Datasheet TEA6324T Datasheet (Philips)

Page 1
INTEGRATED CIRCUITS
DATA SH EET
TEA6324T
Sound control circuit
Preliminary specification File under Integrated Circuits, IC01
1997 Mar 13
Page 2
Sound control circuit TEA6324T

FEATURES

Source selector for two stereo and one mono inputs
Interface for noise reduction circuits
Interface for external equalizer
Volume and balance control
Bass control with equalizer filters
Treble control
Mute control at audio signal zero crossing
Fast mute control via I2C-bus
Fast mute control via pin
2
C-bus control for all functions
I
Power supply with internal power-on reset.

QUICK REFERENCE DATA

GENERAL DESCRIPTION

The sound control circuit TEA6324T is an I
2
C-bus controlled stereo preamplifier for car radio hi-fi sound applications.
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
CC
I
CC
V
o(rms)
G
v
G
step(vol)
G
bass
G
treble
G
step(treble)
(S+N)/N signal-plus-noise to noise ratio V
supply voltage 7.5 8.5 9.5 V supply current VCC= 8.5 V 26 mA maximum output voltage level VCC= 8.5 V; THD 0.1% 2000 mV voltage gain 86 +20 dB step resolution (volume) 1 dB bass control 18 +18 dB treble control 12 +12 dB step resolution (treble) 1.5 dB
= 2.0 V; Gv= 0 dB;
o
105 dB
unweighted
RR
100
ripple rejection V
< 200 mV; f = 100 Hz;
r(rms)
75 dB
Gv=0dB
α
cs
channel separation 250 Hz f 10 kHz; Gv=0dB 90 96 dB

ORDERING INFORMATION

TYPE
NUMBER
NAME DESCRIPTION VERSION
PACKAGE
TEA6324T SO24 plastic small outline package; 24 leads; body width 7.5 mm SOT137-1
1997 Mar 13 2
Page 3
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T

BLOCK DIAGRAM

SDA
MUTE
3
TEA6324T
m
C
MUTE
FUNCTION
DETECTOR
ZERO CROSS
BALANCE
VOLUME II
0 to 55 dB
OUTPUT LEFT
SCL
24
1
C-BUS
2
I
RECEIVER
22
BALANCE
VOLUME II
0 to 55 dB
OUTPUT RIGHT
MGK105
handbook, full pagewidth
5.6 nF 10 nF
3.4 k
C
270 nF 270 nF
220 nF
KVL
495678
POWER
SUPPLY
16
23
2
ref
V
CC
V
100 µF
15
47 µF
LEFT
±12 dB
TREBLE
LEFT
BASS
±18 dB
LEFT
VOLUME I
+20 to 31 dB
12
5 × 220 nF
5.6 nF
RIGHT
±12 dB
TREBLE
3.4 k
LOGIC
BASS
RIGHT
±18 dB
270 nF
19
270 nF
Fig.1 Block diagram.
RIGHT
VOLUME I
+20 to 31 dB
17 18 20 21
SOURCE
SELECTOR
10
14
11
13
KIN
C
220 nF
KVL
C
left
input
GND
source
1997 Mar 13 3
input
mono
source
input
right
source
Page 4
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T

PINNING

SYMBOL PIN DESCRIPTION
2
2
C-bus)
C-bus)
handbook, halfpage
SDA
1
GND
2
OUTL
3
TL
4
B2L
5
B1L
6
IVL
QSL
MUTE
IMO
IBL IAL
TEA6324T
7 8
9 10 11 12
MGK104
Fig.2 Pin configuration.
SCL
24
V
23
CC
OUTR
22
TR
21
B2R
20 19
B1R IVR
18 17
QSR V
16
ref
CAP
15
IBR
14
IAR
13
SDA 1 serial data input/output (I GND 2 ground OUTL 3 output left TL 4 treble control capacitor left channel
or input from an external equalizer
B2L 5 bass control left channel or output to
an external equalizer B1L 6 bass control, left channel IVL 7 input volume I, left control part QSL 8 output source selector, left channel MUTE 9 mute control IMO 10 input mono source IBL 11 input B left source IAL 12 input A left source IAR 13 input A right source IBR 14 input B right source CAP 15 electronic filtering for supply V
ref
16 reference voltage (0.5VCC) QSR 17 output source selector right channel IVR 18 input volume I, right control part B1R 19 bass control right channel B2R 20 bass control right channel or output
to an external equalizer
TR 21 treble control capacitor right channel
or input from an external equalizer OUTR 22 output right V
CC
23 supply voltage
SCL 24 serial clock input (I
1997 Mar 13 4
Page 5
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
2

FUNCTIONAL DESCRIPTION

The source selector selects one of 2 stereo inputs or the mono input. The maximum input signal voltage is V
= 2 V. The outputs of the source selector and the
i(rms)
inputs of the following volume control parts are available at pins 7 and 8 for the left channel and pins 17 and 18 for the right channel. This offers the possibility of interfacing a noise reduction system.
The volume control function is split into two sections: volume I control block and volume II control block.
The control range of volume I is between +20 dB and
31 dB in steps of 1 dB. The volume II control range is between 0 dB and 55 dB in steps of 1 dB. The recommended control range to be used is 86 dB (+20 to 66 dB) although in theory, a range of 106 dB (+20 to 86 dB) can be attained. The gain/attenuation setting of the volume I control block is common for both channels.
The volume I control block is followed by the bass control block. The frequency response of the bass control (see Fig.3) is provided for each channel by an external filter in combination with internal resistors. The adjustable range is between 18 and +18 dB in steps of 1.8 dB at 46 Hz.
The treble control block offers a control range between
12 and +12 dB in steps of 1.5 dB at 15 kHz. The filter characteristic is determined by a single capacitor of 5.6 nF for each channel in combination with internal resistors (see Fig.4).
The basic step width of treble control is 3 dB. The intermediate steps are obtained by switching 1.5 dB boost and 1.5 dB attenuation steps.
The bass and treble control functions can be switched off
2
C-bus. In this event the internal signal flow is
via I disconnected. The connections B2L and B2R are outputs and TL and TR are inputs for inserting an external equalizer.
The last section of the circuit is the volume II block. The balance function uses the same control block. This is achieved by 2 independently controllable attenuators, one for each output. The control range of these attenuators is 55 dB in steps of 1 dB with an additional mute step.
The circuit provides 3 mute modes:
1. Zero crossing mode mute via I2C-bus using 2 independent zero crossing detectors (ZCM, see Tables 2 and 8 and Fig.15)
2. Fast mute via MUTE pin (see Fig.9)
3. Fast mute via I see Tables 2 and 8) or volume II block setting (see Table 4).
The mute function is performed immediately if ZCM is cleared (ZCM = 0). If the bit is set (ZCM = 1) the mute is activated after changing the GMU bit. The actual mute switching is delayed until the next zero crossing of the audio frequency signal. Two comparators are built-in to provide independent mute switches to control each of the audio channels (left and right).
To avoid a large delay of mute switching when very low frequencies are processed, the maximum delay time is limited to typically 100 ms by an integrated timing circuit and an external capacitor (Cm= 10 nF, see Fig.9). This timing circuit is triggered by reception of a new data word for the switch function which includes the GMU bit. After a discharge and charge period of an external capacitor the muting switch follows the GMU bit, only if no zero crossing was detected during that time.
The mute function can also be controlled externally (see Fig.9). If the mute pin is switched to ground all outputs are muted immediately (hardware mute). This mute request overwrites all mute controls via the I2C-bus for the time the pin is held LOW. The hardware mute position is not stored in the TEA6324T.
Typically, the turn on/off can be used to avoid AF output. This can be caused by the input signal from preceding stages, which may produce output during a drop of VCC. To avoid this, the mute must be set prior to a VCC drop and can be achieved either by I2C-bus control, or by grounding the MUTE pin.
In cases where there is no mute in the application before turn off, a supply voltage drop of more than 1 × VBE will result in a mute during the voltage drop.
The power supply should include a VCC buffer capacitor, which provides a discharging time constant. If the input signal does not disappear after turn off the input will become audible after a certain time. A 4.7 k resistor discharges the VCC buffer capacitor, because the internal current of the IC does not discharge it completely.
The hardware mute function is ideal for use in Radio Data System (RDS) applications. The zero crossing mute avoids modulation plops. This feature is an advantage for mute during changing presets and/or sources (e.g. traffic announcement during cassette playback).
C-bus either by general mute (GMU,
1997 Mar 13 5
Page 6
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
CC
V
n
T
amb
T
stg
V
es
Note
1. Human body model: C = 100 pF; R = 1.5 k; V 2 kV. Machine model: C = 200 pF; R = 0 ; V 500 V.
supply voltage 0 10 V voltage at all pins relative to pin 2 0 V
CC
V operating ambient temperature 40 +85 °C storage temperature 65 +150 °C electrostatic handling note 1 −−
1997 Mar 13 6
Page 7
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T

CHARACTERISTICS

VCC= 8.5 V; RS= 600 ; RL=10kΩ; CL= 2.5 nF; AC coupled; f = 1 kHz; T linear; treble linear; balance in mid position; unless otherwise specified.
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
CC
I
CC
V
DC
supply voltage 7.5 8.5 9.5 V supply current 26 33 mA internal DC voltage at inputs and
outputs V G V
ref
o(rms)
v(max)
internal reference voltage at pin 16 4.25 V
maximum voltage gain RS=0Ω; RL= 19 20 21 dB
output voltage level (RMS value) for
at the power output stage THD 0.1%; see Fig.10 2000 mV
P
max
start of clipping THD = 1% 2300 −−mV
=2kΩ; CL= 10 nF;
R
L
THD = 1% V f
ro
i(rms)
input sensitivity Vo= 2000 mV; Gv=20dB 200 mV roll-off frequency C
= 220 nF;
KIN
C
= 220 nF; Zi=Z
KVL
low frequency (1 dB) 60 −−Hz low frequency (3 dB) 30 −−Hz high frequency (1 dB) 20000 −−Hz
= 470 nF;
C
KIN
C
= 100 nF; Zi=Z
KVL
low frequency (3 dB)
α
cs
channel separation Vi= 2 V; frequency range
250 Hz to 10 kHz THD total harmonic distortion frequency range
20 Hz to 12.5 kHz
= 100 mV; Gv=20dB 0.1 %
V
i
V
= 1 V; Gv=0dB 0.05 0.15 %
i
= 2 V; Gv=0dB 0.1 %
V
i
= 2 V; Gv= 10 dB 0.1 %
V
i
RR ripple rejection V
r(rms)
< 200 mV f = 100 Hz 70 76 dB f = 40 Hz to 12.5 kHz 66 dB
(S+N)/N signal-plus-noise to noise ratio unweighted;
20 Hz to 20 kHz RMS;
= 2.0 V; see Figs 5 and 6
V
o
CCIR468-2 weighted; quasi peak; V
= 2.0 V
o
=0dB 95 dB
G
v
=12dB 88 dB
G
v
=20dB 81 dB
G
v
=25°C; gain control Gv= 0 dB; bass
amb
3.83 4.25 4.68 V
2000 −−mV
i(min)
17 −−Hz
i(typ)
90 96 dB
105 dB
1997 Mar 13 7
Page 8
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
P
no(rms)
α
ct
Source selector
Z
i
α
S
V
i(rms)
V
offset
Z
o
R
L
C
L
G
v
Control part (source selector disconnected; source resistance 600 )
Z
i
Z
o
R
L
C
L
R
DCL
V
i(rms)
V
n(o)
CR
tot
G
step
G
a
G
t
α
mute
noise output power (RMS value) only
mute position; note 1 −− 10 nW contribution of TEA6324T; power amplifier for 6 W
crosstalk between bus inputs and signal outputs
  
20
V
bus p p–()
-------------------------- -log V
o rms()
note 2 110 dB
input impedance 25 35 45 k input isolation of one selected source
to any other input
f = 1 kHz 105 dB f = 12.5 kHz 95 dB
maximum input voltage (RMS value) THD < 0.5%; VCC= 8.5 V 2.15 V
THD < 0.5%; V
DC offset voltage at source selector
= 7.5 V 1.8 V
CC
−− 10 mV
output by selection of any inputs output impedance 80 120 output load resistance 10 −−k output load capacity 0 2500 pF voltage gain, source selector 0 dB
input impedance volume input 100 150 200 k output impedance 80 120 output load resistance 2 −−k output load capacity 0 10 nF DC load resistance at output to ground 4.7 −−k maximum input voltage (RMS value) THD < 0.5% 2.15 V noise output voltage CCIR468-2 weighted; quasi
peak
=20dB 110 220 µV
G
v
=0dB 33 50 µV
G
v
G
= 66 dB 13 22 µV
v
mute position 10 −µV total continuous control range 106 dB recommended control range 86 dB step resolution 1 dB step error between any adjoining step −− 0.5 dB attenuator set error Gv= +20 to 50 dB −− 2dB
=51 to 66 dB −− 3dB
G
v
gain tracking error Gv= +20 to 50 dB −− 2dB mute attenuation see Fig.9 100 110 dB
1997 Mar 13 8
Page 9
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
offset
Volume I control
CR
tot(vol)1
G
v
G
step
Bass control
G
bass
G
step
V
offset
Treble control
G
treble
G
step
V
offset
Volume II and balance control
CR
tot(vol)2
G
step
DC step offset between any adjoining step
DC step offset between any step to
Gv=0to−66 dB 0.2 10 mV
=20to0dB 215mV
G
v
=0to−66 dB −− 10 mV
G
v
mute
continuous volume control range 51 dB voltage gain 31 +20 dB step resolution 1 dB
bass control, maximum boost f = 46 Hz 16 18 19 dB maximum attenuation f = 46 Hz 16 18 19 dB step resolution (toggle switching) f = 46 Hz 1.8 dB step error between any adjoining step f = 46 Hz −− 0.5 dB DC step offset in any bass position −− 25 mV
treble control, maximum boost f = 15 kHz 11 12 13 dB maximum attenuation f = 15 kHz 11 12 13 dB maximum boost f > 15 kHz −− 15 dB step resolution (toggle switching) f = 15 kHz 1.5 dB step error between any adjoining step f = 15 kHz −− 0.5 dB DC step offset in any treble position −− 10 mV
continuous attenuation of volume
53.5 55 56.5 dB
control range step resolution 12dB attenuation set error −− 1.5 dB
Mute function (see Fig.9) HARDWARE MUTE
V
sw
mute switch level (2 × VBE) 1.45 V
mute active
V
swLOW
I
i
input level −− 1.0 V input current V
swLOW
mute passive: level internally defined
V
swHIGH
t
d(mute)
saturation voltage −− VCCV delay until mute passive −− 0.5 ms
ZERO CROSSING MUTE I
dch
I
ch
V
swDEL
discharge current 0.3 0.6 1.2 µA charge current 300 150 −µA delay switch level (3 × VBE) 2.2 V
1997 Mar 13 9
=1V −300 −−µA
Page 10
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
t
d
V
(w)
Muting at power supply drop
V
CCdrop
Power-on reset when reset is active the GMU-bit (general mute) is set and the I position
V
CC
Digital part (I
V
IH
V
IL
I
IH
I
IL
V
OL
Notes to the characteristics
1. The indicated values for output power assume a 6 W power amplifier at 4 with 20 dB gain and a fixed attenuator of 12 dB in front of it. Signal-to-noise ratios exclude noise contribution of the power amplifier.
2. The transmission contains: total initialization with MAD and subaddress for volume and 8 data words, see also definition of characteristics, clock frequency = 50 kHz, repetition burst rate = 400 Hz, maximum bus signal amplitude = 5 V (p-p).
3. The AC characteristics are in accordance with the I2C-bus specification. This specification,
use it”
delay time Cm=10nF 100 ms window for audio signal zero crossing
30 40 mV
detection
supply drop for mute active V23− 0.7 − V
2
C-bus receiver is in reset
increasing supply voltage start of reset −− 2.5 V end of reset 5.2 6.5 7.2 V decreasing supply voltage start of
4.2 5.5 6.2 V
reset
2
C-bus pins); note 3
HIGH-level input voltage 3 9.5 V LOW-level input voltage 0.3 +1.5 V HIGH-level input current 10 +10 µA LOW-level input current 10 +10 µA LOW-level output voltage IL=3mA −− 0.4 V
“The I2C-bus and how to
, can be ordered using the code 9398 393 40011.
1997 Mar 13 10
Page 11
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T

I2C-BUS PROTOCOL

2
C-bus format
I
(1)
S
SLAVE ADDRESS
Notes
1. S = START condition.
2. SLAVE ADDRESS (MAD) = 0101 0000.
3. A = acknowledge, generated by the slave.
4. SUBADDRESS (SAD), see Table 1.
5. DATA, see Table 1.
6. P = STOP condition.
Table 1 Second byte after MAD
(2)
(3)
A
SUBADDRESS
(4)
(3)
A
DATA
(5)
(3)
A
(6)
P
FUNCTION BIT
765432
(1)
(1)
1
(1)
0
Volume V 00000000 Output right OUTR 00000001 Output left OUTL 00000010 No function 00000011 No function 00000100 Bass BA 00000101 Treble TR 00000110 Switch S 00000111
Note
1. Significant subaddress.
MSB LSB
1997 Mar 13 11
Page 12
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
Table 2 Definition of third byte after MAD and SAD
FUNCTION BIT
MSB LSB
76543210
Volume V ZCM Output right OUTR X Output left OUTL X No function X No function X Bass BA X Treble TR X Switch S GMU
(1) (3) (3) (3) (3) (3) (3)
(8)
1V5
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
Notes
1. Zero crossing mode.
2. Volume control.
3. Don’t care bits (logic 1 during testing).
4. Output right.
5. Output left.
6. Bass control.
7. Treble control.
8. Mute control for all outputs (general mute).
9. Source selector control.
(2)
OUTR5 OUTL5
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(4)
(5)
(2)
V4 OUTR4 OUTL4
(3)
X
(3)
X BA4 TR4
(3)
X
(6) (7)
(4)
(5)
(2)
V3
OUTR3
OUTL3
(3)
X
(3)
X BA3 TR3
(3)
X
(6) (7)
(4)
(5)
(2)
V2 OUTR2 OUTL2
(3)
X
(3)
X BA2 TR2
SC2
(6) (7) (9)
(4)
(5)
(2)
V1 OUTR1 OUTL1
(3)
X
(3)
X BA1 TR1 SC1
(6) (7) (9)
(4)
(5)
(2)
V0
OUTR0
OUTL0
(3)
X
(3)
X BA0 TR0 SC0
(4)
(5)
(6) (7) (9)
1997 Mar 13 12
Page 13
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
Table 3 Volume I setting
G
v
(dB)
+20 1 1 1 1 1 1 +19 1 1 1 1 1 0 +18 1 1 1 1 0 1 +17 1 1 1 1 0 0 +16 1 1 1 0 1 1 +15 1 1 1 0 1 0 +14 1 1 1 0 0 1 +13 1 1 1 0 0 0 +12 1 1 0 1 1 1 +11 110110 +10 1 1 0 1 0 1
+9 110100 +8 110011 +7 110010 +6 110001 +5 110000 +4 101111 +3 101110 +2 101101 +1 101100
0 101011
1 101010
2 101001
3 101000
4 100111
5 100110
6 100101
7 100100
8 100011
9 100010
10 100001
11 100000
12 011111
13 011110
14 011101
15 011100
16 011011
17 011010
V5 V4 V3 V2 V1 V0
DATA
1997 Mar 13 13
Page 14
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
G
v
(dB)
18 011001
19 011000
20 010111
21 010110
22 010101
23 010100
24 010011
25 010010
26 010001
27 010000
28 001111
29 001110
30 001101
31 001100
Repetition of steps in a range from 28 dB to 31 dB
28 001011
29 001010
30 001001
31 001000
28 000111
29 000110
30 000101
31 000100
28 000011
29 000010
30 000001
31 000000
V5 V4 V3 V2 V1 V0
DATA
1997 Mar 13 14
Page 15
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
Table 4 Volume II setting; note 1
DATA
G
v
(dB)
0 111111
1 111110
2 111101
3 111100
4 111011
5 111010
6 111001
7 111000
8 110111
9 110110
10 110101
11 110100
12 110011
13 110010
14 110001
15 110000
16 101111
17 101110
18 101101
19 101100
20 101011
21 101010
22 101001
23 101000
24 100111
25 100110
26 100101
27 100100
28 100011
29 100010
30 100001
31 100000
32 011111
33 011110
34 011101
35 011100
36 011011
OUTL5 OUTL4 OUTL3 OUTL2 OUTL1 OUTL0 OUTR5 OUTR4 OUTR3 OUTR2 OUTR1 OUTR0
1997 Mar 13 15
Page 16
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
DATA
G
v
(dB)
37 011010
38 011001
39 011000
40 010111
41 010110
42 010101
43 010100
44 010011
45 010010
46 010001
47 010000
48 001111
49 001110
50 001101
51 001100
52 001011
53 001010
54 001001
55 001000
Mute 0 0 0 1 1 1 Mute 0 0 0 1 1 0 Mute 0 0 0 1 0 1 Mute 0 0 0 1 0 0 Mute 0 0 0 0 1 1 Mute 0 0 0 0 1 0 Mute 0 0 0 0 0 1 Mute 0 0 0 0 0 0
OUTL5 OUTL4 OUTL3 OUTL2 OUTL1 OUTL0 OUTR5 OUTR4 OUTR3 OUTR2 OUTR1 OUTR0
Note
1. For a particular range the data is always the same, only the subaddress changes.
1997 Mar 13 16
Page 17
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
Table 5 Bass setting
G
bass
(dB)
BA4 BA3 BA2 BA1 BA0
DATA
+18.0 11111 +16.2 11110 +18.0 11101 +16.2 11100 +18.0 11011 +16.2 11010 +14.4 11001 +12.6 11000 +10.8 10111 +9.0 10110 +7.2 10101 +5.4 10100 +3.6 10011 +1.8 10010
(1)
0
(2)
0
10001 10000
1.8 01111
3.6 01110
5.4 01101
7.2 01100
9.0 01011
10.8 01010
12.6 01001
14.4 01000
16.2 00111
18.0 00110
16.2 00101
18.0 00100
Note 3 00011 Note 3 00010 Note 3 00001
Notes 3 and 4 00000
Notes
1. Recommended data word for step 0 dB.
2. Result of 1.8 dB boost and 1.8 dB attenuation.
3. The last four bass control data words mute the bass response.
4. The last bass control and treble control data words (00000) enable the external equalizer connection.
1997 Mar 13 17
Page 18
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
Table 6 Treble setting
G
(dB)
treble
TR4 TR3 TR2 TR1 TR0
DATA
+12.0 11111 +10.5 11110 +12.0 11101 +10.5 11100 +12.0 11011 +10.5 11010 +12.0 11001 +10.5 11000 +9.0 10111 +7.5 10110 +6.0 10101 +4.5 10100 +3.0 10011 +1.5 10010
(1)
0
(2)
0
10001 10000
1.5 01111
3.0 01110
4.5 01101
6.0 01100
7.5 01011
9.0 01010
10.5 01001
12.0 01000
Note 3 00111 Note 3 00110 Note 3 00101 Note 3 00100 Note 3 00011 Note 3 00010 Note 3 00001
Notes 3 and 4 00000
Notes
1. Recommended data word for step 0 dB.
2. Result of 1.5 dB boost and 1.5 dB attenuation.
3. The last eight treble control data words select treble output.
4. The last treble control and bass control data words (00000) enable the external equalizer connection.
1997 Mar 13 18
Page 19
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
Table 7 Selected input
FUNCTION
SC2 SC1 SC0
Stereo inputs IAL and IAR 1 1 1 Stereo inputs IBL and IBR 1 1 0 No function 1 0 1 No function 1 0 0 Mono input IMO 0 X
Note
1. X = don’t care bits (logic 1 during testing).
DATA
(1)
Table 8 Mute mode
FUNCTION
Direct mute off 0 0 Mute off delayed until the next zero
crossing Direct mute 1 0
(1)
X
Mute delayed until the next zero crossing
DATA
GMU ZCM
01
11
1997 Mar 13 19
Page 20
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
20
handbook, full pagewidth
G
bass
(dB)
10
0
10
20
10
MED840
2
10
3
10
f (Hz)
4
10
Fig.3 Bass control.
15
handbook, full pagewidth
G
treble (dB)
10
5
0
5
10
15
10
32
10
Fig.4 Treble control.
1997 Mar 13 20
MED424
4
10
f (Hz)
5
10
Page 21
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
100
handbook, full pagewidth
S/N
(dB)
90
80
70
60
50
4
10
(1) Vi= 2.0V. (2) Vi= 0.5V. (3) Vi= 0.2V.
3
10
2
10
1
10
1
Fig.5 Signal-to-noise ratio; noise weighted: CCIR468-2, quasi peak.
MED426
(1)
(2) (3)
Po (W)
10
110
handbook, full pagewidth
S/N
(dB)
100
90
80
70
60
4
10
(1) Unweighted RMS. (2) CCIR468-2 RMS. (3) CCIR468-2 quasi peak.
3
10
2
10
Fig.6 Signal-to-noise ratio; Vi= 2 V; P
MED427
(1)
(2)
(3)
1
10
=6W.
max
1
Po (W)
10
1997 Mar 13 21
Page 22
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
200
handbook, full pagewidth
noise
(µV)
150
100
50
0
70 50 30 10 10
Stereo/mono inputs.
Fig.7 Noise output voltage; CCIR468-2, quasi peak.
gain (dB)
MHA594
30
60
handbook, full pagewidth
(dB)
80
100
120
140
MED429
2
10
3
10
2 x 10
3
5 x 10
3
4
10
f (Hz)
2 x 10
45020 500200
Fig.8 Muting.
1997 Mar 13 22
Page 23
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
handbook, full pagewidth
delay switch
mute switch
level
level
hardware mute switchMUTE (pin 9)
Ich = 150 µA
TEA6324T
U
(V)
V
CC
8.5
(1)
2.2
(2)
1.45
zero crossing
mute start
t
d(mute) = 0.5 ms delay until
100 ms
I
= 0.6 µA
dch
mute passive
end of delay hard muteonhard mute
Cm = 10 nF
off
I
(µA)
0
150
MHA595
t (ms)
(1) Typically 2.2 V; referenced to 3 × VBE. (2) Typically 1.5 V; referenced to 2 × VBE.
Fig.9 Mute function diagram.
1997 Mar 13 23
Page 24
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
In cases where at the maximum volume position the 20 dB gain is not needed, it is recommended that the maximum boost gain should be used. This coupled with increased attenuation in the last section (volume II), results in a lower noise and offset voltage.
handbook, halfpage
= 200 mV
i(min)
handbook, halfpage
= 200 mV
i(min)
TEA6324T
TEA6324T
Vo = 2 V for P
a.
Vo = 1 V for P
POWER STAGE
G = 20 dB
P
= 100 W at 4 V
(max)
(max)
POWER STAGE
G = 26 dB
P
= 100 W at 4 V
(max)
(max)
MHA596
MHA597
b.
a. Gain volume I = 20 dB (G b. Gain volume I = 20 dB (G
); gain volume II = 0 dB; control range = 55 dB.
v(max)
); gain volume II = 6 dB global setting; control range now 49 dB, previously 55 dB.
v(max)
Fig.10 Level diagram.
1997 Mar 13 24
Page 25
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
V
handbook, full pagewidth
P
V
CC
4.7 k
8.5 V
inputs
5 × 220 nF 2 × 4.7 µF
5 × 600
470 µF
13 11 14
TEA6324T
10 12
21516
µF
23
3
22
47
100
µF
+8.5 V to
oscilloscope
outputs to oscilloscope
2 × 10 k
MHA598
10
handbook, full pagewidth
(V)
8
6
4
2
0
01234
(1) VCC. (2) VO.
Fig.11 Turn-on/off power supply circuit diagram.
(1)
(2)
t (s)
MED433
5
Fig.12 Turn-on/off behaviour.
1997 Mar 13 25
Page 26
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
3.4 k
handbook, full pagewidth
10 k
V
P
VCC = 8.5 V
1000
µF
0.2 V
(RMS)
600
100 µF
0.1 µF
47 µF
220 nF
220 nF
8
16
23
2
15
input A and B left and right and input mono
17 18 19 20 21
270 nF
76 5
270 nF
TEA6324T
5.6 nF
49
output right
output left
24
1
10 nF
MHA599
4.7 µF
SCL SDA
V
O
handbook, full pagewidth
5.6 nF
220 nF
270 nF
270 nF
3.4 k
Fig.13 Test circuit for power supply ripple rejection (RR).
3.4 k
270 nF
76 5
270 nF
5.6
TEA6324T
nF
49
output right
output left
24
VCC = 8.5 V
470
µF
V
P
V
i
600
100 µF
0.1 µF
47 µF
220 nF
220 nF
220 nF
8
16
23
2
15
input A and B right and left
input A and B left and right and input mono
17 18 19 20 21
10 nF
1
4.7 µF
MHA600
SCL SDA
V
O
220 nF
270 nF
Fig.14 Test circuit for channel separation (αcs).
1997 Mar 13 26
5.6 nF
270 nF
3.4 k
Page 27
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T

Selection of input signals by using the zero crossing mute mode

The zero cross mute mode provides for a selection of input sources (A and B) for both left and right channels. The following example (see Fig.15), shows a typical selection for the left input source signals IAL and IBL. The initial selection of these channels produces a modulation click. The click is determined by the difference of the signal values at the time of switching.
At t
the maximum possible difference between signals is
1
7 V (p-p) (see Fig.15) and gives a large click. Using the cross detector no modulation click is audible.
With the selection enabled at t1, the microcontroller sets the zero cross bit (ZCM = 1) and then the mute bit (GMU = 1) via the I2C-bus. The output signal follows the input A signal from 4 V, until the next zero crossing occurs and then activates mute.
handbook, full pagewidth
V
4 3
After a fixed delay time at t
, the microcontroller sends the
2
bits for input switching and mute inactive. The output signal remains muted until the next signal zero
crossing of input B (IBL) occurs, and then follows that signal up to 3 V.
With a delay time of 40 ms (t2− t1), the external capacitor Cm= 3.3 nF. This results with the zero cross function operating at the lowest frequency of 40 Hz determined by the Cm capacitor.
MED436
(1)
(1) Input A (IAL). (2) Output. (3) Input B (IBL).
2 1 0
1
2
3
4
t
1
t
(2)
2
(3)
t
Fig.15 Zero cross function; only one channel shown.
1997 Mar 13 27
Page 28
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T

INTERNAL PIN CONFIGURATIONS

Values shown in Figs 16 to 27 are typical DC values; VCC= 8.5 V.
3
+
1
5 V
1.8 k
80
MBE911
4.25 V
Fig.16 Pin 1: SDA (I2C-bus data).
4
4.25 V
+
2.4 k
MHA601
MBE912
Fig.17 Pins 3 and 22: output signals.
+
5
4.25 V
80
MHA602
Fig.18 Pins 4 and 21: treble control capacitors.
1997 Mar 13 28
Fig.19 Pins 5 and 20: bass control capacitor
outputs.
Page 29
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
6
4.25 V
3.52 k
+
MHA603
Fig.20 Pins 6 and 19: bass control capacitor
inputs.
+
8
4.25 V
7
4.25 V
+
150 k
4.25 V
MHA604
Fig.21 Pins 7 and 18: input volume 1, control part.
+
1.3 k
9
8.5 V
80
MHA605
Fig.22 Pins 8 and 17: output source selector.
1997 Mar 13 29
maximum
200 µA
0.6 µA
constant
4.5 k
Fig.23 Pin 9: mute control.
MHA606
constant
2.2 V
Page 30
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
+
10
4.25 V
+
35 k
4.25 V
Fig.24 Pins 10 to 14: inputs.
MHA607
4.25 V 16
4.7 k 300
+
3.4 k
3.4 k
MHA608
15
5 k
8.5 V
Fig.25 Pin 15: filtering for supply; pin 16: reference
voltage.
apply +8.5 V
23
to this pin
MHA609
Fig.26 Pin 23: supply voltage.
1997 Mar 13 30
24
5 V
1.8 k
MHA610
Fig.27 Pin 24: SCL (I2C-bus clock).
Page 31
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T

PACKAGE OUTLINE

SO24: plastic small outline package; 24 leads; body width 7.5 mm
D
c
y
Z
24
pin 1 index
1
e
13
12
w M
b
p

SOT137-1

E
H
E
Q
A
2
A
1
L
p
L
detail X
(A )
A
X
v M
A
A
3
θ
0 5 10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
mm
OUTLINE
VERSION
SOT137-1
A
max.
2.65
0.10
A1A2A
0.30
2.45
0.10
2.25
0.012
0.096
0.004
0.089
IEC JEDEC EIAJ
075E05 MS-013AD
0.25
0.01
b
3
p
0.49
0.32
0.36
0.23
0.019
0.013
0.014
0.009
UNIT
inches
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
(1)E(1) (1)
cD
15.6
7.6
7.4
0.30
0.29
1.27
0.050
15.2
0.61
0.60
REFERENCES
1997 Mar 13 31
eHELLpQ
10.65
10.00
0.42
0.39
1.4
0.055
1.1
0.4
0.043
0.016
1.1
1.0
0.043
0.039
PROJECTION
0.25
0.25 0.1
0.01
0.01
EUROPEAN
ywv θ
Z
0.9
0.4
8
0.004
ISSUE DATE
0.035
0.016
92-11-17
95-01-24
0
o o
Page 32
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
SOLDERING Introduction
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our
“IC Package Databook”
Reflow soldering
Reflow soldering techniques are suitable for all SO packages.
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.
Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.
(order code 9398 652 90011).
Wave soldering
Wave soldering techniques can be used for all SO packages if the following conditions are observed:
A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
The longitudinal axis of the package footprint must be parallel to the solder flow.
The package footprint must incorporate solder thieves at the downstream end.
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.
Repairing soldered joints
Fix the component by first soldering two diagonally­opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
1997 Mar 13 32
Page 33
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T

DEFINITIONS

Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
PURCHASE OF PHILIPS I
2
C COMPONENTS
2
Purchase of Philips I components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
C components conveys a license under the Philips’ I2C patent to use the
1997 Mar 13 33
Page 34
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
NOTES
1997 Mar 13 34
Page 35
Philips Semiconductors Preliminary specification
Sound control circuit TEA6324T
NOTES
1997 Mar 13 35
Page 36
Philips Semiconductors – a worldwide company
Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands Brazil: seeSouth America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15thfloor,
51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580/xxx France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: seeAustria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2870, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381
Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
© Philips Electronics N.V. 1997 SCA53 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Internet: http://www.semiconductors.philips.com
Printed in The Netherlands 547027/1200/01/pp36 Date of release: 1997 Mar 13 Document order number: 9397 750 01599
Loading...