Datasheet MIC2141-BM5 Datasheet (MICREL)

Page 1
MIC2141 Micrel
MIC2141
Micropower Boost Converter
Preliminary Information
General Description
The MIC2141 is a micropower boost switching regulator that can operate from 3- or 4-cell nickel-metal-hydride batteries or a single Li-ion cell. This regulator employs a constant 330kHz, fixed 18% duty-cycle, gated-oscillator architecture.
The MIC2141 can be used in applications where the output voltage must be dynamically adjusted. The device features a control signal input which is used to proportionally adjust the output voltage. The control signal input has a gain of 6, allowing a 0.8V to 3.6V control signal to vary a 4.8V to 22V output.
The MIC2141 requires only three external components to operate and is available in a tiny 5-lead SOT-23 package for space and power-sensitive portable applications. The MIC2141 draws only 70µA of quiescent current and can operate with an efficiency exceeding 85%.
Features
• Implements low-power boost, SEPIC, or flyback
• 2.5V to 14V input voltage
• 330kHz switching frequency
•<2µA shutdown current
•70µA quiescent current
• 1.24V bandgap reference
• typical output current 1mA to 10mA
• SOT-23-5 Package
Applications
• LCD bias supply
• CCD digital camera supply
Ordering Information
Part Number Junction Temp. Range Package
MIC2141-BM5 –40°C to +85°C SOT-23-5
Typical Application
(from DAC)
VC*
10µH
MIC2141
15 2 34
10µF
Variable V
OUT
(V) V
vs. Output Voltage
4.0
3.5
3.0
2.5
2.0
C
1.5
1.0
0.5 0
0 5 10 15 20 25
DAC-Controlled LCD Bias Voltage Supply
Control Voltage
V
(V)
OUT
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
June 2000 1 MIC2141
Page 2
MIC2141 Micrel
Pin Configuration
GND
2
IN
13
Part Identification
VCFB
SW
SAxx
45
SOT-23-5 (BM)
Pin Description
Pin Number Pin Name Pin Function
1 IN Input: +2.5V to +14V supply for internal circuity. 2 GND Ground: Return for internal circuitry and internal MOSFET (switch) source. 3 SW Switch Node (Input): Internal MOSFET drain; 22V maximum. 4 FB Feedback (Input): Output voltage sense node. Compared to V
input voltage.
5 VC Control (Input): Output voltage control signal input. Input voltage of 0.8V to
3.6V is proportional to 4.8V to 22V output voltage (gain of 6). If the pin is not connected, the output voltage will be VIN – 0.5V.
control
C
MIC2141 2 June 2000
Page 3
MIC2141 Micrel
Absolute Maximum Ratings (Note 1)
Supply Voltage (VIN) ...................................................+18V
Switch Voltage (V Feedback Voltage (F Control Input Voltage (VC), Note 3 ..VIN–200mV VC 4V
ESD Rating, Note 4 ...................................................... 2kV
)..................................................+24V
SW
)................................................+24V
B
Operating Ratings (Note 2)
Supply Voltage (VIN) .................................... +2.5V to +14V
Switch Voltage (V Ambient Temperature (T
Junction Tempgserature (TJ) ................... –40°C to +125°C
Package Thermal Resistance
)...................................... +3V to +22V
SW
).........................–40°C to +85°C
A
SOT-23-5 (θJA)......................................................220°C/W
Electrical Characteristics
VIN = 3.6V, V
Parameter Condition Min Typ Max Units
Input Voltage 2.5 14 V Quiescent Current Switch off, VIN = 3.6V 70 100 µA Comparator Hysteresis 10 mV Control Voltage Gain (V Controlled Output Voltage, VC = 0.8V; 2.5V ≤ VIN 4.2V 4.85 5.0 5.15 V
Note 3
Load Regulation 100µA ≤ I Line Regulation 2.5V ≤ VIN 12V; I Switch On-Resistance ISW = 100mA, VIN = 3.6V 4
Oscillator Frequency 300 330 360 kHz Oscillator Duty Cycle 15 18 %
OUT
= 5V; I
= 1mA; TJ = 25°C, bold values indicate –40°C TA +85°C; unless noted.
OUT
) 2.5V VIN 12V, V
OUT/VC
VC = 2.5V; 2.7V ≤ VIN 12V 14.55 15.0 15.45 V VC = 3.4V; 3.6V ≤ VIN 12V 19.4 20.0 20.6 V
ISW = 100mA, VIN = 12V 2.5
1mA, V
OUT
= 15V 6
OUT
= 15V 0.25 1 %
OUT
1mA 0.05 0.2 %/V
OUT
Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. VC = 4V sets V Note 4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.
to 24V (absolute maximum level on VSW); VC must be ≤ VIN – 200mV.
OUT
June 2000 3 MIC2141
Page 4
MIC2141 Micrel
µ
Typical Characteristcs
Feedback Current
vs. Output Voltage
25
20
15
10
5
FEEDBACK CURRENT (µA)
0
0 5 10 15 20 25
OUTPUT VOLTAGE (V)
Control Current
vs. Control Voltage
7 6 5 4 3 2 1
CONTROL CURRENT (nA)
0
01234
CONTROL VOLTAGE (V)
Control Voltage
vs. Output Voltage
20
VIN = 5V L = 33µH
15
= 100mA
L = 33
= 150mA
L = 22µH
VIN = 2.5V
H
VIN = 5V
10
5
OUTPUT VOLTAGE (V)
15.00
14.95
14.90
14.85
OUTPUT VOLTAGE (V)
14.80
VIN = 3.6V
0
01234
CONTROL VOLTAGE (V)
Load Regulation
I
PEAK
I
PEAK
012345
LOAD CURRENT (mA)
Gain
vs. Output Voltage
6.4
6.3
6.2
6.1
GAIN
6.0
5.9
5.8
5.7 0 5 10 15 20 25
OUTPUT VOLTAGE (V)
15.0
14.8
14.6
14.4
14.2
OUTPUT VOLTAGE (V)
14.0
Line Regulation
24681012
INPUT VOLTAGE (V)
VIN = 5V
L = 33µH
L = 33µH I
= 100µA
L
Oscillator Frequency
400
380
360
340
FREQUENCY (kHz)
320
300
vs. Input Voltage
2 4 6 8 10121416
INPUT VOLTAGE (V)
Frequency
350
340
330
320
FREQUENCY (kHz)
310
300
vs. Temperature
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Quiescent Current
280 240 200 160 120
QUIESCENT CURRENT (µA)
vs. Input Voltage
80 40
0
0246810121416
INPUT VOLTAGE (V)
0.60
0.58
0.56
0.54
ON-TIME (µs)
0.52
0.50
Duty Cycle
vs. Temperature
20 19 18 17 16 15 14 13
DUTY CYCLE (%)
12 11 10
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
On-Time
vs. Temperature
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
MIC2141 4 June 2000
Page 5
MIC2141 Micrel
14.00
14.20
14.40
14.60
14.80
15.00
-40 -20 0 20 40 60 80 100
OUTPUT VOLTAGE (V)
TEMPERATURE (°C)
0
10
20
30
40
50
60
70
80
90
100
01234
EFFICIENCY (%)
OUTPUT CURRENT (mA)
0
1
2
3
4
5
6
7
8
-40 -20 0 20 40 60 80 100
R
DS(on)
()
TEMPERATURE (°C)
Quiescent Current
vs. Temperature
88
86
84
82
80
QUIESCENT CURRENT (µA)
78
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
VIN = 5V
Switch Voltage Drop
vs. Temperature
VIN = 3.3V I
= 100mA
D
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
(mV)
DS
V
800 700 600 500 400 300 200 100
Output Voltage
vs. Temperature
VIN = 5V L = 33µH
Switch On-Resistance
vs. Temperature
VIN = 3.3V
Gain
6.00
5.98
5.96
GAIN
5.94
5.92
5.90
vs. Temperature
VIN = 5V
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Switch Voltage Drop
vs. Input Voltage
IDS = 100mA
0
2 4 6 8 10 12 14
INPUT VOLTAGE (V)
(mV)
DS
V
900 800 700 600 500 400 300 200 100
9 8 7 6 5 4 3 2
ON-RESISTANCE ()
1 0
2 4 6 8 10 12 14
June 2000 5 MIC2141
On-Resistance vs.
Input Voltage
INPUT VOLTAGE (V)
Efficiency
BAT54HT1 Diode
1N4148 Diode
VIN = 5V V
= 15V
OUT
L = 33µH
Ripple Voltage vs.
90 80 70 60 50 40 30 20
RIPPLE VOLTAGE (mV)
10
0
Input Voltage
L = 100µH
V
= 15V
OUT
I
= 1mA
L
24681012
INPUT VOLTAGE (V)
Page 6
MIC2141 Micrel
Functional Diagram
IN
Bandgap
Reference
VC
FB
MIC2141
Oscillator
330kHz
FIXED DUTY CYCLE
Functional Description
See Applications Information for component selection and predesigned circuits.
Overview
This MIC2141 is a fixed-duty-cycle, constant-frequency, gated­oscillator, micropower, switch-mode power supply controller. Quiescent current for the MIC2141 is only 70µA in the switch off state, and since a MOSFET output switch is used, addi­tional current needed for switch drive is minimized. Efficien­cies above 85% throughout most operating conditions can be realized.
Regulaton
Regulation is performed by a hysteretic comparator which regulates the output voltage by gating the internal oscillator. The user applies a programming voltage to the VC pin. (For a fixed or adjustable output regulator, with an internal refer­ence, use the MIC2142.) The output voltage is divided down internally and then compared to the VC, the control input voltage, forcing the output voltage to 6 times the VC. The comparator has hysteresis built into it, which determines the amount of low frequency ripple that will be present on the output. Once the feedback input to the comparator exceeds the control voltage by 10mV, the high-frequency oscillator drive is removed from the output switch. As the feedback input to the comparator returns to the control voltage level, the comparator is reset and the high-frequency oscillator is again gated to the output switch. Typically 10mV of hysteresis seen at the comparator will correspond to 60mV of low­frequency ripple at the output. Applications, which require continuous adjustment of the output voltage, can do so by adjustment of the VC control pin.
SW
GND
Output
The maximum output voltage is limited by the voltage capa­bility of the output switch. Output voltages up to 22V can be achieved with a standard boost circuit. Higher output volt­ages require a flyback configuration.
Output Voltage Control
The internal hysteretic comparator disables the output drive once the output voltage exceeds the nominal by 30mV. The drive is then enabled once the output voltage drops below the nominal by 30mV.
The reference level, which actually programs the output voltage, is set by the VC control input. The output is 6 times the control voltage (VC) and the output ripple will be 6 times the comparator hystersis. Therefore, with 10mV of hystersis, there will be ±30mV variation in the output around the nominal value. See the Typical Characteristics: Control Voltage vs. Output Voltage for a graph of input-to-output behavior.
The common-mode range of the comparator requires that the maximum control voltage (VC) be held to 200mV less than VIN. When programming for a 20V output, a minimum VIN of
3.5V will be required. See the Typical Characteristics: Gain vs. Output Voltage for a graph of gain behavior. To achieve 20V output at lower input voltages, the external resistive divider (R1 and R2) shown in Figure 2 can be added. This circuit will increase the control-to-output gain, while limiting the error introduced by the tolerance of the internal resistor feedback network.
MIC2141 6 June 2000
Page 7
MIC2141 Micrel
Application Information
Predesigned circuit information is at the end of this section.
Component Selection
Boost Inductor
Maximum power is delivered to the load when the oscillator is gated on 100% of the time. Total output power and circuit efficiency must be considered when determining the maxi­mum inductor. The largest inductor possible is preferable in order to minimize the peak current and output ripple. Effi­ciency can vary from 80% to 90% depending upon input voltage, output voltage, load current, inductor, and output diode.
Equation 1 solves for the output current capability for a given inductor value and expected efficiency. Figures 5 through 9 graph estimates for maximum output current, assuming the minimum duty cycle, maximum frequency, and 85% effi­ciency. To determine the required inductance, find the inter­section between the output voltage and current and select the value of the inductor curve just above the intersection. If the efficiency is expected to be other than the 85% used for the graph, Equation 1 can then be used to better determine the maximum output capability.
Vt
()
(1)
I
O(max)
=
IN(min)
2L T
MAX
The peak inductor and switch current can be calculated from Equation 2 or read from the graph in Figure 10. The peak current shown in Figure 10 is derived assuming a maximum duty cycle and a minimum frequency. The selected inductor and diode peak current capability must exceed this value. The peak current seen by the inductor is calculated at the maximum input voltage. A wider input voltage range will result in a higher worst-case peak current in the inductor. This effect can be seen in Table 4 by comparing the difference between the peak current at V
tV
ON max IN max
I
PK
=
(2)
IN(min)
()()
L
MIN
DCM/CCM Boundary
Equation 3 solves for the point at which the inductor current will transition from DCM (discontinuous conduction mode) to
ON
S
and V
2
V
O
eff
IN(max)
1
V
IN min
()
.
×
CCM (continuous conduction mode). As the input voltage is raised above this level the inductor has a potential for developing a dc component while the oscillator is gated on. Table 1 display the input points at which the inductor current can possibly operate in the CCM region. Operation in this region can result in a peak current slightly higher than displayed Table 4.
VVV1D
(3)
IN ccm
=+
()
()
OUT
FWD
+−
()
Table 2 lists common inductors suitable for most applica­tions. Table 6 lists minimum inductor sizes versus input and output voltage. In low-cost, low-peak-current applications, RF-type leaded inductors may sufficient. All inductors listed in Table 4 can be found within the selection of CR32- or LQH4C-series inductors from either Sumida or muRata.
rerutcafunaMseireSepyTeciveD
ataRumC4/C3/C1HQLtnuomecafrus adimuS23RCtnuomecafrus
relliM.W.JF87dedaellaixa
tfarclioC09dedaellaixa
Table 2. Inductor Examples
Boost Output Diode
Speed, forward voltage, and reverse current are very impor­tant in selecting the output diode. In the boost configuration, the average diode current is the same as the average load current. (The peak current is the same as the peak inductor current and can be derived from Equation 2 or Figure 10.) Care must be take to make sure that the peak current is evaluated at the maximum input voltage.
57C°
V
edoiD
0350RBMV572.0V523.0Aµ5.2Aµ09
8414N1
45TAB
58TAB
DWF
ta
Am001
V6.0
V4.0
)C°58(
45.0 )C°58(
C°52
V
DWF
ta
Am001
)C°571(
V59.0
V54.0
V65.0Aµ4.0
mooR
.pmeT
egakaeL
V51ta
An52
)V02(
An01
)V52(
C°57
egakaeL
V51ta
Aµ2.0
)V02(
Aµ1
)V02(
Aµ2
)C5°8(
egakcaP
321DOS
TMS
dedael
TMSdna
TMS
43-OD dedael
Table 3. Diode Examples
V
TUO
V3.3V40.3 V0.5V04.4 V0.9V06.7
V0.21V0.01 V0.51V4.21 V0.61V2.31 V0.02V4.61 V0.22V0.81
V
)MCC(NI
As can be seen in the Typical Characteristics: Efficiency graph, the output diode type can have an effect on circuit efficiency. The BAT54- and BAT85-series diodes are low­current Shottky diodes available from On Semiconductor and Phillips, respectively. They are suitable for peak repetitive currents of 300mA or less with good reverse current charac­teristics. For applications that are cost driven, the 1N4148, or equivalent, will provide sufficient switching speed with greater forward drop and reduced cost. Other acceptable diodes are On Semiconductors MBR0530 or Vishays B0530, although they can have reverse currents that exceed 1mA at very high junction temperatures. Table 3 summarizes some typical
Table 1. DCM/CCM Boundary
performance characteristics of various suitable diodes.
June 2000 7 MIC2141
Page 8
MIC2141 Micrel
Output Capacitor
If the availability of tantalum capacitors is limited, ceramic capacitors and inexpensive electrolyics may be necessary. Selection of the capacitor value will depend upon on the peak inductor current and inductor size. MuRata offers the GRM series with up to 10µF at 25V, with a Y5V temperature coefficient, in a 1210 surface-mount package. Low-cost applications can use M-series leaded electrolytic capacitors from Panasonic. In general, ceramic, electrolytic, or tantalum values ranging from 10µF to 47µF can be used for the output capacitor.
rerutcafunaMseireSepyTegakcaP
ataRumMRGV5Ycimarectnuomecafrus
yahsiV495mulatnattnuomecafrus
cinosanaPseires-Mcitylortcelededael
Table 4. Capacitor Examples
Design Example
Given a design requirement of 12V output and 1mA load with a minimum input voltage of 2.5V, Equation 1 can be used to calculate to maximum inductance or it can be read from the graph in Figure 4. Once the maximum inductance has been determined, the peak current can be determined using Equa­tion 2 or Figure 10.
V
= 12V
OUT
I
= 1mA
OUT
VIN = 4.8V to 2.5V
L
Vt
==
MAX
I
O(max)
L17H
==
MAX
µ
22
IN(min)
V
eff
⋅⋅
ON(min)
O
V2
−−⋅
IN(min)
T
S(min)
Select 15µH ±10%.
tV
== ==
ON(max)
I
PEAK
I 272mA
PEAK
L
⋅⋅
MIN
IN(max)
0.767 s
==
µ
4.8V
13.5 H
µ
Select a BAT54 diode and CR32 inductor. Always check the peak current to insure that it is within the
limits specified in the load line shown in Figure 10 for all input and output voltages.
Gain Boost
Use Figure 2 to increase the voltage gain of the system. The typical gain can easily be increased from the nominal gain of 6 to a value of 8 or 10. Figure 2 shows a gain of 8 so that with
2.5V applied to VC, V
will be 20V.
OUT
Bootstrap
The bootstrap configuration is used to increase the maximum output current for a given input voltage. This is most effective when the input voltage is less than 5V. Output current can typically be tripled by using this technique. See Table 4a. for bootstrap-ready-built component values.
+2.7V to +12V
+2.7V to +12V
+2.7V to +4.7V
V
V
Return
IN
C
V
10µF
V
Return
V
10µF
V
Return
CR2
1N4148
10µF
IN
C2
25V
C
C4
0.1µF
1
IN
5
VC
L1
33µH
MIC2141
GND
SW
FB
CR1
BAT54HT1
3 4 2
Figure 1. Basic Configuration
IN
C2
25V
C
C4
0.1µF
4
IN
5
VC
L1
22µH
MIC2141
GND
SW
FB
CR1
BAT54HT1
34.8k
3
I
2 1
121k
Figure 2. Gain-Boost Configuration
C2
25V
C4
0.1µF
1
IN
5
VC
L1
4.7µH
MIC2141
GND
SW
FB
MBR0530
1N4148
3 4 2
CR1
CR3
Figure 3. Bootstrap Configuration
R1
FB
R2
C1 10µF 25V
C1 10µF 25V
C1 10µF 25V
V +12V
Return
V
OUT
+5V to +15V
Return
V
OUT
+5V to +20V
V6V1
OUT C
I 15 A for V 15V
FB(typ)
Return
OUT

==++
 
====µ
R1 R2

++⋅
IR1

FB

OUT
MIC2141 8 June 2000
Page 9
MIC2141 Micrel
Inductor Selection Guides
40
3.9µH
4.7µH
10
15µH 18µH
22µH 27µH
33µH 39µH 47µH 56µH
68µH 82µH
100µH 120µH
1
MAX. OUTPUT CURRENT (mA)
150µH 180µH
220µH
VIN = 2.5V
200
4.7µH
100
10µH 12µH
15µH 18µH 22µH 27µH
33µH 39µH
47µH 56µH
10
68µH 82µH
100µH 120µH 150µH
180µH 220µH
MAX. OUTPUT CURRENT (mA)
1
VIN = 3.3V
Use for Li-ion battery
0.1 0246810121416182022
OUTPUT VOLTAGE (V)
Figure 5. Inductor Selection for VIN = 2.5V
0.1 0246810121416182022
OUTPUT VOLTAGE (V)
Figure 6. Inductor Selection for VIN = 3.3V
June 2000 9 MIC2141
Page 10
MIC2141 Micrel
200
8.2µH
100
10µH 12µH 15µH 18µH 22µH 27µH 33µH
39µH 47µH 56µH
68µH 82µH
10
100µH 120µH
150µH 180µH
220µH
MAX. OUTPUT CURRENT (mA)
1
VIN = 5V
100
15µH 18µH
22µH
27µH
33µH 39µH
47µH
56µH
68µH
82µH
10
100µH 120µH
150µH
MAX. OUTPUT CURRENT (mA)
180µH
220µH
270µH
VIN = 9V
0.1
2 4 6 8 10 12 14 16 18 20 22
Figure7. Inductor Selection for V
OUTPUT VOLTAGE (V)
IN
= 5V
330µH 390µH
470µH
1
8 10 12 14 16 18 20 22
OUTPUT VOLTAGE (V)
Figure 8. Inductor Selection for VIN = 9V
MIC2141 10 June 2000
Page 11
MIC2141 Micrel
100
10
22µH 18µH
27µH
33µH 39µH
47µH 56µH
68µH 82µH
100µH 120µH
150µH
180µH
220µH
VIN = 12V
270µH
330µH
MAX. OUTPUT CURRENT (mA)
390µH 470µH
1
10 12 14 16 18 20 22
OUTPUT VOLTAGE (V)
Figure 9. Inductor Selection for VIN = 12V
June 2000 11 MIC2141
Page 12
MIC2141 Micrel
1000
900
800
700
600
500
PEAK CURRENT (mA)
400
300
3.9µH
4.7µH
8.2µH
10µH
12µH
15µH
18µH
22µH
27µH
33µH
39µH
47µH
200
100
0
02468101214
INPUT VOLTAGE (V)
56µH 68µH 82µH
100µH 120µH
150µH
180µH 220µH 270µH 330µH 390µH 470µH
Figure 10. Peak Inductor Current vs. Input Voltage
MIC2141 12 June 2000
Page 13
MIC2141 Micrel
Predesigned Circuit Values
I
V
IN(min)
V
IN(max)
V
OUT
I
OUT(max)
L1 CR1 (VIN = V
PEAK
– 0.5V) or 14V (VIN = V
OUT
2.5V 4.5V 5.0V 4mA 15µH BAT54 230mA 128mA 3mA 18µH BAT54 192mA 106mA 2mA 27µH BAT54 128mA 71mA 1mA 56µH BAT54 62mA 34mA
0.5mA 120µH BAT54 29mA 16mA
5V bootstrap 14.8mA 3.9µH MBR0503 890mA 500mA
2.5V 11.5V 12V 1mA 15µH MBR0530 588mA 128mA
0.5mA 33µH BAT54 267mA 58mA
0.2mA 82µH BAT54 108mA 23mA
2.5V 4.7V 12V bootstrap 3.5mA 4.7µH MBR0503 750mA 500mA
2.5V 4.7V 12V bootstrap 4.3mA 3.9µH MBR0503 900mA 500mA
2.5V 14V 15V 0.8mA 15µH MBR0530 741mA 128mA
0.5mA 27µH MBR0530 412mA 71mA
0.2mA 68µH BAT54 163mA 28mA
2.5V 14V 16V 0.8mA 15µH MBR0530 710mA 128mA
0.5mA 22µH MBR0530 456mA 87mA
0.2mA 56µH BAT54 190mA 34mA
2.5V 14V 22V 0.5mA 15µH MBR0530 590mA 128mA
0.2mA 39µH BAT54 274mA 49mA
0.1mA 82µH BAT54 130mA 23mA
3.0V 4.5V 5V 10mA 12µH BAT54 288mA 190mA
use for Li-ion
battery range
3.6mA 27µH BAT54 128mA 85mA
0.8mA 120µH BAT54 29mA 19mA
5V bootstrap 20mA 4.7µH MBR0530 730mA 450mA
3.0V 8.5V 9V 3mA 12µH MBR0530 652mA 190mA
use for Li-ion battery range
1.7mA 22µH MBR0530 296mA 103mA
0.8mA 47µH MBR0530 139mA 49mA
3.0V 4.7V 9V bootstrap 8mA 4.7µH MBR0503 750mA 450mA
use for Li-ion battery range
3.0V 11.5V 12V 2.1mA 12µH MBR0530 882mA 190mA
use for Li-ion battery range
1.7mA 15µH MBR0530 588mA 156mA 1mA 27µH MBR0530 327mA 85mA
0.45mA 56µH BAT54 157mA 40mA
3.0V 4.7V 12V bootstrap 5.4mA 4.7µH MBR0530 750mA 450mA
use for Li-ion battery range
3.0V 14V 15V 1.6mA 12µH MBR0530 926mA 190mA
use for Li-ion battery range
0.87mA 22µH MBR0530 505mA 103mA
0.41mA 47µH BAT54 237mA 49mA
3.0V 4.7V 15V bootstrap 4mA 4.7µH MBR0530 750mA 450mA
use for Li-ion battery range
3.0V 14V 22V 1mA 10µH MBR0530 1071mA 190mA
use for Li-ion battery range
0.8mA 15µH MBR0530 714mA 152mA
0.46mA 27µH MBR0530 400mA 85mA
0.2mA 68µH BAT54 157mA 3.3mA
I
PEAK
IN(min)
)
Table 4a. Typical Configurations for Wide-Range Inputs2.5V to 3.0V Minimum Input
June 2000 13 MIC2141
Page 14
MIC2141 Micrel
V
IN(min)
V
IN(max)
V
OUT
I
OUT(max)
L1 CR1 (VIN = V
I
PEAK
– 0.5V) (VIN = V
OUT
I
PEAK
5.0V 8.5V 9V 17mA 8.2µH MBR0530 795mA 467mA 15mA 10µH MBR0530 652mA 383mA 10mA 12µH MBR0530 643mA 319mA
5mA 27µH BAT54 241mA 142mA 1mA 120µH BAT54 54mA 32mA
5.0V 11.5V 12V 10mA 8.2µH MBR0530 1,075mA 467mA
5mA 18µH MBR0530 490mA 213mA 2mA 39µH BAT54 226mA 98mA 1mA 82µH BAT54 108mA 47mA
5.0V 14V 15V 7mA 8.2µH MBR0530 1356mA 467mA
5mA 12µH MBR0530 926mA 319mA 2mA 27µH MBR0530 412mA 142mA 1mA 56µH BAT54 199mA 68mA
5.0V 14V 16V 2.5mA 22µH MBR0530 986mA 174mA
1mA 56µH BAT54 190mA 68mA
0.5mA 120µH BAT54 90mA 32mA
5.0V 14V 22V 1.7mA 22µH MBR0530 486mA 174mA
1.0mA 39µH BAT54 274mA 98mA
0.5mA 82µH BAT54 130mA 47mA
0.1mA 180µH BAT54 60mA 21mA
9.0V 11.5V 12V 33mA 15µH MBR0530 588mA 460mA 20mA 22µH MBR0530 401mA 314mA 10mA 47µH BAT54 188mA 147mA
5mA 100µH BAT54 88mA 69mA 1mA 470µH BAT54 19mA 15mA
9.0V 14V 15V 20mA 15µH MBR0530 741mA 460mA 10mA 27µH MBR0530 412mA 256mA
5mA 56µH BAT54 199mA 123mA 2mA 150µH BAT54 74mA 46mA 1mA 270µH BAT54 41mA 26mA
9.0V 14V 20V 4.5mA 39µH BAT54 215mA 177mA
2mA 68µH BAT54 131mA 84mA 1mA 150µH BAT54 72mA 46mA
9.0V 14V 22V 4mA 39µH BAT54 275mA 177mA
2mA 68µH BAT54 157mA 101mA 1mA 150µH BAT54 72mA 46mA
12V 14V 15V 45mA 18µH MBR0530 618mA 511mA
20mA 39µH BAT54 285mA 236mA 10mA 82µH BAT54 136mA 112mA
5mA 150µH BAT54 74mA 61mA
1.7mA 470µH BAT54 24mA 20mA
12V 14V 20V 8mA 47µH BAT54 230mA 196mA
5mA 68µH BAT54 158mA 135mA 2mA 120µH BAT54 90mA 77mA 1mA 390µH BAT54 27mA 24mA
12V 21.5V 22V 7mA 47µH BAT54 228mA 196mA
5mA 68µH BAT54 157mA 135mA 2mA 150µH BAT54 69mA 61mA 1mA 220µH BAT54 47mA 42mA
IN(min)
)
Table 4b. Typical Configurations for Wide-Range Inputs5V to 15V Minimum Input
MIC2141 14 June 2000
Page 15
MIC2141 Micrel
I
V
IN
V
OUT
I
OUT
L1 CR1 (typical)
PEAK
3.3V ±5% 5V 13mA 10µH BAT54 253mA 9V 5mA 10µH BAT54 253mA
12V 3mA 10µH BAT54 253mA 15V 2.3mA 10µH BAT54 253mA 20V 1.7mA 10µH BAT54 253mA
5V ±5% 9V 17mA 8.2µH MB0530 467mA
12V 10.4mA 8.2µH MB0530 467mA 15V 7.5mA 8.2µH MB0530 467mA 20V 2.2mA 22µH MB0530 174mA
12V ±5% 15V 44mA 18µH MB0530 511mA
20V 8.3mA 47µH BAT54 196mA
Table 5. Typical Maximum Power Configuration for Regulated Inputs
Output Voltage
V
IN
16V to 22V 4.5V to 15V
2.5V 15µH15µH
3.0V 12µH12µH
3.3V 10µH10µH
3.5V 8.2µH 8.2µH
4.0V 27µH 6.8µH
4.5V 27µH 6.8µH
5.0V 22µH 8.2µH
6.0V 27µH10µH
7.0V 27µH10µH
8.0V 33µH12µH
9.0V 39µH15µH 10V 39µH15µH 11V 47µH18µH 12V 47µH18µH 13V 56µH22µH 14V 56µH22µH 15V 56µH27µH 16V 68µH27µH
Table 6. Minimum Inductance
Manufacturer Web Address
muRata www.MuRata.com Sumida www.sumida.com Coilcraft www.coilcraft.com
J. W. Miller www.jwmiller.com
Micrel www.micrel.com
Vishay www.vishay.com
Panasonic www.panasonic.com
Table 7. Component Supplier Websites
June 2000 15 MIC2141
Page 16
MIC2141 Micrel
Package Information
1.90 (0.075) REF
0.95 (0.037) REF
3.02 (0.119)
2.80 (0.110)
0.50 (0.020)
0.35 (0.014)
1.75 (0.069)
1.50 (0.059)
1.30 (0.051)
0.90 (0.035)
0.15 (0.006)
0.00 (0.000)
SOT-23-5 (M)
3.00 (0.118)
2.60 (0.102)
10°
0°
DIMENSIONS:
MM (INCH)
0.20 (0.008)
0.09 (0.004)
0.60 (0.024)
0.10 (0.004)
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2000 Micrel Incorporated
MIC2141 16 June 2000
Loading...