
R699
R701
R707
R708
R715
R716
RN212
RN229
RN230 RN231 RN232 RN233 RN234
RN235 RN236
RN237 RN238 RN239 RN240
RN241 RN242 RN243 RN244
RN245 RN246 RN247 RN248 RN249 RN250
RN59
R100
R120
R121
R132
R139
R172
R183
R194
R232
R238
R248
R249
R250
R251
R252
R254
R255
R256
R257
R258
R259
R260
R292
R293
R294
R295
R296
R297
R299
R300
R301
R302
R303
R304
R305
R365
R375
R377
R380
R388
R406
R42
R422
R474
R476
R477
R538
R550
R551
R560
R561
R579
R603
R68
R695
R783
U42
U45
U57
U59
CR10
CR20
CR21
CR22
CR23
CR32
CR33
CR34
CR35
CR31
U39
M8
U47
U72
L15
L16
L17
R735
R765
R767
R772
R776
R778
R780
R369
R591
R604
R605
R635
R669
R672
R696
R766
R775
R777
R779
U48
R142
R163
R196
R237
R247
R281
R534
R543
R608
U56
U62
C189
C196
C203
C217
C247
C251
C252C253
C254
C255
C345
C352
C353
C416
C419
C518
C520
C586
C593
C603
C605
C606
L10
L12
L21
L22
R861
R860
R879R878
R871
R862
R863
R864
R865
R877
R876
R875
R874
R845
R846
R841
R836
R844
R835
R837
R838
R840
R849
R847
R851
R853
R839
R854
R856
R859
R843
R848
R857
R850
CR45
CR44
CR46
CR43
C721
C732
R870
R884
R885
R852
R855
R858
R872
R887
R842
C724
C725
C726
C727
C728 C729
R866
R867
R868
R869
R880
R881
R882
R883
RN259
RN260
R888
R889
R890
R891
R893
R894
R895
R896
C750
C751
R106
RN183
R720
R103
R110
R122
R898
RN261
RN262
R899
C752
R900
R901
R902
R903
C753
C754
C755
C756
C757
C758
C759
C760
C761
R446
R470
R484
R908
R909
R910
R912
R913
R915
R905
R906
R907
R916
R917
C83
C499
C506
C513
C514
C516
C537
C563
C571
C581
C595
C679
C680
C681
R678
R689
R723
R729
C771
C780
C799
R897
U43 IPMI
Controller
U44 – IPMI
EEPROM
(0xA2)
U41 – IPMI
EEPROM
(0xA0)
CR17
R165
CR28
R401
R149
Figure 2-3: Component Map, Bottom (Rev. 03)
2-4
Katana®752i User’s Manual 10006024-04
Setup: Katana®752i Circuit Board
COPYRIGHT 2004
10006008-00 REV A
F4
F3
F1
F2
J3J4J5
J22
J21
J24
J23
J12
J11
J1J2
J14
J13
P1
CR1
P2
JP2
JP1
SW1
SW1  Reset Switch
F4  Fuse
for 5-Volt Supply to RTM, 2.5A
F3  Fuse
for 3.3-Volt Supply to RTM, 2.5A
F2  Fuse
for 12-Volt Supply to RTM, 1A
F1  Fuse
for +12-Volt Supply to RTM, 1A
JP1  Signal Enable Jumpers
(pins 109 are spares) Jumper on pins 8 & 7, cPCI enabled Jumper on pins 6 & 5, PCIXCAP enabled Jumper on pins 4 & 3, CT_EN enabled Jumper on pins 2 & 1, cPCI_RST enable
Note: To enable cPCI functionality, use a jumper on pins 8-7 and on pins 2-1.
JP2  Configuration Jumpers
Jumpers off pins 107, MV64460 is Monarch Jumper on pins 10 & 9, PPMC #2 is Monarch Jumper on pins 8 & 7, PPMC #1 is Monarch Jumper on pins 6 & 5, enable cPCI_PRST out Jumper on pins 4 & 3, disable SROM load Jumper on pins 2 & 1, boot from socket
12
34
56
78
910
12
34
56
78
910
Figure 2-4: Jumper, Fuse, and Switch Locations, Top
10006024-04 Katana®752i User’s Manual
2-5
Setup: Katana®752i Circuit Board
C171
C347
C641
C627
C626
C657
C193
C182
C400
C386
C414
C472
C439
C441
C456
C454
C420
C432
C708
C709
C710
C707
C661
C132
C127 C126
C125
C508
C587
C640
C662
C637
C639
C669
C656
C458
C150
C216
C412
C403
C422
C455
C470
C655
C660
C649
C672
C673
C666 C665
C675
C648 C647
C654
C659
C670
C528
C169
C188
C523
C174
C594
C388
C133
C592
C562
C131
C306
C424
C343
C288
C304
C361
C312
C303
C338
C331
C380
C302
C362
C370
C308
C381
C339
C372
C259
C341
C313
C333
C348
C344
C334
C309
C391
C374
C394
C392
C256
C335
C342
C360
C585
C371
C314
C332
C260
C281
C379
C287
C395
C340
C373
C286
C305
C336
C559
C301
C393
C337
C396
C228
C199
C241
C206
C527
C231
C248
C328
C289
C290
C190
C130
C263
C283
C645
C365
C194
C200
C327
C187
C202
C663
C411
C650
C224
C262
C221
C214
C233
C246
C226
C222
C244
C250
C234
C184
C355
C377
C522
C236
C243
C220
C185
C208
C227
C201
C242
C223
C270
C319
C320
C274
C275
C325
C277
C326
C317
C318
C292
C235
C225
C212
C186
C431
C273
C299
C324
C278
C269
C215
C384
C413
C357
C457
C298
C257
C276
C300
C268
C272
C430
C442
C418
C211
C402
C421
C210
C267
C459
C378
C297
C323
C322
C293
C271
C183
C463
C469
C632
C475
C440
C307
C294
C406
C295
C321
C296
C364
C363
C426
C452
C471
C399
C385
C490
C465
C351
C410
C461
C460
C526
C429
C383
C229
C382
C427
C531
C207
C608
C642
C329
C604
C437
C425
C481
C474
C417
C230
C613
C615
C614
C618
C617
C619
C407
C398
C350
C511
C451
C534
C480
C436
C168
C644
C512
C521
C453
C204
C213
C556
C195
C664
C674
C643
C646
C167
C616
C438
C477
C505
C504
C428
C409
C476
C676
C671
C572
C558
C588
C609
C180
C177
C176 C175
C179 C178
C713
C731
C719
C718
C714
C720
C730
C712
C711
C723
C715 C716
C634
C462
C356
C354
C376
C375
C464
C515
C261
C621
C500
C519
C502
C501
C448
C574
C560
C579
C625
C568
C569
C181
C567
C566
C630
C611
C564
C467
C598
C173
C578
C602
C631
C525
C584
C479
C582
C597
C554
C575
C561
C596
C629
C589
C191
C600
C601
C620
C555
C633
C366
Y3
C310
C192
C129
C128
C172
C510
C576
C449
C565
C444
C583
C577
C599
C532
C591
C533
C492
C494
C498
C491
C495
C497
C486
C484
C487
C489
C483
C485
C482
C488
C153
C155
C493
C496
C547
C549
C551
C542
C135
C134
C136
C139
C138
C141
C140
C137
C143
C142
C144
C147
C146
C149
C148
C145
C154
C152
C158
C156
C157
C151
C164
C166
C162
C160
Y5
C367
C651
C607
C368
C433
C389
C359
C557
C580
C503
C590
C349
C316
C408
C346
Y4
C161
C163
C165
C159
C265
C315
C285
C390
C405
C311
C240
C612
C610
C330
C628
C369
C434
C447
C445
C450
C435
C239
C264
C266
C249
C423
C258
C291
C509
C397
C624
C443
C570
C573
C446
C468
C282
C245
C401
C658
C218
C668 C653
C652C667
C677
C678
C478
C507
C693
C622
C623
C635
C636
C1
C2
C694
C695
C696
C697
C698
C699
C700
C701
C702
C703
C704
C705
C706
CR11
CR15
CR19
F5
F6
F7
U69
U55
U65
U46
U49
R152
R211
R22
R24
R25
R26
R264
R28
R29
R30R31
R329
R330
R334
R34
R343
R344
R35
R36
R37
R39
R437
R452
R453
R481
R487
R488
R519
R520
R530
R531
R568
R590
R595
R596
R597
R598
R599
R600
R601
R615
R616
R617
R618
R619
R620
R621
R622
R623
R624
R625
R626
R627
R636
R647
R648
R649
R650
R651
R652
R653
R654
R655
R656
R657
R658
R659
R660
R661
R662
R663
R664
R665
R666
R671
R713
R727
R768
R770
R832
R92
R643
R133
R134
R169
R171
R212
R213
R215
R216
R230
R231
R234
R253
R265
R269
R270
R271
R272
R273
R274
R275
R276
R277
R278
R279
R298
R313
R314
R318
R319
R320
R321
R322
R323
R324
R325
R326
R327
R328
R337
R371
R372
R386
R387
R464
R465
R466
R467
R500
R501
R508
R511
R515
R518
R554
R575
R602
R734
R791
R792
R514
R41
R486
R491
R69
R799
R806
R127
R217
R218
R219
R220
R368
R392
R400
R410
R428
R490
R694
R235
R268
R408
R412
R451
R456
R743
R762
R763
R78R79
R793
R797
R798
R801
R802
R764
R781
R338
R154
R170
R182
R198
R199
R200
R201
R202
R222
R233
R236
R242
R374
R405
R473
R489
R509
R51
R510
R529
R539
R552
R553
R559
R562
R574
R634
R675
R679
R683
R686
R690
R697
R700
R702
R722
R724
R725
R744
R746
R753
R754
R757
R758
R769
R787
R800
R807
R808
R809
R810
R811
R104
R107
R108
R109
R123
R145
R147
R153
R164
R167
R173
R174
R176
R177
R178
R184
R188
R197
R205
R246
R282
R283
R290
R306
R308
R341
R354
R355
R360
R384
R391
R393
R396
R40
R402
R414
R416
R420
R424
R426
R427
R43
R435
R436
R438
R439
R441
R454
R455
R459
R460
R461
R462
R463
R47
R471
R48
R483
R485
R49
R492
R497
R498
R499
R503
R513
R567
R578
R58
R580
R581
R585
R588
R589
R60
R638
R682
R684
R693
R698
R703
R704
R705
R706
R73
R739
R741
R750
R751
R760
R761
R785
R789
R790
R794
R795
R796
R80
R81
R82
R83
R84
R85
R86
R93
U60
Y6
R105
R117
R118
R125
R155
R156
R157
R158
R159
R160
R166
R168
R175
R317
R340
R357
R359
R376
R411
R418
R425
R512
R544
R606
R607
R637
R670
R70
R709
R710
R717
R726
R737
R738
R740
R748
R752
R755
R756
R759
R782
R786
R87
R88
L11
L13
L14
L18
L19
L20
L23
L24
L25
U58
U61
U63
U66
U67
U68
R179
R180
R221
RN100
RN101
RN113 RN114
RN115RN116
RN117RN118
RN119
RN120RN121RN122RN123
RN124RN125
RN126
RN127
RN139
RN140RN141
RN142
RN143
RN144
RN145RN146RN147RN148
RN149RN150
RN154 RN163
RN164
RN165
RN166
RN168
RN171RN172RN173RN174RN175RN176RN177RN178
RN179
RN182RN185
RN186
RN187
RN188
RN198
RN199
RN201
RN202
RN225RN226RN227
RN251RN252
RN253RN254RN255RN256
RN257
RN258
RN64
RN68
RN72
RN75
RN77
RN80
RN85 RN87
RN92RN93
RN94
RN95RN96RN97RN98
RN99
RN228
RN102RN103
RN104RN105
RN106RN107RN108RN109RN110
RN111RN112
RN128RN129
RN130RN131
RN132RN133RN134RN135RN136
RN137RN138
RN51
RN52
RN53
RN54RN57
RN60
RN61RN65
RN66
RN69
RN70
RN73
RN78
RN81
RN82
RN88
RN89
RN90RN91
RN190
RN191
RN192
RN193
RN194
RN195
RN196
RN197
RN42
RN43
RN44
RN45
RN46
RN47
RN48
RN49
R549
R730
R731
R732
R733
R803
R804R805
R223
R74
U50
U70
R742
CR16
CR24
CR29
CR30
CR36
CR42
CR8
CR9
U71
U74
RN151
RN152
RN153
RN160
RN161RN162
RN205
RN206
RN207
RN208
RN209
RN210
RN40RN41RN50
RN155
RN156
RN157
RN158
RN159
RN167
RN169
RN170
RN180
RN181
RN200
RN203
RN204
RN211
RN213
RN214
RN215
RN216
RN217RN218
RN219RN220
RN221
RN222
RN223
RN224
RN55RN58
RN62
RN63
RN67
RN71
RN74
RN76
RN79
RN83
RN84
RN86
U64
U38
U40
U51
U53
R101
R119
R124
R128
R135
R136
R137
R141
R146
R150
R151
R161
R162
R189
R190
R191
R192
R193
R195
R204
R206
R207
R208
R209
R210
R214
R227
R228
R229
R23
R239
R243
R244
R245
R261
R267
R280
R285
R286
R287
R289
R291
R307
R309
R310
R311
R315
R316
R331
R332
R333
R335R336
R342
R345R346
R347
R348
R349
R350
R351
R352R353
R356
R358
R361
R362R363
R364
R367
R370
R373
R378R379
R385
R389R390
R395
R397R398
R399
R403
R404
R407
R409
R413
R417
R419
R421
R433
R434
R44
R440
R442R443
R444
R445
R447
R448
R449
R45
R450
R457R458
R46
R472
R479
R480
R493
R494
R502
R504
R505
R506
R516
R52
R526
R527
R528
R53
R545
R546
R547
R548
R55
R555R556
R56
R569
R57
R570
R576
R582R583
R586
R587
R59
R592R593
R609
R61
R610
R62
R63
R632R633
R64
R640
R641
R642
R65
R66
R67
R673
R680
R681
R691
R692
R711
R712
R714
R718
R719
R721
R728
R747
R76
R77
R784
R788
R96
R97
R98
R99
R736
R771
R773
R774
R745
R203
R50
R75
R89R90
R91
R94
R339
R394
R468
R72
R830
R834
U37
U73
R312
R644
R126
R27
R32
R33
R38
R423
R475
R478
R71
R674
R676
R677
R685
R687
R688
R699
R701
R707
R708
R715
R716
RN212
RN229
RN230 RN231 RN232 RN233 RN234
RN235 RN236
RN237 RN238 RN239 RN240
RN241 RN242 RN243 RN244
RN245 RN246 RN247 RN248 RN249 RN250
RN59
R100
R120
R121
R132
R139
R172
R183
R194
R232
R238
R248
R249
R250
R251
R252
R254
R255
R256
R257
R258
R259
R260
R292
R293
R294
R295
R296
R297
R299
R300
R301
R302
R303
R304
R305
R365
R375
R377
R380
R388
R406
R42
R422
R474
R476
R477
R538
R550
R551
R560
R561
R579
R603
R68
R695
R783
U42
U45
U57
U59
CR10
CR20
CR21
CR22
CR23
CR32
CR33
CR34
CR35
CR31
U39
M8
U47
U72
L15
L16
L17
R735
R765
R767
R772
R776
R778
R780
R369
R591
R604
R605
R635
R669
R672
R696
R766
R775
R777
R779
U48
R142
R163
R196
R237
R247
R281
R534
R543
R608
U56
U62
C189
C196
C203
C217
C247
C251
C252C253
C254
C255
C345
C352
C353
C416
C419
C518
C520
C586
C593
C603
C605
C606
L10
L12
L21
L22
R861
R860
R879R878
R871
R862
R863
R864
R865
R877
R876
R875
R874
R845
R846
R841
R836
R844
R835
R837
R838
R840
R849
R847
R851
R853
R839
R854
R856
R859
R843
R848
R857
R850
CR45
CR44
CR46
CR43
C721
C732
R870
R884
R885
R852
R855
R858
R872
R887
R842
C724
C725
C726
C727
C728 C729
R866
R867
R868
R869
R880
R881
R882
R883
RN259
RN260
R888
R889
R890
R891
R893
R894
R895
R896
C750
C751
R106
RN183
R720
R103
R110
R122
R898
RN261
RN262
R899
C752
R900
R901
R902
R903
C753
C754
C755
C756
C757
C758
C759
C760
C761
R446
R470
R484
R908
R909
R910
R912
R913
R915
R905
R906
R907
R916
R917
C83
C499
C506
C513
C514
C516
C537
C563
C571
C581
C595
C679
C680
C681
R678
R689
R723
R729
C771
C780
C799
R897
CR17
R165
CR28
R401
R149
U43
U41
U44
PMC Slot 2 Ethernet LEDs
CR45 – PMC2 Act CR46 – PMC2 Link
GbE Port 2 LEDs
CR23 – Link1, CR22 – Link2 CR21 – Link, CR20 – Act
GbE Port 1 LEDs
CR35 – Link1, CR34 – Act CR33 – Link2, CR32 – Link
Ethernet LED Coding
Link1 Link2 on on 1000BASE-T on off 100BASE-T off on 10BASE-T off off no link
F7 – Fuse
for 2.5V JTAG (P3), 0.75A
F6 – Fuse
for 3.3V JTAG (P3), 0.75A
F5 – Fuse
for 3.3V JTAG (J7), 0.75A
CR31 – LED
750GX Checkstop Indicator
PMC Slot 1 Ethernet LEDs
CR43 – PMC1 Act CR44 – PMC1 Link
CR10 – LED
IPMI Status Out Indicator
2-6
Katana®752i User’s Manual 10006024-04
Figure 2-5: Fuse, and LED Locations, Bottom
Setup: Katana®752i Circuit Board

Identification Numbers

Before you install the Katana®752i circuit board in a system, you should record the follow­ing information:
The board serial number:____________________________________________ .
The board serial number appears on a bar code sticker located on the back of the board.
The board product identification: _____________________________________ .
This sticker is located near the board serial number.
The monitor version: _______________________________________________ .
The version number of the monitor is on the monitor start-up display.
The operating system version and part number: _________________________ .
This information is labeled on the master media supplied by Emerson or another vendor.
Any custom or user ROM installed, including version and serial number:
________________________________________________________________ .
It is useful to have these numbers available if you need to contact Technical Support at Emerson Network Power, Embedded Computing.

Connectors

The Katana®752i circuit board has various connectors, summarized as follows:
P1: P1 is a dual-RJ45 connector that provides front panel access to two 10/100/1000BaseT
Ethernet ports (see routes to the 82544EI Ethernet controller on the local PCI bus. The connector also has inte­grated link, speed, and activity LEDs for each port. See Chapter for pinouts.
P2: P2 is a 9-pin Micro D connector on the front panel that provides EIA-232 console port access
for the 750GL processor. See
P3: P3 is a 16-pin header on the circuit board for the 750GL COP/JTAG interface. See
for pinouts.
J1: J1 is a 110-pin connector that routes power supply signals, various CompactPCI (cPCI) util-
ity signals and Intelligent Platform Management Interface (IPMI) control signals to and from the CompactPCI backplane. See Chapter for pinouts.
J2: J2 is a 110-pin connector that routes Geographical Address (GA) signals and power supply
signals from the CompactPCI backplane. See Chapter for pinouts.
J3: J3 is a 95-pin connector that routes the gigabit Ethernet signals to and from the Compact-
PCI packet-switched backplane (cPSB) or rear transition module. It also routes user input/output signals directly from the J14 connector at PTMC expansion site #1. See Chapter for pinouts.
Fig. 2-1). One port routes to the MV64460 system controller. The other
Table 5-4 for pinouts.
Table 4-6
10006024-04 Katana®752i User’s Manual
2-7
Setup: Katana®752i Circuit Board
J4 : J4 is a 90-pin connector that routes computer telephony (CT) bus signals to the Compact-
PCI backplane. See Chapter for pinouts.
J5: J5 is a 110-pin connector that routes user input/output signals directly from the J24 connec-
tor at PTMC expansion site #2. It also routes optional RMII signals from both PTMC sites. See Chapter for pinouts.
J6: J6 is a 3-pin header on the circuit board for the ejector switch (for factory use only).
J7: J7 is a 10-pin header on the circuit board that provides an in-system programmable (ISP)
JTAG interface to the programmable logic (PLD) devices (factory use only).
J11—J14: J11, J12, J13, and J14 are 64-pin connectors that support PTMC expansion site #1. See
Table 9-1 for pinouts.
J21—J24: J21, J22, J23, and J24 are 64-pin connectors that support PTMC expansion site #2. See
Table 9-2 for pinouts.

Fuses

There are seven fuses on the Katana®752i circuit board.
Note: The part numbers for these fuses are subject to change. Please check with Emerson before ordering replace-
ment fuses.
F1—F2: These 1-amp fuses (see Fig. 2-4) protect the ±12-volt power supplies. They are Emerson part
number 02739005-00.
F3—F4: These surface-mounted, socketed, 2.5-amp fuses (see
volt power supplies. They are Emerson part number 02959021-00.
F5—F7: These 0.75 amp fuses (see
(P3) and PLD header (J7). They are Emerson part number 02959012-00.

LEDs

The Katana®752i has various light-emitting diodes (LEDs), as described in the following table. Please refer to
Table 2-2: LEDs
LED: Color: Signal Name: Comments:
CR1 Blue HOTSWAP_LED* front panel Hot Swap status CR2 Red PWRLED_OUT front panel Fault LED CR31 750GL_CHKSTP_OUT* CPU checkstop indicator
2-8
Katana®752i User’s Manual 10006024-04
Fig. 2-4) protect the 3.3-volt and 5-
Fig. 2-5) protect the power supplies for the COP/JTAG interface
Fig. 2-1 and Fig. 2-5 to locate these LEDs.
Setup: Katana®752i Setup
LED: Color: Signal Name: Comments:
CR3 Green 750GL_LED4 programmable LED on front CR4 750GL_LED3 CR5 750GL_LED2 CR6 750GL_LED1 CR10 IPMI_STATUSOUT IPMI controller status CR32 GIG0_LINK_LED* Port 1 Gigabit Ethernet CR33 GIG0_LINK2* CR34 GIG0_ACT_LED* CR35 GIG0_LINK1* CR20 GIG1_ACT_LED* Port 2 Gigabit Ethernet CR21 GIG1_LINK_LED* CR22 GIG1_LINK2* CR23 GIG1_LINK1* CR39 PMC0_ACTLED PMC1 RMII CR41 PMC0_LINKLED_R CR38 PMC1_ACTLED PMC2 RMII CR40 PMC1_LINKLED_R – Green/Ye
llow
–FP1_LED2_1
–FP2_LED1_1
–FP2_LED2_1
FP1_LED1_1 FP1_LED1_2
FP1_LED2_2
FP2_LED1_2
FP2_LED2_2
panel (via light pipe LP1)
front panel SP LED for ETH4 (integrated with connector P1)
front panel ACT LED for ETH4 (integrated with connector P1)
front panel SP LED for ETH3 (integrated with connector P1)
front panel ACT LED for ETH3 (integrated with connector P1)

KATANA®752I SETUP

You need the following items to set up and check the operation of the Emerson
®
Katana
Emerson Katana
Card cage and power supply
Serial interface cable (EIA-232)
Terminal
Save the antistatic bag and box for future shipping or storage.
752i.
®
752i board
10006024-04 Katana®752i User’s Manual
2-9
Setup: Troubleshooting

Power Requirements

The Emerson Katana®752i circuit board typically requires about 35 watts of power when performing a simple memory test with no PMC/PTMC modules installed. The exact power requirements for the Katana the board, including the CPU frequency, amount of memory installed on the board, and PTMC configuration. Please contact Emerson Technical Support at 1-800-327-1251 if you have specific questions regarding the board’s power requirements.
Note: The power value is an approximate–not measured–value.

Environmental Requirements

The Emerson Katana®752i circuit board is specified to operate in an ambient air tempera­ture range of 0° to +55° Centigrade. This range meets the NEBS Telecordia GR-63 specifica­tion. The entire chassis should be cooled with forced air. The recommended minimum air flow rate is 11 cubic feet/minute. The exact air flow requirement depends upon the chassis configuration and the ambient air temperature. The Katana and storage temperature ranges fully comply with NEBS Telecordia GR-63 specification.
®
752i circuit board depend upon the specific configuration of
®
752i board’s relative humidity

TROUBLESHOOTING

In case of difficulty, use this checklist:
Be sure the Katana
Be sure the system is not overheating.
Check the cables and connectors to be certain they are secure.
If you are using the Katana
results. Chapter describes the power-up diagnostics.
Check your power supply for proper DC voltages. If possible, use an oscilloscope to look
for excessive power supply ripple or noise (over 50 mV
Check that your terminal is connected to a console port.
The Katana configure and set the baud rates for its console port. The lack of a prompt might be caused by incorrect terminal settings, and incorrect configuration of the NVRAM, or a malfunctioning NVRAM.
To force the board to boot using the default settings, first configure the terminal parameters to: 9600 baud, no parity, 8 data bits, and 1 stop bit. Then, reset the board while holding down the ‘s’ key. After the board boots to the prompt, you can initialize the configuration settings to their factory defaults with the following command:
®
752i circuit board is seated firmly in the card cage.
®
752i monitor, run the power-up diagnostics and check the
below 10 MHz).
pp
®
752i monitor uses values stored in on-card NVRAM (I2C EEPROM) to
2-10
Katana®752i User’s Manual 10006024-04
Setup: Troubleshooting
moninit <four-digit board serial number> noburn
Executing the above command will set all environment variables to default values and erase any user-added environment variables. Please see “Environment Parameter Commands” on page 15-18, for additional information.

Technical Support

If you need help resolving a problem with your Katana®752i, visit http://www.emersonembeddedcomputing.com on the Internet or send e-mail to sup­port@artesyncp.com. Please have the following information handy:
• Katana
• baseboard model number and BIOS revision level (if applicable)
• version and part number of the operating system (if applicable)
• whether your board has been customized for options such as a higher processor speed
®
752i serial number and product identification from the stickers on the board
or additional memory
• license agreements (if applicable)
If you do not have Internet access, please call Emerson for further assistance:
(800) 327-1251 or (608) 826-8006 (US)
44-131-475-7070 (UK)

Product Repair

If you plan to return the board to Emerson Network Power for service, visit http://www.emersonembeddedcomputing.com on the internet or send e-mail to service­info@artesyncp.com to obtain a Return Merchandise Authorization (RMA) number. We will ask you to list which items you are returning and the board serial number, plus your pur­chase order number and billing information if your Katana752i hardware is out of warranty. Contact our Test and Repair Services Department for any warranty questions. If you return the board, be sure to enclose it in an antistatic bag, such as the one in which it was originally shipped. Send it prepaid to:
Emerson Network Power, Embedded Computing Test and Repair Services Department 8310 Excelsior Drive Madison, WI 53717
RMA #____________
10006024-04 Katana®752i User’s Manual
2-11
Setup: Troubleshooting
Please put the RMA number on the outside of the package so we can handle your problem efficiently. Our service department cannot accept material received without an RMA num­ber.
2-12
Katana®752i User’s Manual 10006024-04

Reset Logic

Section 3
This chapter provides a system-level overview of the reset logic for the Katana®752i. It also describes the various reset sources.

GENERAL OVERVIEW

The Katana®752i uses discrete logic on a programmable logic device (PLD) to implement the reset circuitry. logic.
Fig. 3-1 on the following page shows an overview of the reset signals and
10006024-04 Katana®752i User’s Manual
3-1
Reset Logic: General Overview
F r
o n t P a n e l
P u s
h B u
t
to n
2 .
5 V
I
P M I P o w e r
O S C _ E N
E n a b le
BCM5221
r
e
s
e
t
KS8721CL
r
e
s
e
t
BCM5221
r
e
s
e
t
BCM5221
r
e
s
e
t
BCM5461
r
e
s
e
t
T8110 TSI
r
e
s
e
t
Soldered
Flash
R P
PMC Site 1
r
e
s
e
t
PMC Site 2
r
e
s
e
t
750GL
Complex
p
m c
_
r
s
t
p
o
r
_
r
s
t
a
u
x
_
p
o
r
_
r
s
t
F L
_
R P
ip m i_ r
s
t
e
t
h
_
r
s
t
B c
m 5
4
6
1
_
r
s
t
P c
i1 _
r
s
t
Notes:
1. All discrete logic located inside PLD
2. PLD powered from early power
3. Zircon PM powered from IPMI power
Oscillators
O S C _
E
N
Voltage
Monitor
Voltage
Monitor
Zircon PM
r
e
s
e
t
r
s
to u
t
_
1
r
s
t
o
u
t
_
2
r
s
t
o
u
t
_
3
LTC1728
Voltage
Monitor
c
P C I
_ R S T _ O U
T
3 .
3 V
1 .
8 V
5 V
3 .
3
V
2 .
5 V
c
o r
e
P M C
3 .
3 V
cPCI_RST
Default:
Jumper Out =
cPCI reset is disabled
82544
MAC
r
e
s
e
t
Figure 3-1: Katana®752i Reset Diagram
3-2
Katana®752i User’s Manual 10006024-04
Reset Logic: Reset Sources

RESET SOURCES

The Katana®752i circuit board can be reset from the following sources:
• Power-On Reset (POR) circuitry
•CompactPCI Reset
• Power Monitor Reset
• 750GL Processor Reset (JTAG header)
• Remote IPMI Reset
•Front Panel Reset
• Watchdog Timer Reset

CompactPCI Reset Enable

The Katana®752i has an optional configuration jumper at JP2 (see Fig. 2-4). When installed (default condition), this jumper enables the board to send a reset signal (when the front panel reset switch is pressed) to the cPCI system controller via the cPCI_PRST pin. Upon receiving this signal, the cPCI system controller generates a cPCI reset. When the jumper is not installed, the Katana when the reset switch is pressed.
®
752i does not send the reset signal to the cPCI system controller
Another optional configuration jumper at JP1 (see tion), enables the cPCI reset signal to drive a local PCI reset to the 750GL reset logic (see
Fig. 3-2). When the jumper is not installed, the Katana
Fig. 2-4), when installed (default condi-
®
752i ignores the cPCI reset signal.

Power Monitor

The Katana®752i has a power monitor circuit that detects low voltage conditions on any of the power supply sources. The circuit will hold the oscillators off and drive the power-on reset (POR) for as long as the low voltage condition exists.

750GL Processor Reset

The Device Bus PLD (see Chapter ) on the Katana®752i implements the 750GL processor reset logic.
Note: The Device Bus PLD is also known as the MVC PLD.
Fig. 3-2 shows how the reset signals connect to the related devices.
10006024-04 Katana®752i User’s Manual
3-3
Reset Logic: Reset Sources
Soldered
Flash
flash_wp
MV64460
sysrst
pci0_rst
pci1_rst
gt_wde
COP/JTAG
hreset
sreset
trst
Device
Bus
PLD
cop_hreset
cop_sreset
cop_trst
pmc_rst
gt_wde
gt_pci0
gt_pci1
start_lrst
cpu_hreset
cpu_sreset
cpu_trst
fl_rp
gt_sysrst
750GX
hreset
sreset
trst
start_rst (switch_rst)
PMC Sites
HSL PLD
por_rst
ipmi_rst
cpci_rst
IPMI
Power
cPCI
pwr_good
pwr_good
por_rst
rst
rst
KS8721CL
PHY
reset
KS8721CL
reset
KS8721CL
PHY
reset
KS8721CL
PHY
reset
5461S
reset
ks8721_rst
eth_rst
GL
Figure 3-2: 750GL Reset Logic
3-4
Katana®752i User’s Manual 10006024-04

Processor

Section 4
The Katana®752i processor complex consists of a processor and a system controller/PCI bridge device (see Chapter ) with associated memory and input/output interfaces. The pro­cessor complex supports soldered and socketed user Flash memory, DDR SDRAM, an EIA­232 serial console port, and three 10/100/1000BaseT Ethernet ports.

PROCESSOR OVERVIEW

This chapter provides an overview of the processor logic on the Katana®752i. It includes information on the CPU, exception handling, and cache memory. The Katana the IBM PowerPC
750GL microprocessor. For more detailed information, please refer to the following IBM document: PowerPC Microprocessors.

Features

The following table outlines some of the key features for the 750GL CPU.
Table 4-1: Katana®752i CPU Features
Category: 750GL Key Features:
Instruction Set 32-bit CPU Speed (internal) Up to 1GHz Data Bus 64-bit Address Bus 32-bit Four stage pipeline control Fetch, dispatch/decode, execute,
Cache (L1) 32KB Instruction, 32KB Data, 8-way set
Cache (L2) 1MB, 4-way set associative, ECC checking Execution Units Branch Processing, Dispatch, Decode,
Dual issue superscalar control
Voltages Internal, 1.5V; input/output, 2.5V
Microprocessor Family: The Bus Interface for 32-Bit
complete/write back
associative
Load/Store, Fixed-point, Floating-point, System
Maximum of two instructions completed plus one branch folded per cycle
®
752i utilizes
The following block diagram provides an overview of the IBM 750GL architecture.
10006024-04 Katana®752i User’s Manual
4-1
Processor: Processor Overview
Completion
System
Unit
Dispatch BHT/BTIC
Instruction Fetch
Branch Unit
Control Unit
32KB I-Cache
with Parity
LSU
FPRs
Rename
Buffers
FPU
GPRs
Rename
Buffers
FXU2FXU1
32KB D-Cache
with Parity
L2 Tags
with Parity
1MB
L2 Cache
w/ECC
Enhanced 60x
BIU
Figure 4-1: 750GL Block Diagram
4-2

Physical Memory Map

The Katana®752i monitor (see Chapter ) initializes the devices required to configure the memory map for the 750GL bus. The following figure shows the 750GL physical memory map.
Katana®752i User’s Manual 10006024-04
Processor: Processor Overview
Device Bus PLD Registers
E800,0000
Flash Socket
F820,0000
FLASH
(up to 128MB)
F810,0000
MV64460 Registers
F800,0000
Reserved
C000,0000
E000,0000
F808,0000
Reserved
F811,0000
cPCI
Memory Space
cPCI
I/O Space
FF80,0000
Boot Mirror
FFFF,FFFF
32-Bit
Hex Address:
Reserved
SRAM
F834,0000
F830,0000
HSL PLD Registers
F821,0000
B400,0000
B000,0000
8000,0000
0000,0000
SDRAM
(up to 2GB)
PMC
PCI Memory Space
PMC
PCI I/O Space
Reserved
Figure 4-2: 750GL Memory Map
10006024-04 Katana®752i User’s Manual
4-3
Processor: Processor Reset
This table summarizes the physical addresses for the 750GL on the Katana®752i board and provides a reference to more detailed information.
Table 4-2: Katana®752i Address Summary
Hex Address (32-bit):
FF80,0000 R Boot Mirror F834,0000 F830,0000 R/W MV64460 SRAM page 5-1 F821,0000 R/W HSL PLD Registers page 4-1,
F820,0000 R/W Device Bus PLD Registers page 6-1 F811,0000 F810,0000 R/W MV64460 Registers page 5-1 F808,0000 F800,0000 R/W Flash socket page 5-7 E800,0000 R/W Flash (up to 128MB) page 5-7 E000,0000 R/W cPCI I/O Space page 5-4 C000,0000 R/W cPCI Memory Space page 5-4 B400,0000 B000,0000 R/W PMC PCI I/O Space page 5-4 8000,0000 R/W PMC PCI Memory Space page 5-4 0000,0000 R/W SO-DIMM SDRAM (up to 2GB) page 5-7
Access Mode: Description: See Page:
Reserved
page 13-1
Reserved
Reserved
Reserved

PROCESSOR RESET

Circuitry on the Katana®752i resets the processor and the board. Please refer to Chapter for details.

PROCESSOR INITIALIZATION

Initially, the Katana®752i powers up with specific values stored in the CPU registers. The ini­tial power-up state of the Hardware Implementation Dependent registers (HID0) and the Machine State register (MSR) are given in
Table 4-3: CPU Internal Register Initialization
Register: Default After Initialization (Hex): Notes:
HID0 8000,0000 (icache and dcache off) Hardware Implementation Dependent
8000,C000 (icache and dcache on)
MSR 0000,B032 Machine State register.
4-4
Katana®752i User’s Manual 10006024-04
Table 4-3.
register. (See Section )
(See Section )
Processor: Processor Initialization

Hardware Implementation Dependent 0 Register

The Hardware Implementation Dependent 0 Register (HID0) contains bits for CPU-specific features. Most of these bits are cleared on initial power-up of the Katana to the IBM PowerPC documentation for more detailed descriptions of the HIDx registers. The following register map summarizes HID0 for the 750GL CPU:
Register 4-1: 750GL Hardware Implementation Dependent, HID0
0 1 2 34 67 8 9 10 11 121314 15
EMCP DBP EBA EBD Reserved PAR DOZE NAP
SLEEP
DPM RISEG
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ICE DCE
ILOCK
DLOCK
ICFI DCFI
SPD IFEM
SGE DCFA BTIC
Res
EMCP: Enable Machine Check Pin. Initially enabled on the Katana®752i.
DBP: Disable 60x Bus address and data Parity generation (in conjunction with EBA/EBD).
EBA: Enable 60x Bus Address parity checking.
EBD: Enable 60x Bus Data parity checking.
®
752i. Please refer
Res.
ABE BHT
MUM NHR
Res
NOOPTI
PAR: Disable Precharge of ARTRY* and shared signals.
DOZE: Select low-power doze.
NAP: Select low-power nap.
SLEEP: Select low-power sleep.
DPM: Enable Dynamic Power Management.
RISEG: Read Instruction Segment Register (test only).
NHR: Not Hard Reset (software use only).
MUM: Miss-Under-Miss Enable.
ICE/DCE: Instruction and Data Cache Enables.
I/DLOCK: Instruction and Data Cache Lock bits.
ICFI/DCFI: Instruction and Data Cache Flash Invalidate bits.
SPD: DCache and ICache Speculative access disable.
IFEM: Enable M bit on bus for Instruction Fetches.
SGE: Store Gathering Enable.
DCFA: Data Cache Flush Assist.
Force data cache to ignore invalid sets on miss replacement selection.
10006024-04 Katana®752i User’s Manual
4-5
Processor: Processor Initialization
BTIC: Branch Target Instruction Cache enable.
ABE: Address Broadcast Enable (for cache ops, eieio, sync).
BHT: Branch History Table enable.
NOOPTI: No-op the dcbt/dcbst instructions.

Hardware Implementation Dependent 1 Register

The 750GL includes two phase-lock loops (PLL0 and PLL1), which allow the processor clock frequency to be changed to one of the PLL frequencies via software control. The HID1 regis­ter contains:
• Fields that specify the frequency range of each PLL
• The clock multiplier of each PLL
• External or internal control of PLL0
• A bit to choose which PLL is selected (source of the processor clock at any given time):
Register 4-2: 750GL Hardware Implementation Dependent, HID1
0456789131415
PCE PRE PSTAT1 ECLK Reserved PI0 PS
16 20 21 22 23 24 28 29 30 31
PC0 PR0 Res. PC1 PR1 Res.
PCE: PLL External Configuration bits (read only).
PRE: PLL External Range bits (read only).
PSTAT1: PLL Status (not supported in DD1.x).
0 = PLL0 is the processor clock source 1 = PLL1 is the processor clock source
ECLK: Enable the CLKOUT pin (set to 1).
PI0: PLL 0 Internal configuration select.
0 = Select external configuration and range bits to control PLL0 1 = Select internal fields in HID1 to control PLL0
PS: PLL Select.
0 = Select PLL0 as source for processor clock 1 = Select PLL1 as source for processor clock
PC0: PLL0 Configuration bits.
4-6
Katana®752i User’s Manual 10006024-04
Processor: Processor Initialization
PR0: PLL0 Range select bits.
PC1: PLL1 Configuration bits.
PRI: PLL1 Range bits.

Hardware Implementation Dependent 2 Register

Parity is implemented for the following arrays: I-Cache, I-Tag, D-Cache, D-Tag, and L2 Tag. Status bits are set when a parity error is detected and cleared when the HID2 register is written.
Register 4-3: 750GL Hardware Implementation Dependent, HID2
0234 15
Reserved
STMUMD
Reserved
1 6
Reserved FICBP
STMUMD: Disable store miss-under-miss processing.
FICBP: Force I-Cache bad parity.
FITBP: Force I-Tag bad parity.
FDCBP: Force D-Cache bad parity.
FDTBP: Force D-Tag bad parity.
FL2TBP: Force L2-Tag bad parity.
DCPS: L1 D-Cache/D-Tag Parity Error Status/Mask.
DCPE: L1 D-Cache/D-Tag Parity checking Enable.
1 9 20 21 22 23 24 25262728293031
FITBP FDCBP FDTBP
FL2TBP
ICPS
DCPS
L2PS Res. ICPE
DCPE L2PE
ICPS: L1 I-Cache/I-Tag Parity Error Status/Mask.
L2PS: L2 Tag Parity Error Status/Mask.
ICPE: L1 I-Cache/I-Tag Parity checking Enable.
L2PE: L2 Tag Parity checking Enable.
10006024-04 Katana®752i User’s Manual
4-7
Processor: Exception Handling

EXCEPTION HANDLING

Each CPU exception type transfers control to a different address in the vector table. The vector table normally occupies the first 2000 bytes of RAM (with a base address of 0000,0000 may be used to point to an error routine or for code or data storage. exceptions recognized by the processor from the lowest to highest priority.
Table 4-4: 750GL Exception Priorities
Exception:
Trace 00D00 Lowest priority. Due to MSR[SE]=1 or MSR[BE]=1 for
Data Storage (DSI) 00300 DABR address match.
Alignment 00600 Any alignment exception condition. Program (PI) 00700 Due to a floating-point enabled exception.
Floating Point Unavailable (FPA) 00800 Any floating-point unavailable exception. System call (SC) 00C00 Execution of system call (sc) instruction. Instruction Address Breakpoint
(IABR) Instruction Storage (ISI) 00400 Instruction fetch exceptions. Thermal Management (TMI) 01700 Junction temperature exceeds the threshold
Decrementer (DEC) 00900 Decrementer passed through zero. Performance Monitor (PFM) 00F00 Programmer-specified. External (EI) 00500 INT* (Refer to Section for description of interrupt
System Management (SMI) 01400 MSR[EE]=1 and SMI* is asserted. Machine check 00200 Assertion of TEA*, 60x Address Parity Error, 60x Data
System reset 00100 Soft reset (SRESET*).
) or ROM (with a base address of F800,000016). An unassigned vector position
16
Vector Address Hex Offset: Notes:
01300 Any IABR exception condition.
Table 4-4 lists the
branches.
TLB page protection violation. Any access except cache operations to T=1 (bit 5 of
DSISR) or T=0->T=1 crossing. BAT page protection violation. Due to eciwx, ecowx with EAR(E)=0 (bit 11 of
DSIDSR).
Due to an illegal instruction, a privileged instruction, or a trap.
specified in THRM1 or THRM2, and MSR[EE]=1.
sources and interrupt handling.)
Parity Error, L2 ECC Double Bit Error, MCP*, L2-Tag Parity Error, D-Tag Parity Error, I-Tag Parity Error, I­Cache Parity Error, D-Cache Parity Error, or locked L2 snoop hit.
Highest priority. Hard reset (HRESET* and POR).
4-8
Katana®752i User’s Manual 10006024-04
Processor: Exception Processing
Vector Address
Exception:
00000 Reserved.

EXCEPTION PROCESSING

When an exception occurs, the address saved in Machine Status Save/Restore register 0 (SRR0) helps determine where instruction processing should resume when the exception handler returns control to the interrupted process. Machine Status Save/Restore register 1 (SRR1) is used to save machine status on exceptions and to restore those values when an rfi instruction is executed.
When an exception is taken, the 750GL controller uses SRR0 and SRR1 to save the contents of the Machine State register (MSR) for the current context and to identify where instruc­tion execution resumes after the exception is handled.
Hex Offset: Notes: (continued)
The Machine State register (MSR) configures the state of the 750GL CPU. On initial power­up of the Katana
®
752i, most of the MSR bits are cleared. Please refer to the IBM PowerPC
documentation for more detailed descriptions of the individual bit fields.
Register 4-4: CPU Machine State (MSR)
01 12 13 14 15
Reserved POW Res. ILE
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
EE PR FP ME FE0 SE BE FE1 Res. IP IR DR Res. PM RI LE
POW: Power Management enable. Setting this bit enables the programmable power manage-
ment modes: nap, doze, or sleep. These modes are selected in the HID0 register. This bit has no effect on dynamic power management. 0= Power management disabled (normal operation mode) 1= Power management enabled (reduced power mode)
ILE: Exception Little-Endian mode.
EE: External interrupt Enable. This bit allows the processor to take an external interrupt, system
management interrupt, or decrementer interrupt. 0= External interrupts and decrementer exception conditions delayed. 1= External interrupt or decrementer exception enabled.
PR: Privilege level.
0= User- and supervisor-level instructions are executed 1= Only user-level instructions are executed
10006024-04 Katana®752i User’s Manual
4-9
Processor: Exception Processing
FP: Floating-Point available. This bit is set on initial power-up.
0= Prevents floating-point instructions dispatch (loads, stores, moves). 1= Executes floating-point instructions.
ME: Machine check Enable.
0= Machine check exceptions disabled. 1= Machine check exceptions enabled.
FE0/FE1: These bits define the Floating-point Exception mode.
Table 4-5: Floating Point Exception Mode Bits
FE0: FE1: FP Exception Mode:
00Disabled 0 1 Imprecise nonrecoverable 1 0 Imprecise recoverable 11Precise
SE: Single-step trace Enable.
0= Executes instructions normally. 1= Single-step trace exception generated.
4-10
BE: Branch trace Enable.
0= Executes instructions normally. 1= Branch type trace exception generated.
IP: Exception Prefix. Initially, this bit is cleared so that the exception vector table is placed at
the base of RAM (0000,0000 ROM (FFF0,0000
).
16
). When this bit is set, the vector table is placed at the base of
16
IR/DR: Instruction and Data address translation enables.
0= Address translation disabled. 1= Address translation enabled.
PM: Marks a process for the Performance Monitor.
0= Process is not marked. 1= Process is marked.
RI: Recoverable exception enable for system reset and machine check. This feature is enabled
on initial power-up. 0= Exception is not recoverable. 1= Exception is recoverable.
LE: Little-endian mode enable.
0= Big-endian mode (default). 1= Little-endian mode.
Katana®752i User’s Manual 10006024-04
Processor: Cache Memory

CACHE MEMORY

The 750GL processor provides both level 1 (L1) and level 2 (L2) cache memory. This section describes this memory.

L1 Cache

The 750GL processor has separate, on-chip, 32-kilobyte, Level 1 (L1) instruction and data caches with eight-way, set-associative translation lookaside buffers (TLBs). The CPU sup­ports the modified/exclusive/invalid (MEI) cache coherency protocol. The data bus width for bus interface unit (BIU) accesses of the L1 data cache array is 256 bits. This enables cache line data burst to be read from or written to the cache array in a single cycle, reducing cache contention between the BIU and the load-store unit. The 750GL also employs pseudo-least recently used (PLRU) replacement algorithms for enhanced performance.

L2 Cache

The internal L2 cache is four-way set associative. Each way contains 4096 blocks, and each block consists of two 32-byte sectors. It can be configured with any combination of individ­ual ways locked. It can lock half or all of the ways, or it can unlock them all. When unlocked, the L2 cache is four-way set associative. Each way contains 262144 blocks, and each block consists of two 32-byte sectors.
The L2 cache can be configured to contain instructions or data only. Array read and write operations execute in one processor cycle—writes are 64 bits wide and reads are 256 bits wide. The L2 has a 1MB SRAM which includes an 8-bit ECC for every 64-bit word in memory that can be used to correct most single bit errors and detect multiple bit errors.
The L2 cache control register (L2CR) configures and enables the L2 cache. The L2CR is read/write and contents are cleared during power-on reset.
Register 4-5: L2 Cache Control Register (L2CR)
0 1 2 8 9 1011 12 13 1415
L2E L2CE Reserved L2DO L2I Res. L2WT L2TS Reserved
1
16
Reserved
9202122232425262728293031
L2
L0CK LO
L2
LOCK HI
SHEE
SHERR
L2
LOCK0
L2
LOCK1L2LOCK2L2LOCK3
L2IO Reserved L2IP
L2E: L2 Enable.
Enables and disables the operation of the L2 cache, starting with the next transaction.
L2CE: L2 double bit error Checkstop Enable.
10006024-04 Katana®752i User’s Manual
4-11
Processor: Cache Memory
L2DO: L2 Data-Only.
Setting this bit inhibits the caching of instructions in the L2 cache. All accesses from the L2 instruction cache are treated as cache-inhibited by the L2 cache.
L2I: L2 global Invalidate.
Setting this bit invalidates the L2 cache globally by clearing the L2 status bits.
L2WT: L2 Write-Through.
Setting this bit selects write-through mode (rather than default copy-back mode) so all writes to the L2 cache also write through to the 60x bus.
L2TS: L2 Test Support.
Setting this bit causes cache block pushes from the L1 data cache that result from dcbf and dcbst instructions to be written only into the L2 cache and marked valid. Also causes single­beat store operations that miss in the L2 cache to be discarded.
L2L0CKLO: L2 cache locking: lock ways 0 and 1.
L2LOCKHI: L2 cache locking: lock ways 2 and 3.
SHEE: Snoop Hit in locked line Error Enable.
SHERR: Snoop Hit in locked line Error.
L2LOCK0: Lock way 0 if either bit 20 or bit 24 is set to one.
L2LOCK1: Lock way 1 if either bit 20 or bit 25 is set to one.
L2LOCK2: Lock way 2 if either bit 21 or bit 26 is set to one.
L2LOCK3: Lock way 3 if either bit 21 or bit 27 is set to one.
L2IO: L2 Instruction-Only.
Setting this bit inhibits data caching in the L2 cache.
L2IP: L2 global Invalidate in Progress.
This read only bit indicates whether an L2 global invalidate is occurring.
The L2 cache is disabled following a power-on or hard reset. Before enabling the L2 cache, configuration parameters must be set in the L2CR and the L2 tags must be globally invali­dated. Initialize the L2 cache during system start-up per the following sequence:
1 Power-on reset (automatically performed by the assertion of HRESET* signal).
2 Disable interrupts and dynamic power management (DPM).
3 Disable L2 cache by clearing L2CR[L2E].
4 Perform an L2 global invalidate.
5 Enable the L2 cache for normal operation by setting the L2CR[L2E] bit to 1.
4-12
Katana®752i User’s Manual 10006024-04
Processor: JTAG/COP Headers

JTAG/COP HEADERS

The 750GL CPU provides a dedicated user-accessible test access port (TAP) that is fully compatible with the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architec­ture. The internal common-on-chip (COP) debug processor allows access to internal scan chains for debugging purposes, and can also be used as a serial connection to the core for emulator support.
Table 4-6: 750GL JTAG/COP Interface Pin Assignments, (P3)
Pin: Signal: I/O: Description:
1 TDO Output The Test Data Out is a standard JTAG signal. This is the scan
2 Not connected 3 TDI Input The Test Data In is a standard JTAG signal, and is the input
4 TRST* Input Test Reset is a standard JTAG signal. When this signal is active
5 Not connected 6 +3.3V Output This is the power supply for the 750GL which indicates to the
7 TCK Input The Test Clock is a standard JTAG signal, and is the clock for
8 Not connected 9 TMS Input The Test Mode Select is a standard JTAG signal. This signal,
10 Not connected 11 SRESET* Input The Soft Reset is required to enable the debug station to
12 GND Ground 13 HRESET* Input The Hard Reset is required to enable the debug station to
14 Key Pin 14 is not installed.
path output, driven by the falling edge of the TCK signal and sampled on the rising edge of TCK.
data for the scan path. TDI is driven by the JTAG controller on the falling edge of TCK, and sampled on the rising edge of TCK by the JTAG slave.
(low), the JTAG logic is reset and inactive, allowing normal operation of the 750GL.
debug station the voltage at which the target processor is powered. (For the through a resettable PTC fuse.)
the JTAG machine. JTAG signals are driven according to the TCK falling edge and sampled over its rising edge.
along with TCK, controls the TAP controller state machine allowing movement between its different states. When high, it causes a change in the TAP controller state on the rising edge of TMS. When low, the TAP controller state machine remains in its current state.
either generate a Soft Reset sequence, or observe the 750GL taking a Soft Reset sequence.
either generate a Hard Reset sequence, or observe the 750GL taking a Hard Reset sequence.
Katana®752i, this signal is tied to 2.5V
10006024-04 Katana®752i User’s Manual
4-13
Processor: JTAG/COP Headers
Pin: Signal: I/O: Description: (continued)
15 CHKSTPO* Output Checkstop (halted) indication (see also Checkstop LED
16 GND Ground
indicator, CR31, in Fig. 2-5)
4-14
Katana®752i User’s Manual 10006024-04

System Controller

The Katana®752i processor complex consists of a processor (see Chapter ) and a system controller/PCI bridge device with associated memory and input/output interfaces. This chapter describes the Marvell MV64460 system controller/PCI bridge device implementa­tion.

OVERVIEW

The Discovery™ III PowerPC® System Controller (MV64460) from Marvell is an integrated system controller with a PCI interface and communication ports for high performance con­trol applications. The MV64460 has a five bus architecture:
• A 64-bit interface to the CPU bus
• A 64-bit interface to DDR SDRAM
• A 32-bit interface to devices
• Two PCI interfaces: The Katana
local PCI bus (PCI1) and a 32/64-bit interface for the CompactPCI bus (PCI0).
®
752i implementation uses a 32-bit interface for the
Section 5
The five buses function independently which enables simultaneous operation of the CPU bus, PCI device, and access to memory.
The MV64460 communications unit includes the following:
• Three Gigabit Ethernet ports
• Two multi-protocol serial controllers (MPSC)
• Ten serial DMAs (SDMA)
• Two baud rate generators (BRG)
2
•I
C interface
The crossbar fabric, or central routing unit, controls the data path routing. It contains pro­grammable arbitration mechanisms to optimize device performance.
10006024-04 Katana®752i User’s Manual
5-1
System Controller: CPU Interface
CPU at up to 200 MHz
10/100/1000
72-bit at up to
200 MHz
SCC, TWSI
64-bit at 33/66 MHz
CPU Interface + 2 Mb SRAM
4 DMA
2 XOR
GPIO, SCC,
TWSI, Int,
Timers
PCI
DDR
PCI
Device
32-bit at
66 MHz
64-bit at 33/66 MHz
3 Ports Gb Ethernet +
FIFO Interface
Figure 5-1: MV64460 Block Diagram

CPU INTERFACE

CPU interface features include:
• 32-bit address and 64-bit data buses
• Support for Symmetrical Multi-Processing (SMP) in both 60x and MPX bus modes
• Support for up to four slave devices on the same 60x bus
• Up to 200 MHz CPU bus frequency
• CPU address remapping to PCI
• Support for access, write, and cache protection to a configurable address range
• Support for up to 16 pipelined address transactions
Note: Proprietary information on the Marvell MV64460 device is not available in this user’s manual. Please refer to
the Marvell web site at http://www.marvell.com for available documentation.
The Katana®752i monitor configures the MV64460 controller so that it provides these 32­bit registers to the PowerPC processor in the correct byte order (assuming the access width is 32 bits). The CPU setting of the CPU Configuration register affects the MV64460 behavior on subsequent CPU accesses. This register activates with transactions pipeline disabled. In order to gain the maximum CPU interface performance, change this default by following these steps:
5-2
Katana®752i User’s Manual 10006024-04
System Controller: SDRAM Controller
!
1 Read the CPU Configuration register. This guarantees that all previous transactions in the
CPU interface pipe are flushed.
2 Program the register to its new value.
3 Read polling of the register until the new data is being read.
Caution: Setting the CPU Configuration register must be done only once. For example, if the CPU
interface is configured to support Out of Order (OOO) read completion, changing the register to not support OOO read completion is fatal.

SDRAM CONTROLLER

The MV64460 supports double data rate (DDR) synchronous dynamic random access memory (SDRAM). The SDRAM controller supports up to four banks of SDRAMs. It has a 16­bit address bus (M_DA[13:0] and M_BA[1:0]) and a 72-bit data bus (M_DQ[63:0] and M_CB7[7:0]). The SDRAM controller supports both registered and unbuffered SDRAM devices. Other features include:
• 64-bit wide (+ 8-bit ECC) SDRAM interface
• Up to 200-MHz SDRAM frequency
• Support for 64-megabit to one-gigabit DDR SDRAM devices
• Supports both physical and virtual bank interleaving
The MV64460 has a number of SDRAM registers. Refer to the Marvell web site for available documentation.

DEVICE CONTROLLER INTERFACE

The device controller supports up to five banks of devices. Each bank’s supported memory space can be programmed separately in one megabyte quantities up to 512 megabytes of address space with a total device space of 2.5 gigabytes. Other features include:
• Dedicated 32-bit multiplexed address/data bus (separate from the SDRAM bus)
• 66 MHz bus frequency
• Five chip selects, each with programmable timing
• Use as a high bandwidth interface to user specific logic
• Supports many types of standard memory and I/O devices
Each bank has its own parameter register and can be programmed to 8, 16, or 32-bits wide. The device interface consists of 128 bytes of write buffer and 128 bytes of read buffer.
10006024-04 Katana®752i User’s Manual
5-3
System Controller: Internal (IDMA) Controller

INTERNAL (IDMA) CONTROLLER

Each of the four DMA engines can move data between any source and any destination, such as the SDRAM, device, PCI_0, or CPU bus. These engines optimize system performance by moving large amounts of data without significant CPU intervention. Read and write are handled independently and concurrently.

TIMER/COUNTERS

Each of the four 32-bit wide timer/counters can be selected to operate as a timer or a counter. Each timer/counter increments with every Tclk rising edge. In counter mode, the counter counts down to terminal count, stops, and issues an interrupt. In timer mode, the timer counts down, issues an interrupt on terminal count, reloads itself to the programmed value, and continues to count. Reads from the counter or timer are completed directly from the counter, and writes are to the timer/counter register.

PCI INTERFACE

The MV64460 supports two 64-bit PCI interfaces, which comply with the PCI Local Bus Spec­ification revision 2.3. Other features include:
• Supports P2P memory, I/O, and configuration transactions
• PCI bus speed up to 66 MHz with zero wait states
• Operates either synchronous or asynchronous to CPU clock; at slower, equal, or faster
clock frequency
• 32/64-bit PCI master and target operations
For the Katana PCI_0 is a 32/64-bit, 33/66MHz cPCI bus interface.
®
752i, PCI1 is a 32-bit, 33/66MHz local PCI bus interface.

PCI Configuration Space

The PCI slave supports Type 00 configuration space header as defined in the PCI specifica­tion. The MV64460 is a multi-function device and the header is implemented in all eight functions. The PCI interface implements the configuration header and this space is accessi­ble from the CPU or PCI bus.
5-4
Katana®752i User’s Manual 10006024-04
System Controller: PCI Interface

PCI Identification

The Katana®752i has been assigned the following PCI identification numbers.
Table 5-1: PCI Identification Values
Field: Value: Description:
Vendor ID 0x11AB Marvell Device ID 0x6480 MV64460 System Controller Subsystem Vendor ID 0x1223 Emerson Network Power Subsystem Device ID 0x0048 Katana

PCI Read/Write

The MV64460 becomes a PCI bus master when the CPU, IDMA, or MPSC SDMAs initiate a bus cycle to a PCI device. Conventional PCI mode allows unlimited DMA bursts between PCI and memory. It supports all PCI commands including 64-bit addressing using dual access cycles (DAC).
The MV64460 acts as a target when a PCI device initiates a memory access (or an I/O access in the case of internal registers, or a P2P transaction). It responds to all memory read and write accesses, including DAC, and to all configuration and I/O cycles in the case of internal registers. Its internal buffers allow unlimited burst reads and writes, and they support up to four pending delayed reads in conventional PCI mode.
®
752i

PCI Interface Registers

PCI0 and PCI1 contain the same set of internal registers, but are located at different offsets. A CPU access to the MV64460 PCIx Configuration register is performed via the PCIx Config­uration Address and Data registers.
All PCI configuration registers are located at their standard offset in the configuration header, as defined in the PCI specification, when accessed from their corresponding PCI bus. For example, if a master on PCI1 performs a PCI configuration cycle on PCI’s Status and Command register, the register is located at 0x004.
A host access from the PCI interface to this register allows the target PCI device to acknowl­edge the interrupt by turning off the INTA* interrupt. Although the interrupts are active low, the register values are active high. For example, a value of one in the INTA field indi­cates that an interrupt is pending on INTA*. Also, writing a one to this location asserts the INTA* interrupt.
The Katana interrupt-generating registers or address ranges within their PCI bridges. The board will respond to interrupts caused by another PCI device when it accesses a programmable range of local memory, as provided by the MV64460 memory controller. In addition, it may
®
752i may generate interrupts to other PCI devices by accessing doorbell-type
10006024-04 Katana®752i User’s Manual
5-5
System Controller: Doorbell Registers
monitor the state of the PCI bus INTA*—INTD* signals (PCI1 only). The MV64460 contains registers that control the masking, unmasking, and priority of the PMC interrupts as inputs to the processor.

DOORBELL REGISTERS

The MV64460 uses the doorbell registers in the messaging unit (MU) to request interrupts on both the PCI and CPU buses. There are two types of doorbell registers:
Outbound: These are set by the MV64460’s local CPU to request an interrupt service on the PCI bus.
Inbound: These are set by an external PCI agent to request interrupt service from the local CPU.

Outbound Doorbells

The local CPU generates an interrupt request to the PCI bus by setting bits in the Outbound Doorbell register (ODR). The interrupt may be masked in the Outbound Interrupt Mask reg­ister (OIMR), but that does not prevent the bit from being set in the ODR. The ODR is located at PCI_0 offset 0x1C2C.
Note: The CPU or the PCI interface can set the ODR bits. This allows for passing interrupt requests between CPU and
PCI interfaces.

Inbound Doorbells

The PCI bus generates an interrupt request to the local CPU by setting bits in the Inbound Doorbell register (IDR). The interrupt may be masked in the Inbound Interrupt Mask regis­ter (IIMR), but masking the interrupt does not prevent the bit from being set in the IDR. The IDR is located at PCI_0 offset 0x1C20.
Note: The interrupt request triggered from the PCI bus can be targeted to the CPU or to the PCI interface, depending
on the software setting of the interrupt mask registers.

WATCHDOG TIMER

The 32-bit count down watchdog timer generates a nonmaskable interrupt or resets the system in the event of unpredictable software behavior. After the watchdog is enabled, it is a free-running counter that requires periodic servicing to prevent its expiration. After reset, the watchdog is disabled.

RESET

Circuitry on the Katana®752i resets the entire board if the voltages fall out of tolerance or if the optional on-board reset switch is activated. Please refer to Chapter for additional infor­mation.
5-6
Katana®752i User’s Manual 10006024-04
System Controller: On-Card Memory

ON-CARD MEMORY

The Katana®752i has various types of on-card memory to support the MV64460 system controller and the 750GL processor. It has user Flash, SDRAM for data storage, and several serial EEPROMs for non-volatile memory storage. The following subsections describe these memory devices.

User Flash

The Katana®752i user Flash memory interface supports soldered devices of 32, 64, or 128 megabytes for the processor complex. The 32-megabyte configuration uses one bank of two 128 Mbit devices. The 64-megabyte configuration uses two banks of two 128 Mbit devices or one bank of 256 Mbit devices. The 128-megabyte configuration uses two banks of two 256 megabit devices. The soldered Flash banks provide a maximum of 128 mega­bytes of contiguous true Flash file system (TFFS) memory. The MV64460 controls this memory, located at E800,0000 sor boots from the soldered Flash (see Jumper JP2 location on page 2-5).
In addition to the soldered Flash memory, the Katana memory device of up to 512 kilobytes for the 750GL processor complex. This memory device is socketed and located at F800,0000 cessor can write to and boot from this memory.
on the processor 60x bus. By default, the 750GL proces-
16
®
752i also supports a single Flash
on the processor 60x bus. The 750GL pro-
16

SDRAM

The Katana®752i supports up to two gigabytes of 72-bit wide synchronous dynamic ran­dom access memory (SDRAM) for the 750GL processor complex. The SDRAM interface implements eight additional bits to allow for error correcting code (ECC).
Note: If a standard two-gigabyte SO-DIMM is installed, PMC Site #1 becomes inaccessible due to the dimensions of
the SO-DIMM. Also, the CPU and local bus frequencies are slightly different for this configuration. Using a two-gigabyte SO-DIMM will slightly increase the Katana
The SDRAM is in the form of a small-outline, dual in-line memory module (SO-DIMM) device. A serial EEPROM on the SO-DIMM provides configuration information, accessible via
2
the I
C interface at address AE16. The SDRAM occupies physical addresses from
0000,0000
to 7FFF,FFFF16 on the processor 60x bus. The MV64460 controls the SDRAM
16
and supports a double data rate (DDR) interface that allows for transfer speeds of up to 400 MHz (clock rates of up to 200 MHz).
10006024-04 Katana®752i User’s Manual
®
752i’s airflow requirements.
5-7
System Controller: I2C Interface

EEPROMs

The MV64460 uses an 8-kilobyte serial EEPROM at hex location 53 configuration data. Also, the MV64460 provides a second 8-kilobyte serial EEPROM at hex location A6 monitor, and operating system configurations. All Emerson-specific data is stored in the upper 2 kilobytes of the device. The SROM data organization is allocated as follows.
Table 5-2: NVRAM Allocation
Address Offset: Name: Window Size:
0x1E00-0x1FFF Reserved 0x0200 (512) bytes 0x1DDC-0x1DFF BootVerify parameters 0x0024 (36) bytes 0x1DD8-0x1DDB Power-on self-test (POST) diagnostic results 0x0004 (4) bytes 0x1800-0x1DD7 Monitor configuration parameters 0x05D8 (1496) bytes 0x1600-0x17FF Operating system 0x0200 (512) bytes 0x0000-0x15FF User Defined 0x1600 (5632) bytes

I2C INTERFACE

on the I2C bus to provide additional non-volatile information such as board,
16
on the I2C bus to store
16
The MV64460 has a built-in inter-integrated circuit (I2C) interface that supports master and
2
slave I
C devices. The following devices connect to the I2C bus:
• SO-DIMM SDRAM
• two 64-kilobit serial EEPROMs
• real-time clock (RTC) device
• Zircon PM IPMI controller and associated devices
The multiplexer shown in
Fig. 5-2 actually consists of two switches. One switch allows the
750GL processor to access the IPMI serial ROMs only while the IPMI controller is held in reset. The second switch allows the 750GL processor to access I end power is up–otherwise this connection is isolated. (Please refer to the Katana
2
C Port #1 only while back-
®
752i
schematics for details.)
5-8
Katana®752i User’s Manual 10006024-04
System Controller: I2C Interface
Figure 5-2: I2C Interface Diagram
MV64460 initialization
ROM
0xA4
NVRAM
0xA6
MUX
IPMI Bootcode
ROM
0xA2
and FRU ROM
Bootloader
0xA0
IPMI
MV64460
Bridge
software
through
control
PVT_SDA/SCL
Marvell
Configurable
address
MV1_SDA/SCL
SODIMM
ROM
0xAE
Real-time
0xD0
clock
mv1_port_sel
ipmi_rst*
Temperature
sensor
0x90
Temperature
sensor
0x92
IPMI_SDA/SCL
I2C #1
Configurable
Backplane IPMB
I2C #0
I2C #2
software
through
address
control
Devices on IPMI power
ipmi_rst*
ZirconPM IPMI
Controller
Qlogic
10006024-04 Katana®752i User’s Manual
5-9
System Controller: GPIO Signal Definitions

GPIO SIGNAL DEFINITIONS

The MV64460 system controller on the Katana®752i has 32 general-purpose input output (GPIO) pins that are used for various purposes. The following table describes the GPIO pin assignments.
Table 5-3: GPIO Signals Definitions
Pin: Direction: Description:
0 output console port transmit data 1 input console port receive data 2output PTMC site #1 PCI grant 3 input PTMC site #1 PCI request 4output PTMC site #2 PCI grant 5 input PTMC site #2 PCI request 6 output Ethernet MAC PCI grant 7 input Ethernet MAC PCI request 8 input PCI1 INTA 9 input PCI1 INTB 10 input PCI1 INTC 11 output INIT_ACT, driven to indicate the bridge is loading from serial ROM 12 input input from CPLD, used as synchronous versions of PERR and SERR 13 output driven low to turn off front panel fault LED once processor section is up
14 input PCI1 INTD 15 unused 16 output watchdog NMI 17 output watchdog expired 18 output I2C_HOLDOFF signal (Zircon PM) 19 output output enable for PTMC RMII clocks 20 input baud rate input clock for serial port 21—22 unused 23 input IPMI Timerout, driven by IPMI microcontroller when there is a time-
24 output POST indicator 25 output driven high to put the IPMI microcontroller in reset 26 input Watchdog Maskable Interrupt (in) 27 input GIG0_INT interrupt signal from gigabit PHY (unused on rev. 0—1
28 input GIG1_INT interrupt signal from gigabit PHY (unused on rev. 0—1
29 input GIG2_INT interrupt signal from gigabit PHY (unused on rev. 0—1
and running
out condition
boards)
boards)
boards)
5-10
Katana®752i User’s Manual 10006024-04
System Controller: Console Serial Port
Twisted Pairs
DB9 Connector Mini DB9 Connector
GND (Green)
CONSOLE Rx (Red)
CONSOLE Tx (Black)
CONSOLE Rx (Red)
CONSOLE Tx (Black)
Shield (Braid to shell 360 connection)
o
SHELL SHELL
9 8 7 6 5 4 3 2 1
9 8 7 6 5 4 3 2 1
Pin: Direction: Description: (continued)
30 unused 31 input MVL_PCI0_HS signal, ejector handle status; 1=latch closed, 0=latch

CONSOLE SERIAL PORT

The processor complex on the Katana®752i has an asynchronous console serial port on the front panel. This port operates at EIA-232 signal levels, but does not provide any handshak­ing functionality. The connector for the front panel console port is a mini-DB9 connector, with the following pin assignments.
Table 5-4: Serial Console Port Pin Assignments, (P2)
Pin: Signal: Pin: Signal:
1 no connection 6 no connection 2 RXD (Data Out) 7 no connection 3 TXD (Data In) 8 no connection 4 no connection 9 no connection 5 ground 10-11 CHS_GND
open (For rev. 0 boards, software must debounce switch input.)
The standard Emerson console cable (#10007665-00) is cross-pinned, as shown in the fig­ure below. A straight-through connector (#10007664-00) also is available.
Figure 5-3: Standard Console Cable Wiring, #10007665-00
Note: Cable part numbers are subject to change. Please check with Emerson before ordering replacement cables.
The Katana®752i also provides serial console port access via the J5 CompactPCI connector at pins E15 and D15 (refer to page 14-3 for pinouts).
10006024-04 Katana®752i User’s Manual
5-11
(blank page)
5-12
Katana®752i User’s Manual 10006024-04

Device Bus PLD

The processor complex on the Katana®752i has a programmable logic device (PLD) that provides control logic for the 750GL device bus. This PLD implements various registers relating to reset control, interrupt handling, product identification, PCI enumeration, and board configuration. This chapter describes the registers in the device bus PLD, which is also known as the MVC PLD.

RESET REGISTERS

The device bus PLD routes and distributes the reset signals. Two registers support this func­tionality. The read-only Reset Event register at hex location F820,0000 son for the last reset as follows.
Register 6-1: Reset Event
76543210
InitAct Reserved WD COPS COPH PMCR CPCI FP
indicates the rea-
16
Section 6
InitAct: Initialization Active:
Set to 1 when the MV64460 InitAct pin does not go inactive after reset
WD: Watchdog:
Set to 1 when a reset was caused by the expiration of the MV64460 watchdog timer
COPS: Soft Reset:
Set to 1 when a COP header soft reset (SRESET) has occurred
COPH: Hard Reset:
Set to 1 when a COP header hard reset (HRESET) has occurred
PMCR: PMC Reset:
Set to 1 when a PPMC issues a PMC Reset Out
CPCI: CPCI:
Set to 1 when a cPCI reset (RST* signal) has occurred
FP: Front Panel:
Set to 1 when the front panel switch caused a reset
The Reset Command register at hex location F820,1000 resets, as shown below. After a reset sequence is initiated by writing a one to a valid bit, the bit is automatically cleared.
Note: When writing to this register, only set one bit at a time.
forces one of several types of
16
10006024-04 Katana®752i User’s Manual
6-1
Device Bus PLD: Interrupt Registers
Register 6-2: Reset Command
76543210
SCL SDA PCI0
SCL: Direct control for I2C clock signal:
1=Tri-states the PLD 0=Drives logic low
SDA: Direct control for I
2
C data signal: 1=Tri-states the PLD 0=Drives logic low
PCI0 : PCI0 reset status, as set by JP1, pins 7-8;
software should not overwrite this value: 1=cPCI functionality is disabled
(MV64460 PCI0 interface held in reset)
0=cPCI functionality is enabled
(MV64460 PCI0 interface reset deasserted)
Reserved
FR Reserved HR
FR: Flash Reset command:
1=Causes Flash to be reset, clears automatically 0=No Flash reset (default)
HR: Hard Reset command:
1=Causes a hard reset on board, clears automatically 0=No hard reset (default)

INTERRUPT REGISTERS

The system error and parity error interrupts from the PCI bus route to the device bus PLD. Sampling for these signals occurs on the rising edge of the PCI clock, according to the PCI specification. The software should hold these signals low for a clock cycle, otherwise they will be ignored. PERR and SERR have two loads, which are combined in the PLD to a single interrupt and route to the MPP12 pin on the MV64460.
The Interrupt Enable register at hex location F820,2000 lows.
Register 6-3: Interrupt Enable
76543210
contains two enable bits, as fol-
16
Reserved SREN PREN
6-2
Katana®752i User’s Manual 10006024-04
Device Bus PLD: Product Identification
SREN: PCI SERR Enable interrupt routed from PCI SERR to MV64460:
1=Enabled to generate an interrupt 0=Disabled (default)
PREN: PCI PERR Enable interrupt routed from PCI PERR to MV64460:
1=Enabled to generate an interrupt 0=Disabled (default)
The Interrupt Pending register at hex location F820,3000 which source has caused an interrupt, as follows.
Register 6-4: Interrupt Pending
76543210
SERR: PCI SERR Enable
1=SERR has occurred and is enabled (IER SR1EN=1) 0=No SERR (default).
PERR: PCI PERR Enable
1=PERR has occurred and is enabled (IER PR1EN=1) 0=No PERR (default).

PRODUCT IDENTIFICATION

The read-only Product ID register at hex location F820,400016 identifies the Katana®752i.
Register 6-5: Product ID
76543210
PIR: Product Identification register:
04
=Katana®752i
16
allows software to determine
16
Reserved SERR PERR
PIR

PCI ENUMERATION

The Katana®752i provides a register for status and control of enumeration. In a Monarch system, the EReady register at hex location F820,5000 boards in the system are ready for enumeration. In a non-Monarch system, the register is writeable to indicate the Katana
®
752i is ready for enumeration.
10006024-04 Katana®752i User’s Manual
is readable to indicate that other
16
6-3
Device Bus PLD: Revision Registers
Register 6-6: EReady
76543210
Reserved ERdy
ERdy: Monarch (read):
1=PCI devices are ready to be enumerated 0=PCI devices not ready to be enumerated
Non-Monarch (write): 1=PMC is ready to be enumerated 0=PMC is not ready to be enumerated

REVISION REGISTERS

The Katana®752i device bus PLD provides two read only registers to track hardware and PLD revisions. The Hardware Version register at hex location F820,7000 coded tracking number for the hardware.
Register 6-7: Hardware Version
provides a hard-
16
76543210
HVR: Hardware version number:
This is hard coded in the PLD and changed with every major PCB version. Version starts at 00
.
16
The PLD Version register at hex location F820,8000 ber for the PLD code.
Register 6-8: PLD Version
76543210
PVR: Code version number:
This is hard coded in the PLD and changed with every major code change. Version starts at 00
.
16

BOARD CONFIGURATION REGISTERS

Three byte-wide, read-only Board Configuration registers allow the monitor software to easily determine specific hardware configurations. The Board Configuration 3 register at hex location F820,C000
HVR
provides a hard-coded tracking num-
16
PVR
indicates if the Katana®752i is a Monarch.
16
6-4
Katana®752i User’s Manual 10006024-04
Device Bus PLD: Board Configuration Registers
Note: Board Configuration 2 register is not implemented in the Katana®752i.
Register 6-9: Board Configuration 3.
76543210
Reserved cPCI Mon Reserved
cPCI: cPCI bus status indication:
1=cPCI bus is disabled (held in reset) (default) 0=cPCI bus is enabled
Mon: Monarch indication:
1=Katana
®
752i is Monarch
0=PMC is Monarch
The Board Configuration 1 register at hex location F820,A000 tion about the Flash memory, as follows.
Register 6-10: Board Configuration 1
76543210
Reserved Boot
Socket
Boot Socket: Boot from socketed Flash or from soldered Flash:
1=Boot from socketed Flash 0=Boot from soldered Flash
The Board Configuration 0 register at hex location F820,9000 speed and the H.110 option status, as follows.
Register 6-11: Board Configuration 0
76543210
SysCLK H110 Reserved
SysCLK: System clock speed:
11=133MHz 10=166MHz 01=100MHz 00=200MHz
provides status informa-
16
Reserved
indicates the system clock
16
H110: H.110 option installed:
1=yes 0=no (default)
10006024-04 Katana®752i User’s Manual
6-5
Device Bus PLD: Other Registers

OTHER REGISTERS

The IPMI Port Select register at hex location F820,E00016 allows access to the IPMI inter­face, as follows.
Register 6-12: IPMI Port Select
7 6543210
PORT_SEL Reserved
PORT_SEL: IPMI Port Selection:
Allow processor access to the IPMI controller and temperature sensors 1=Disabled (default) 0=Enabled
The LED register at hex location F820,D000 LEDs (on the Katana
Register 6-13: Programmable LED
76543210
Reserved LED4 LED3 LED2 LED1
LED1—LED4: Programmable LEDs:
Illuminate the corresponding LED 1=on 0=off (default)
®
752i front panel), as follows.
16
allows software to access the programmable
6-6
Katana®752i User’s Manual 10006024-04

Real-Time Clock

Seconds
Minutes
Century/Hours
Day
Date
Month
Year
Control
1Hz
OSC1
OSC0
FT/OUT
SCL
SDA
V
CC
V
SS
V
BAT
Address Register
Control
Logic
Divider
Oscillator
32.768 KHz
Voltage
Sense and
Switch
Circuitry
Serial
Bus
Interface
The processor complex on the Katana®752i has a standard real-time clock (RTC), consisting of an M41T00 device from STMicroelectronics. The M41T00 has an integrated year-2000­compatible RTC, power sense circuitry, and uses eight bytes of non-volatile RAM for the clock/calendar function. It is powered from the +3.3 volt rail during normal operation. The M41T00 device connects to an I page 5-8). The M41T00 device is backed up by power from a single, super capacitor, which will hold a charge for at least two hours.

BLOCK DIAGRAM

The following block diagram shows the basic structure of the M41T00 device.
Figure 7-1: M41T00 Real-Time Clock Block Diagram
2
C bus (see
Section 7

OPERATION

The M41T00 clock operates as a slave device on the serial bus. To obtain access, the RTC implements a start condition followed by the correct slave address (D0 bytes in the following order:
10006024-04 Katana®752i User’s Manual
). Access the eight
16
7-1
Real-Time Clock: Clock Operation
1 Seconds register
2 Minutes register
3 Century/Hours register
4 Day register
5 Date register
6 Month register
7 Years register
8 Control register
The M41T00 clock continually monitors the supply voltage (Vcc) for an out of tolerance condition. If Vcc falls below switch-over voltage (Vso), the M41T00:
• Terminates an access in progress
• Resets the device address counter
• Does not recognize inputs (prevents erroneous data from being written)
At power-up, the M41T00 uses Vcc at Vso and recognizes inputs.

CLOCK OPERATION

Read the seven Clock registers one byte at a time or in a sequential block. Access the Con­trol register (address location 7) independently. An update to the Clock registers is delayed for 250 ms to allow the read to be completed before the update occurs. This delay does not alter the actual clock time. The eight byte clock register sets the clock and reads the date and time from the clock, as summarized in
Table 7-1: RTC Register Map
Address: Data: Function/Range:
D7 D6 D5 D4 D3 D2 D1 D0 BCD Format:
00 ST 10 Seconds Seconds Seconds 00—59 01 X 10 Minutes Minutes Minutes 00—59 02 CEB CB 10 Hours Hours Century/Hours 0-1/00-23 03 X XXX XDay Day 0107 04 X X 10 Date Date Date 01—31
10 M
05 X X X 06 10 Years Years Years 00—99 07 OUT FT S Calibration Control
Month Month 01—12
Table 7-1.
7-2
Katana®752i User’s Manual 10006024-04
Real-Time Clock: Clock Operation
ST: Stop bit
1=Stops the oscillator 0=Restarts the oscillator within one second
CEB: Century Enable Bit
1=Causes CB to toggle either from 0 to 1 or from 1 to 0 at the turn of the century 0=CB will not toggle
CB: Century Bit
Day: Day of the week
Date: Day of the month
OUT: Output level
1=Default at initial power-up 0=FT/OUT (pin 7) driven low when FT is also zero
FT: Frequency Test bit
1=When oscillator is running at 32,768 Hz, the FT/OUT pin will toggle at 512 Hz 0=The FT/OUT pin is an output driver (default at initial power-up)
S: Sign bit
1=Positive calibration 0=Negative calibration
Calibration: Calibration bits
The calibration circuit adds or subtracts counts from the oscillator divider circuit at the divide by 256 stage. The number of times pulses are blanked (subtracted, negative calibra­tion) or split (added, positive calibration) depends on this five-bit byte. Adding counts accelerates the clock, and subtracting counts slows the clock down.
X: Don’t care bit.
10006024-04 Katana®752i User’s Manual
7-3
(blank page)
7-4
Katana®752i User’s Manual 10006024-04

Local PCI Bus

The Katana®752i utilizes the Peripheral Component Interconnect (PCI) bus as the interface between the 750GL processor complex, PCI Telecom Mezzanine Card (PTMC) sites, optional T8110 time slot interchanger (TSI), and 82544 Ethernet media access controller (MAC). The Katana PMC mechanical interface standard. The Marvell MV64460 device functions as the PCI bridge and always performs local PCI bus arbitration.
The following devices are on the PCI bus:
• IBM 750GL processor complex (host controller by default)
• Two PCI expansion sites (Monarch or non-Monarch)
• Optional Ambassador T8110 TSI (PCI target only)
• Intel 82544 Ethernet MAC
Note: When the optional T8110 time slot interchanger is installed, the PCI bus speed is limited to 33MHz.
®
752i complies with the PCI bus interface standard and the associated
Section 8

PCI ENUMERATION

By default, the 750GL processor complex functions as a Monarch. In this mode, the MV64460 serves as a PCI system controller. It provides PCI arbitration and PCI bus enumer­ation. The Katana either PTMC site as the Monarch.
The PCI standard allows for environments where the number and types of devices on the PCI bus varies. Therefore, the Katana system controller dynamically defines the memory map using a process called enumera­tion. In this process, the PCI system controller probes the PCI bus to discover what devices are installed and how much memory space each device is requesting. The system controller then allocates the available PCI memory, defines the base address of each device, and con­figures the PCI base address registers for each device accordingly.
PCI device software should assign physical addresses dynamically, in the format of “base address + offset”. The enumeration routine can retrieve the base address. The offset is device-dependent and fixed. The monitor software performs enumeration routines at power-up and PCI reset. The operating system also performs enumeration upon booting. The monitor and operating system both have built-in hooks for retrieving the base addresses.
®
752i also has configuration jumpers at JP2 (see Fig. 2-4) which can set
®
752i does not support a fixed memory map. The PCI

PCI ID SELECT AND INTERRUPTS

The Katana®752i follows the typical PCI convention for assigning ID Select signals, as shown in the following table.
10006024-04 Katana®752i User’s Manual
8-1
Local PCI Bus: Geographical Addressing
Table 8-1: ID Select Connections
Katana®752i PCI Device IDSEL Address
PTMC Site 1 (at J12) AD20 PTMC Site 2 (at J22) AD21 T8110 Time Slot Interchanger (TSI) AD22 MV64460 System Controller AD23 82544 Ethernet MAC AD24
The T8110 TSI connects to INTD. The MV64460 system controller connects to INTA. The Ethernet MAC connects to INTD. The PCI devices on the PTMC module(s) use the following connections.
Table 8-2: Interrupt Connections for Katana®752i
MV64460: PTMC #1: PTMC #2: 82544EI: T8110:
INTA INTD INTC – INTB INTA INTD – INTC INTB INTA – INTD INTC INTB INT INT

GEOGRAPHICAL ADDRESSING

The Katana®752i has three read-only registers that allow the software to read Geographical Addresses from the CompactPCI backplane connectors. The following table describes these registers.
Table 8-3: Geographical Address Registers
Register Address (Hex) Description
J4SGA F821,0000 Read the Shelf Enumeration Bus pins from cPCI J4 connector. J4GA F821,0001 Read the Geographical Address from cPCI J4 connector. J2GA F821,0002 Read the Geographical Address from the cPCI J2 connector.

PCI BUS CONTROL SIGNALS

This section lists signals for the PCI interface which are available on PMC connectors J11, J12, J21, and J22 (see also pinout tables beginning on page 9-3). Please refer to the PCI specification for details on using these signals. All signals are bi-directional unless otherwise stated.
Note: A sustained three-state line is driven high for one clock cycle before float.
8-2
Katana®752i User’s Manual 10006024-04
Local PCI Bus: PCI Bus Control Signals
ACK64*, REQ64*: These sustained three-state output signals tell a 64-bit PCI device whether to use the 64-bit
or the 32-bit data width. Since the Katana
®
752i is a 32-bit board, these signals are tied off
to indicate the 32-bit data width.
AD00-AD31: ADDRESS and DATA bus (bits 0-31). These three-state lines are used for both address and
data handling. A bus transaction consists of an address phase followed by one or more data phases.
C/BE0*-C/BE3*: BUS COMMAND and BYTE ENABLES. These three-state lines have different functions
depending on the phase of a transaction. During the address phase of a transaction these lines define the bus command. During a data phase the lines are used as byte enables.
CLK: CLOCK. This is an input signal that provides timing for PCI transactions. (This is unused,
since the Katana
®
752i generates its own PCI clock signal.)
DEVSEL*: DEVICE SELECT. This sustained three-state signal indicates when a device on the bus has
been selected as the target of the current access.
EREADY: READY. This signal is an input for Monarch devices and an output for non-Monarch devices.
It indicates that all modules are initialized and the PCI bus is ready to be enumerated.
FRAME*: CYCLE FRAME. This sustained three-state line is driven by the current master to indicate the
beginning of an access, and continues to be asserted until transaction reaches its final data phase.
GNT*: GRANT. This input signal indicates that access to the bus has been granted to a particular
master. Each master has its own GNT*.
IDSEL: INITIALIZATION DEVICE SELECT. This input signal acts as a chip select during configuration
read and write transactions.
INTA*, INTB*, INTC*, INTD*:
PMC INTERRUPTS A, B, C, D. These interrupt lines are used by PCI devices to interrupt the host processor.
IRDY*: INITIATOR READY. This sustained three-state signal indicates that the bus master is ready
to complete the data phase of the transaction.
M66EN: ENABLE 66 MHZ. When grounded, this signal prevents 66 MHz operation of the PCI bus.
MONARCH*: MONARCH. When this signal is grounded, it indicates that the Katana
Monarch and must provide PCI bus enumeration and interrupt handling.
LOCK*: LOCK. This sustained three-state signal indicates that an automatic operation may require
multiple transactions to complete. (The Katana
®
752i baseboard is a
®
752i does not support this signal.)
10006024-04 Katana®752i User’s Manual
8-3
Local PCI Bus: PCI Bus Control Signals
PAR: PARITY. This is even parity across AD00-AD31 and C/BE0-C/BE3*. Parity generation is
required by all PCI agents. This three-state signal is stable and valid one clock after the address phase, and one clock after the bus master indicates that it is ready to complete the data phase (either IRDY* or TRDY* is asserted). Once PAR is asserted, it remains valid until one clock after the completion of the current data phase.
PERR*: PARITY ERROR. This sustained three-state line is used to report parity errors during all PCI
transactions.
PME*: POWER MANAGEMENT EVENT. This optional open-drain signal (pull-up resistor required)
allows a device to request a change in the power state. Devices must be enabled by soft­ware before asserting this signal. (The Katana
®
752i does not support this signal.)
PRESENT*: PRESENT. When grounded, this signal indicates to a carrier that a PMC module is installed.
(The Katana
®
752i does not support this signal.)
RESET_OUT*: RESET OUTPUT. This optional output signal may be used to support another source. To
avoid reset loops, do not use RST* to generate RESET_OUT*.
REQ*: REQUEST. This output pin indicates to the arbiter that a particular master wants to use the
bus.
RST*: RESET. The assertion of this input line brings PCI registers, sequencers, and signals to a con-
sistent state.
SERR*: SYSTEMS ERROR. This open-collector output signal is used to report any system error with
catastrophic results.
STOP*: STOP. This is a sustained three-state signal used by the current target to request that the
bus master stop the current transaction.
TRDY*: TARGET READY. This is a sustained three-state signal that indicates the target’s ability to
complete the current data phase of the transaction.
8-4
Katana®752i User’s Manual 10006024-04

PTMC Interface

J3J4J5
J22
J21
J24
J23
J12
J11
J1J2
J14
J13
P1
P2
PTMC Module
(bottom side)
PTMC2
PTMC Module
(bottom side)
PTMC1
J12
J11
J14
J13
J21
J22J24
J23
J24J22
J23J21
The Katana®752i Peripheral Component Interconnect (PCI) interface supports two PCI Telecom Mezzanine Card (PTMC) expansion sites. This chapter describes how to install PTMC modules and provides additional information about the PTMC signals. Each PTMC site can connect to two optional KS8721CL RMII PHY devices that route to the CompactPCI backplane connector J5 (see page 10-3). The Katana the PCI Telecom Mezzanine/Carrier Card Specification, PICMG 2.15 (see also “Timing Consid­erations” on page 12-5).

PTMC INSTALLATION

The Katana®752i baseboard has two sets of four connectors (J11—J14 and J21—J24), as defined by the PMC specification. Katana tion.)
Figure 9-1: PTMC Module Location on Baseboard
®
752i complies with Configuration 2 of
Fig. 9-1 shows the location of these connectors on the
®
752i. (Connectors J13 and J23 are only present in the optional CT bus configura-
Section 9
10006024-04 Katana®752i User’s Manual
9-1
PTMC Interface: PTMC Installation
!
Tighten these two screws first.
PTMC1
PTMC2
P11
P12
J11
J12
J14
J13
PTMC Module
P13
P14
J21
J22
J23
J24
The following procedure describes how to attach a PTMC module to the Katana®752i base­board:
1 Remove the screws from the standoffs on the PTMC module.
2 Hold the module at an angle and gently slide the faceplate into the opening on the
baseboard.
3 Align the P11, P12, P13, and P14 connectors and gently press the module into place until
firmly mated.
Caution: To avoid damaging the module and/or baseboard, do not force the module onto the
baseboard.
4 Using four M2.5x6mm flathead screws, secure the PTMC module from the bottom of the
baseboard. First, insert and tighten the screws closest to the P11, P12, P13, and P14 connectors. Next, insert and tighten the screws nearest to the front panel.
9-2
Katana®752i User’s Manual 10006024-04
PTMC Interface: PTMC Connector Pinouts

PTMC CONNECTOR PINOUTS

PCI expansion site #1 has four 64-pin connectors, J11—J14 (see Fig. 2-2 on page 2-3 for con­nector locations).
Table 9-1: J1x PTMC Connector Pin Assignments
Pin J11 J12 J13 J14
1 TCK POS_12V MDIO J3_E13 2 NEG_12V 3GND 4INTA* 5INTB* 6INTC* GND SRX J3_E12 7 PRESENT* GND RXER J3_D12 8 +5V 9INTD* 10 11 GND PUP0 GND J3_E11 12 +3.3V +3.3V TXD1 J3_D11 13 PCICLK RST* REFCLK J3_C11 14 GND PDN0 GND J3_B11 15 GND +3.3V GND J3_A11 16 GNT* PDN1 RXD0 J3_E10 17 REQ* PME* CT_FA J3_D10 18 +5V GND RXD1 J3_C10 19 +3.3V AD30 CT_FB J3_B10 20 AD31 AD29 GND J3_A10 21 AD28 GND PTID0 J3_E9 22 AD27 AD26 TXEN J3_D9 23 AD25 AD24 GND J3_C9 24 GND +3.3V CAS_DV J3_B9 25 GND IDSEL CT_C8A J3_A9 26 CBE3* AD23 GND J3_E8 27 AD22 +3.3V GND J3_D8 28 AD21 AD20 CT_D19 J3_C8 29 AD19 AD18 CT_D18 J3_B8 30 +5V GND CT_D17 J3_A8 31 +3.3V AD16 CT_D16 J3_E7 32 AD17 CBE2* GND J3_D7 33 FRAME* GND GND J3_C7 34 GND IDSELB NETREF2 J3_B7
Table 9-1 shows the pin assignments.
PMC1_TRST* PMC1_TMS PMC1_TDO PMC1
_TDI MDC J3_A13
no connection no connection
no connection no connection
GND J3_D13 GND J3_C13 STX J3_B13
GND J3_C12 PTID2 J3_B12 TXD0 J3_A12
10006024-04 Katana®752i User’s Manual
9-3
PTMC Interface: PTMC Connector Pinouts
Pin J11 J12 J13 J14
35 GND TRDY* CT_D14 J3_A7 36 IRDY* +3.3V 37 DEVSEL* GND CT_D12 J3_D6 38 +5V STOP* GND J3_C6 39 GND PERR* PTENB* J3_B6 40 LOCK* GND 41 SDONE* +3.3V GND J3_E5 42 SBO* SERR* NETREF1 J3_D5 43 PAR CBE1* CT_C8B J3_C5 44 GND GND GND J3_B5 45 +3.3V AD14 GND J3_A5 46 AD15 AD13 CT_D15 J3_E4 47 AD12 M66EN CT_D10 J3_D4 48 AD11 AD10 CT_D13 J3_C4 49 AD9 AD8 CT_D8 J3_B4 50 +5V +3.3V CT_D11 J3_A4 51 GND AD7 GND J3_E3 52 CBE0* REQB* CT_D9 J3_D3 53 AD6 +3.3V CT_D6 J3_C3 54 AD5 GNTB* CT_D7 J3_B3 55 AD4 56 GND GND GND J3_E2 57 +3.3V 58 AD3 EREADY CT_D5 J3_C2 59 AD2 GND CT_D2 J3_B2 60 AD1 61 AD0 ACK64* CT_D0 J3_E1 62 +5V +3.3V GND J3_D1 63 GND GND GND J3_C1 64 REQ64*
no connection
no connection
RESETOUT*
MONARCH*
no connection
no connection
CT_D4 J3_A3
PTID1 J3_D2
CT_D3 J3_A2
CT_D1 J3_B1
J3_E6
J3_A6
9-4
Katana®752i User’s Manual 10006024-04
PTMC Interface: PTMC Connector Pinouts
PCI expansion site #2 has four 64-pin connectors, J21—J24 (see Fig. 2-2 on page 2-3 for con­nector locations).
Table 9-2: J2x PTMC Connector Pin Assignments
Pin J21 J22 J23 J24
1 TCK POS_12V MDIO J5_E13 2 NEG_12V 3GND 4INTA* 5INTB* 6INTC* GND SRX J5_E12 7 PRESENT* GND RXER J5_D12 8 +5V 9INTD* 10 11 GND PUP0 GND J5_E11 12 +3.3V +3.3V TXD1 J5_D11 13 PCICLK RST* RE 14 GND PDN0 GND J5_B11 15 GND +3.3V GND J5_A11 16 GNT* PDN1 RXD0 J5_E10 17 REQ* PME* CT_FA J5_D10 18 +5V GND RXD1 J5_C10 19 +3.3V AD30 CT_FB J5_B10 20 AD31 AD29 GND J5_A10 21 AD28 GND PTID0 J5_E9 22 AD27 AD26 TXEN J5_D9 23 AD25 AD24 GND J5_C9 24 GND +3.3V CAS_DV J5_B9 25 GND AD21 CT_C8A J5_A9 26 CBE3* AD23 GND J5_E8 27 AD22 +3.3V GND J5_D8 28 AD21 AD20 CT_D19 J5_C8 29 AD19 AD18 CT_D18 J5_B8 30 +5V GND CT_D17 J5_A8 31 +3.3V AD16 CT_D16 J5_E7 32 AD17 CBE2* GND J5_D7 33 FRAME* GND GND J5_C7 34 GND IDSELB NETREF2 J5_B7 35 GND TRDY* CT_D14 J5_A7 36 IRDY* +3.3V
Table 9-2 shows the pin assignments.
PMC2_TRST* PMC2_TMS PMC2_TDO PMC2_
TDI MDC J5_A13
no connection no connection
no connection no connection
GND J5_D13 GND J5_C13 STX J5_B13
GND J5_C12 PTID2 J5_B12 TXD0 J5_A12
no connection
FCLK
J5_C11
J5_E6
10006024-04 Katana®752i User’s Manual
9-5
PTMC Interface: PTMC Connector Pinouts
Pin J21 J22 J23 J24
37 DEVSEL* GND CT_D12 J5_D6 38 +5V STOP* GND J5_C6 39 GND PERR* PTENB* J5_B6 40 LOCK* GND 41 SDONE* +3.3V GND J5_E5 42 SBO* SERR* NETREF1 J5_D5 43 PAR CBE1* CT_C8B J5_C5 44 GND GND GND J5_B5 45 +3.3V AD14 GND J5_A5 46 AD15 AD13 CT_D15 J5_E4 47 AD12 M66EN CT_D10 J5_D4 48 AD11 AD10 CT_D13 J5_C4 49 AD9 AD8 CT_D8 J5_B4 50 +5V +3.3V CT_D11 J5_A4 51 GND AD7 GND J5_E3 52 CBE0* REQB* CT_D9 J5_D3 53 AD6 +3.3V CT_D6 J5_C3 54 AD5 GNTB* CT_D7 J5_B3 55 AD4 56 GND GND GND J5_E2 57 +3.3V 58 AD3 EREADY CT_D5 J5_C2 59 AD2 GND CT_D2 J5_B2 60 AD1 61 AD0 ACK64* CT_D0 J5_E1 62 +5V +3.3V GND J5_D1 63 GND GND GND J5_C1 64 REQ64*
no connection
no connection
RESETOUT*
MONARCH*
no connection
CT_D4 J5_A3
PTID1 J5_D2
CT_D3 J5_A2
CT_D1 J5_B1
J5_A6
9-6
Katana®752i User’s Manual 10006024-04

Ethernet Interfaces

The Katana®752i supports four 10/100/1000BaseT Ethernet ports. The MV64460 system controller provides three Ethernet Media Access Control (MAC) units, and an Intel 82544EI Ethernet controller device provides direct access from the local PCI bus. Three Broadcom BCM5461S transceivers and an integrated PHY in the 82544EI provide interfaces for the 10/100/1000BaseT Ethernet ports. Two of these ports route to the Katana panel, and two route to the J3 CompactPCI packet-switched backplane (cPSB) connector. The Katana two RMII PHY devices that route to the J5 CompactPCI (cPCI) backplane connector.

ETHERNET ADDRESS

The Ethernet address for your board is a unique identifier on a network and must not be altered. The address consists of 48 bits (Medium Access Control—MAC[47:0]) divided into two equal parts. The upper 24 bits define a unique identifier that has been assigned to Emerson Network Power, Embedded Computing by IEEE. The lower 24 bits are defined by Emerson for identification of each of our products.
The Ethernet address for the Katana digits separated into pairs, with each pair representing eight bits. The address assigned to the Katana
®
752i also provides optional Ethernet connectivity for each PTMC site, using
®
752i has the following form:
Section 10
®
752i front
®
752i is a binary number referenced as 12 hexadecimal
00 80 F9 6x yy zz
00 80 F9 is Emerson’s identifier. The last three bytes of the Ethernet address comprise the data for the Ethernet addresses in non-volatile memory. 6 is defined by Emerson and is spe­cific to the Katana
®
752i. x, yy, and zz are calculated.
For the purpose of this calculation, the entire MAC address can be thought of as a 48-bit register, as shown in Register Map 10-1.
Register 10-1: MAC Calculation
MAC[47:0]
00 80 F9 6x yy zz
0000 0000 1000 0000 1111 1001 0110 110x yyyy yyyy zzzz zzzz
47:24
Fixed
23:17
Fixed
16:3
Calculated
To determine the last 17 bits of the MAC address (x, yy, and zz):
1 Subtract 1000 from the decimal serial number, convert it to hex, and place the 14-bit result
in MAC[16:3].
2 Set the remaining three bits, MAC[2:0], according to the following list:
000 = CPSB_1 (MAC address #1)
10006024-04 Katana®752i User’s Manual
2:0 List
10-1
Ethernet Interfaces: Ethernet Ports
001 = CPSB_1 (MAC address #2) 010 = CPSB_2 011 = FRNT_1 (ETH3) 100 = FRNT_2 (ETH4) 101 = reserved 110 = reserved 111 = reserved
So for example, if the Katana 00:80:F9:6C:07:52.

ETHERNET PORTS

®
752i serial number is 1234, the CPSB_2 MAC address is:
The MV64460 system controller (see Chapter ) provides three 10/100/1000BaseT gigabit Ethernet (GbE) ports. Also, the Katana from the local PCI bus via an Intel 82544EI Ethernet controller device. Two ports connect to the front panel (see Section for pinouts), and two connect to the J3 cPSB connector (see
Table 14-3 for pinouts).
If the Katana
J3 allow for cPSB functionality. If the Katana support a cPSB backplane, the J3 ports can be routed via a rear transition module to provide two GbE input/output ports.
Four Broadcom BCM5461S transceivers provide the physical interface for these ports. There are eight LEDs associated with the GbE ports (see the component map on page 2-6 for LED locations).
Table 10-1: GbE Port LEDs
GbE Port 1 GbE Port 2
CR34=ACT CR20=ACT CR32=LINK CR21=LINK CR33=LINK2 CR22=LINK2 CR35=LINK1 CR23=LINK1

FRONT PANEL ETHERNET CONNECTOR PINOUTS

The Katana®752i has a dual-RJ45 connector, P1, for the two front panel Ethernet ports. (Refer to the front panel drawing on page 2-2.) The ETH4 port connects to the 82544EI Ethernet controller. The ETH3 port connects to the MV64460 system controller. The dual­RJ45 connector has integrated speed (SP) and activity (ACT) LEDs to show the status of each port. The pin assignments are as follows.
®
752i provides direct access to a fourth GbE port
®
752i is installed in a system that supports a cPSB backplane, the two ports at
®
752i is installed in a system that does not
10-2
Katana®752i User’s Manual 10006024-04
Ethernet Interfaces: Optional RMII PHY Devices
!
Table 10-2: 82544EI Ethernet Port Pin Assignments, ETH4
Pin Signal Pin Signal
1TRD0+ 5TRD2+ 2TRD0— 6TRD2— 3TRD1+ 7TRD3+ 4TRD1— 8TRD3
Table 10-3: MV64460 Ethernet Port Pin Assignments, ETH3
Pin Signal Pin Signal
1TRD0+ 5TRD2+ 2TRD0— 6TRD2— 3TRD1+ 7TRD3+ 4TRD1— 8TRD3

OPTIONAL RMII PHY DEVICES

In addition to the four GbE ports, the Katana®752i supports an option for two RMII PHY devices on the Katana plane connector, J5. Each PTMC site has its own PHY address and LEDs, as shown in
and Fig. 10-1. See Fig. 2-3 for LED locations.
4
Table 10-4: PTMC PHY Address
®
752i (one for each PTMC site). These route to the CompactPCI back-
Table 10-
PTMC Site: PHY Address: LEDs:
1 0x5 CR43=ACT
2 0x6 CR45=ACT
®
Note: The Katana
MV64460 MPP port enables this functionality. However, before setting the bit, ensure that the RMII PHYs are installed and the PT2MC card supports an RMII interface. By default, REFCLK is enabled (bit is high). Clearing this bit causes the Katana
752i may drive the RMII REFCLK to the PTMC connectors and the PHYs. Setting bit 19 at the
®
752i to stop driving REFCLK so that a PTMC module can drive it instead.
CR44=LINK
CR46=LINK
Caution: To ensure proper signal integrity, the RTM magnetics must have a +2.5-volt offset on the
center taps for both the TX and RX differential pairs.
10006024-04 Katana®752i User’s Manual
10-3
Ethernet Interfaces: Optional RMII PHY Devices
PTMC
Site 1
PTMC
Site 2
J5
P13 P23
J5
Katana752i
Optional Rear Transition Module
(i.e. TM/cSPAN-P8E)
Magnetics
Magnetics
PHY
0x5
PHY
0x6
RMII
RMII
CR43 CR44
CR45 CR46
+2.5V
+2.5V
Backplane
RJ45RJ45
Figure 10-1: RMII PHY to Transition Module
10-4
Katana®752i User’s Manual 10006024-04

IPMI Controller

The Katana®752i implements a System Management Bus (SMB), as defined in the Com­pactPCI System Management Specification (see Platform Management Interface (IPMI) Version 1.5 and Intelligent Platform Management Bus (IPMB) Version 1.0 specifications. At the core of SMB/IPMI interface is a Zircon PM device from QLogic Corporation. This device is a microprocessor-based Intelligent Platform Management Controller that implements all the standard IPMI commands and provides hardware interfaces for other system management features.

SMB/IPMI OVERVIEW

The basic features for the Katana®752i SMB/IPMI implementation include:
• conformance to IPMI version 1.5 and IPMB version 1.0
• geographical addressing according to PICMG 2.9
• ability to read and write Field Replaceable Unit (FRU) data
Section 11
Table 1-2). It also supports the Intelligent
• ability to reset from SMB or local processor
• ability to read two airflow temperature sensors
• ability to read six board voltage sensors
• ability to read a watchdog sensor for the 750GL processor
• ability to send event messages to a specified receiver
• all sensors generate assertion and/or de-assertion event messages
• ability to control GPIO to assert resets to various sections of the board
• ability to broadcast a heartbeat message to a specified receiver
• support for field updates of firmware via SMB or local processor
10006024-04 Katana®752i User’s Manual
11-1
IPMI Controller: SMB/IPMI Overview
The Katana®752i system management interface uses the Zircon PM device’s general-pur­pose input/output (GPIO) pins for the following functions:
• watchdog sensor input (from 750GL processor)
• GPIO (to 750GL processor)
• reset outputs (to 750GL processor)
• IPMI reset control
• cPCI Geographical Addressing inputs
The Zircon PM controller also has input pins to sense all on-board voltage supplies.
Fig. 11-1
on the following page shows a block diagram of the Intelligent Platform Management Bus (IPMB) connections for the Katana
The Katana
®
752i system management features include two inter-integrated circuit (I2C)
®
752i.
interfaces, as follows:
• master/slave interface for 750GL communications
• master-only interface for accessing the temperature sensor readings and the two IPMI
read-only memory (ROM) devices
11-2
Katana®752i User’s Manual 10006024-04
IPMI Controller: SMB/IPMI Overview
IPMB (SCL, SDA, PWR)
Katana752i
3
MV64460
IPMI Microcontroller
IPMI
Bootcode
ROM
IPMI
Bootloader
and FRU
ROM
Voltage
Monitor
Reset
A-to-D 1
A-to-D 2
A-to-D 3
A-to-D 4
A-to-D 5
A-to-D 6
5 V
3.3 V
2.5 V
1.8 V (optional) CPU Core
GPIO[0:23]
1.25V
Timer Out
IPMI_OUT
IPMI Power
I2C #2
Temp
Sensor
Temp
Sensor
i
p
m
i
_
r
s
t
*
I2C #1
MV1_port_sel
Figure 11-1: IPMB Connections Block Diagram
10006024-04 Katana®752i User’s Manual
11-3
IPMI Controller: I/O Interface

I/O INTERFACE

The Zircon PM provides 24 user-definable input/output (I/O) pins. The following table shows how the Katana
Table 11-1: Zircon PM General Purpose I/O Pin Functions
®
752i implements these pins.
Zircon PM Pin: Signal Name: Function:
GPIO0 TEMP1_OS unused GPIO1 TEMP2_OS unused GPIO[2:3] unused GPIO4 750GL1_IPMI_RST_R* active low IPMI reset input from 750GL
GPIO5 unused GPIO6 IPMI_TIMEROUT_D unused GPIO7 unused GPIO8 POST_FAULT active high input that signals a system
GPIO9 unused GPIO10 I2C_holdoff active high input that signals Zircon PM off
GPIO11 750GL1_WD_LATCH active high input that signals a watchdog
GPIO12 unused GPIO13 HS_FAULT_R* active low output that shuts power down
GPIO14 unused GPIO[15:19] GA[4:0] Geographical Address inputs from J2
GPIO20 – unused GPIO[21:23] 750GL_TEMP_INT* unused
processor
firmware error
2
C bus
the #1 I
expiration event on 750GL processor
to the board via the Hot Swap controller
connector
11-4
Katana®752i User’s Manual 10006024-04
IPMI Controller: I2C Interfaces
In addition to the General Purpose I/O, there are six analog-to-digital (A2D) input pins that are used for sensing the various power supplies on the board. The following table describes the Katana
Table 11-2: Zircon PM Analog-to-Digital Input Pin Functions
®
752i implementation of these pins.
Zircon PM Pin: Signal Name:
A2D1 MON_PMC_3_3V 2.0V connects to the 3.3V PTMC power supply A2D2 MON_CPU_CORE 1.5V connects directly to the 750GL core power
A2D3 1_8V 1.8V connects directly to the 1.8V power supply A2D4 MON_2_5V 1.95V connects to the 2.5V power supply via a
A2D5 MON_3_3V 2.0 connects to the 3.3V power supply via a
A2D6 MON_5V 1.88V connects to the 5V power supply via a
1. The A2D inputs on the Zircon PM have a maximum input voltage rating of 2.5V, which is the A2D power supply voltage. Therefore, any sensed voltage that has a value greater than 2.5V must be divided down.
Nominal Voltage: Function:
supply
resistor divider network
resistor divider network
resistor divider network
1
1
1

I2C INTERFACES

The Zircon PM controller supports three I2C interfaces. Port 0 is a master/slave interface which connects to the public IPMB. Port 1 is a master/slave interface which connects to the
2
I
C bus for the MV64460. Port 2 is a master-only interface for accessing the inlet/outlet
temperature sensors and the two IPMI bootloader and boot code ROM devices.
Note: The Zircon PM device must be held in reset when the I2C Port 2 master-only interface is being used by the
750GL processor to access the serial EEPROM devices.
The MV64460 system controller can master Port 2 while the Zircon PM is in reset. This allows for access to the IPMI serial EEPROMs, which is useful for programming the Zircon PM application code. An alternate method for accessing the IPMI serial EEPROMs from the MV64460 is to use IPMI commands on I2C Port 1.
The MV64460 can master Port 1 to send IPMI requests and receive responses from the Zir­con PM. All IPMI commands supported on the public IPMB are also supported on the private IPMB.
According to the IPMB specification, IPMI devices must use I IPMB. All IPMI messages overlay the I
2
C Master Write data, including the I2C command
2
C Master Write cycles on the
byte. Using this format, the first byte of an IPMI message transmitted on the bus is also the
2
I
C command byte.
10006024-04 Katana®752i User’s Manual
11-5
IPMI Controller: IPMI Message Protocol
The PICMG 2.9 specification defines addressing on the public and private IPMBs. It defines the slave addresses assigned to the chassis, power supplies, and peripheral boards based on geographical addressing. on its geographical address.
Table 11-3: IPMB Slave Addresses
Table 11-3 lists the slave address of each peripheral board, based
Geographical Address [0:4]
0 disabled 16 D0 1 B017D2 2 B218D4 3 B419D6 4 B620D8 5 B821DA 6BA22DC 7BC23DE 8BE24E0 9C025E2 10 C4 26 E4 11 C6 27 E6 12 C8 28 E8 13 CA 28 EA 14 CC 30 EC 15 CE 31 disabled
IPMB Address (Hex)

IPMI MESSAGE PROTOCOL

The IPMI message protocol is designed to be robust and support many different physical interfaces. The Zircon PM supports IPMI messages over the IPMB interface. Messages are defined as either a request or a response, as indicated by the least significant bit in the Net­work Function Code of the message. sage.
Table 11-4: Format for IPMI Request Message
Geographical Address [0:4]
Table 11-4 shows the format of an IPMI request mes-
IPMB Address (Hex)
11-6
Byte: Bits:
7: 6: 5: 4: 3: 2: 1: 0: 1 2
netFn rsLUN
3 4 5
Katana®752i User’s Manual 10006024-04
rqSeq rqLUN
rsSA
Checksum
rqSA
IPMI Controller: IPMI Message Protocol
Byte: Bits:
7: 6: 5: 4: 3: 2: 1: 0: 6 7:N N+1
The first byte contains the responder’s Slave Address, rsSA. The second byte contains the Network Function Code, netFn, and the responder’s Logical Unit Number, rsLUN. The third byte contains the two’s-complement checksum for the first two bytes. The fourth byte con­tains the requester’s Slave Address, rqSA. The fifth byte contains the requester’s Sequence Number, rqSeq, and requester’s Logical Unit Number, rqLUN. The Sequence number may be used to associate a specific response to a specific request. The sixth byte contains the Command Number. The seventh byte and beyond contain parameters for specific com­mands (if required). The final byte is the two’s-complement checksum of all of the message data after the first checksum.
Command
Data
Checksum
An IPMI response message (see difference is that the seventh byte contains the Completion Code, and the eighth byte and beyond hold data received from the controller (rather than data to send to the controller). Also, the Slave Address and Logical Unit Number for the requester and responder are swapped.
Table 11-5: Format for IPMI Response Message
Byte: Bits:
7: 6: 5: 4: 3: 2: 1: 0: 1 2 3 4 5 6 7 8:N N+1
Table 11-5) is similar to a IPMI request message. The main
rqSA
netFn rqLUN
Checksum
rsSA
rsSeq rsLUN
Command
Completion Code
Data
Checksum
10006024-04 Katana®752i User’s Manual
11-7
IPMI Controller: IPMI Message Protocol

IPMI Network Function Codes

All IPMI messages contain a Network Function Code field, which defines the category for a particular command. Each category has two codes assigned to it–one for requests and one for responses. The code for a request has the least significant bit of the field set to zero, while the code for a response has the least significant bit of the field set to one. lists the network function codes (as defined in the IPMI specification) used by the Zircon PM.
Table 11-6: Network Function Codes
Hex Code Value(s): Name: Type: Description:
00, 01 Chassis chassis device
02, 03 Bridge bridge
04, 05 Sensor/
Event
06, 07 App application
08, 09 Firmware firmware transfer
0A, 0B Storage non-volatile storage
0C-2F Reserved reserved: 36 network functions (18 pairs) 30-3F OEM vendor specific: 16 network functions (8
requests/responses
requests/responses
sensor and event requests/responses
requests/responses
requests/responses
requests/responses
Table 11-6
00 = command/request, 01 = response: common chassis control and status functions
02 = request, 03 = response: message contains data for bridging to the next bus. Typically, the data is another message, which also may be a bridging message. This function is only present on bridge nodes.
04 = command/request, 05 = response: for configuration and transmission of Event Messages and system Sensors. This function may be present on any node.
06 = command/request, 07 = response: message is implementation-specific for a particular device, as defined by the IPMI specification
firmware transfer messages match the format of application messages, as determined by the particular device
may be present on any node that provides nonvolatile storage and retrieval services
pairs). The vendor defines functional semantics for cmd and data fields. The cmd field must hold the same value in requests and responses for a given operation to support IPMI message handling and transport mechanisms. The controller’s Manufacturer ID value identifies the vendor or group.
11-8
Katana®752i User’s Manual 10006024-04
IPMI Controller: IPMI Message Protocol

IPMI Completion Codes

All IPMI response messages contain a hexadecimal Completion Code field that indicates the status of the operation. cation) used by the Zircon PM.
Table 11-7: Completion Codes
Code: Description:
Generic Completion Codes 00, C0-FF 00 Command completed normally C0 Node busy–command could not be processed because command-processing
C1 Invalid command–indicates an unrecognized or unsupported command C2 Command invalid for given LUN C3 Time-out while processing command, response unavailable C4 Out of space–command could not be completed because of a lack of storage
C5 Reservation canceled or invalid Reservation ID C6 Request data truncated C7 Request data length invalid C8 Request data field length limit exceeded C9 Parameter out of range–one or more parameters in the data field of the Request
CA Cannot return number of requested data bytes CB Requested sensor, data, or record not present CC Invalid data field in Request CD Command illegal for specified sensor or record type CE Command response could not be provided CF Cannot execute duplicated request–for devices that cannot return the response
D0 Command response could not be provided, SDR Repository in update mode D1 Command response could not be provided, device in firmware update mode D2 Command response could not be provided, BMC initialization or initialization
D3 Destination unavailable–cannot deliver request to selected destination. (This
D4 Cannot execute command, insufficient privilege level D5 Cannot execute command, parameter(s) not supported in present state FF Unspecified error
Table 11-7 lists the Completion Codes (as defined in the IPMI specifi-
resources are temporarily unavailable
space required to execute the given command operation
are out of range. This is different from Invalid data field code (CC) because it indicates that the erroneous field(s) has a contiguous range of possible values.
returned for the original instance of the request. These devices should provide separate commands that allow the completion status of the original request to be determined. An Event Receiver does not use this completion code, but returns the 00 completion code in the response to (valid) duplicated requests.
agent in progress
code can be returned if a request message is targeted to SMS, but receive message queue reception is disabled for the particular channel.)
10006024-04 Katana®752i User’s Manual
11-9
IPMI Controller: IPMI Message Protocol
Code: Description: (continued)
Device-Specific (OEM) Codes 01-7E 01-7E Device specific (OEM) completion codes–command-specific codes (also specific
Command-Specific Codes 80-BE 80-BE Standard command-specific codes–reserved for command-specific completion

Zircon PM IPMI Commands

The Zircon PM peripheral management controller supports IPMI commands to query board information and to control the behavior of the board. These commands provide a means to:
• identify the controller
• reset the controller
• return the controller’s self-test results
for a particular device and version). Interpretation of these codes requires prior knowledge of the device command set.
codes (described in this chapter)
• read and write the controller’s SROMs
• read the temperature, voltage, and watchdog sensors
• get specific information, such as thresholds, for each sensor
• read and write the Field Replaceable Unit (FRU) data
• reserve and read the Sensor Data Record (SDR) repository
• configure event broadcasts
• bridge an IPMI request to the public IPMB and return the response
• read and write the controller’s general-purpose I/O (GPIO)
• configure heartbeat broadcasts
Table 11-8 lists the IPMI commands supported by the Zircon PM along with the hexadecimal
values for each command’s Network Function Code (netFn), Logical Unit Number (LUN), and Command Code (Cmd).
Table 11-8: Zircon PM IPMI Commands
Command: netFn: LUN: Cmd:
Set Event Receiver Sensor/Event 04, 05 00 00 Get Event Receiver Sensor/Event 04, 05 00 01 Platform Event (Transmit Only) Sensor/Event 04, 05 00 02 Get Device SDR Information Sensor/Event 04, 05 00 20
11-10
Katana®752i User’s Manual 10006024-04
Loading...