Datasheet HUF76413D3S Datasheet (Fairchild Semiconductor)

Page 1
Data Sheet December 2001
20A, 60V, 0.056 Ohm, N-Channel, Logic Level UltraFET® Power MOSFET
Packaging
JEDEC TO-251AA JEDEC TO-252AA
DRAIN
(FLANGE)
HUF76413D3
SOURCE
DRAIN
GATE
GATE
SOURCE
HUF76413D3S
DRAIN
(FLANGE)
Symbol
HUF76413D3, HUF76413D3S
Features
• Ultra Low On-Resistance
• Simulation Models
- Temperature Compensated PSPICE® and SABER™ Electrical Models
- Spice and SABER Thermal Impedance Models
- www.fairchildsemi.com
• Peak Cu rrent vs Pulse Width Curve
• UIS Rating Curve
• Switching Time vs R
DS(ON) DS(ON)
= 0.049Ω, V = 0.056Ω, V
GS
= 10V
GS
= 5V
GS
Curves
D
G
S
Absolute Maximum Ratings
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain to Gate Voltage (R
Gate to Source Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain Current
Continuous (T
Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . I
Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figures 6, 17, 18
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Derate Above 25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . T
NOTES:
= 25oC to 150oC.
1. T
J
CAUTION: Stresses above those listed in “Absolute Maximum Rati ngs” may cause per man ent dama ge to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
= 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . V
GS
TC = 25oC, Unless Otherwise Specified
Ordering Information
PART NUMBER PACKAGE BRAND
HUF76413D3 TO-251AA 76413D HUF76413D3S TO-252AA 76413D
NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUF76413D3ST.
HUF76413D3, HUF76413D3S UNITS
DSS
DGR
GS
D D D D
DM
D
, T
J
STG
L
pkg
60 V 60 V
±16 V
20 20 15 15
Figure 4
60
0.4
-55 to 175
300 260
W/oC
A A A A
W
o
C
o
C
o
C
Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
©2001 Fairchild Semiconductor Corpo ration HUF76413D3, HUF76413D3S Rev. B
For severe environments, see our Automotive HUFA series.
Page 2
HUF76413D3, HUF76413D3S
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BV
Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V Drain to Source On Resistance r
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case R Thermal Resistance Junction to
Ambient SWITCHING SPECIFICATIONS (V
= 4.5V)
GS
Turn-On Time t Turn-On Delay Time t Rise Time t Turn-Off Delay Time t Fall Time t Turn-Off Time t SWITCHING SPECIFICATIONS (V
GS
= 10V) Turn-On Time t Turn-On Delay Time t Rise Time t Turn-Off Delay Time t Fall Time t Turn-Off Time t
GATE CHARGE SPECIFICATIONS
Total Gate Charge Q Gate Charge at 5V Q Threshold Gate Charge Q Gate to Source Gate Charge Q Gate to Drain “Miller” Charge Q
CAPACITANCE SPECIFICATIONS
Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C
DSSID
I
D
DSS
VDS = 55V, VGS = 0V - - 1 µA V
GSS
GS(TH)VGS
DS(ON)ID
θJC
R
θJA
ON
d(ON)
d(OFF)
OFF
ON
d(ON)
d(OFF)
OFF
g(TOT)VGS
g(5)
g(TH)
ISS OSS RSS
VGS = ±16V - - ±100 nA
I
D
I
D
TO-251 and TO-252 - - 2.5
VDD = 30V, ID = 15A V (Figures 15, 21, 22)
r
f
VDD = 30V, ID = 20A V R
r
(Figures 16, 21, 22)
f
VGS = 0V to 5V - 9 11 nC VGS = 0V to 1V - 0.6 0.7 nC
gs
gd
VDS = 25V, VGS = 0V, f = 1MHz (Figure 13)
= 250µA, VGS = 0V (Figure 12) 60 - - V = 250µA, VGS = 0V , TC = -40oC (Figure 12) 55 - - V
= 50V, VGS = 0V, TC = 150oC - - 250 µA
DS
= VDS, ID = 250µA (Figure 11) 1 - 3 V = 20A, VGS = 10V (Figures 9, 10) - 0.041 0.049 = 15A, VGS = 5V (Figure 9) - 0.048 0.056 = 15A, VGS = 4.5V (Figure 9) - 0.051 0.061
o
- - 100
o
- - 273 ns
= 4.5V, RGS = 16
GS
-10-ns
- 172 - ns
-21-ns
-55-ns
- - 114 ns
- - 63 ns
= 10V,
GS GS
= 18
-6-ns
-36-ns
-48-ns
-42-ns
- - 135 ns
= 0V to 10V VDD = 30V,
I
= 15A,
D
= 1.0mA
I
g(REF)
-1720nC
(Figures 14, 19, 20)
-2-nC
-5-nC
- 645 - pF
- 190 - pF
-40-pF
C/W C/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V
Reverse Recovery Time t Reverse Recovered Charge Q
©2001 Fairchild Semiconductor Corpo ration HUF76413D3, HUF76413D3S Rev. B
SD
rr
RR
ISD = 15A - - 1.25 V
= 8A - - 1.0 V
I
SD
ISD = 15A, dISD/dt = 100A/µs--72ns ISD = 15A, dISD/dt = 100A/µs - - 185 nC
Page 3
Typical Performance Curves
5
5
HUF76413D3, HUF76413D3S
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 17
125
150
TC, CASE TEMPERA TURE (oC)
FIGURE 1. NORMALIZED POWER DISSIP ATION vs CASE
TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
SINGLE PULSE
0.01
-5
10
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
25
20
V
= 10V
GS
15
V
= 4.5V
10
, DRAIN CURRENT (A)
D
I
5
GS
0
25 50 75 100 125 150 17
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
P
DM
t
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-2
10
-1
10
θJC
10
1/t2
x R
0
θJC
+ T
1
t
2
C
1
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
500
100
, PEAK CURRENT (A)
DM
I
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
10
-5
10
VGS = 10V
VGS = 5V
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
TC = 25oC
FOR TEMPERATURES ABOVE 25
o
C DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
10
0
C
150
10
FIGURE 4. PEAK CURRENT CAPABILITY
©2001 Fairchild Semiconductor Corpo ration HUF76413D3, HUF76413D3S Rev. B
1
Page 4
0 0
5
4
0
0
HUF76413D3, HUF76413D3S
Typical Performance Curves
200
100
10
OPERATION IN THIS
, DRAIN CURRENT (A)
D
I
AREA MAY BE LIMITED BY r
1
110100
DS(ON)
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
(Continued)
SINGLE PULSE TJ = MAX RATED
T
C
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
40
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
V
= 15V
DD
30
= 25oC
100µs
1ms
10ms
100
STARTING TJ = 25oC
10
STARTING TJ = 150oC
, AVALANCHE CURRENT (A)
AS
I
20
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R ≠ 0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
1
0.001 0.01 0.1 1 1 tAV, TIME IN AVALANCHE (ms)
DSS
- VDD)
DSS
- VDD) +1]
NOTE: Refer to Fairchild Application Notes AN9321 and AN 9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
40
30
VGS = 10V VGS = 5V
VGS = 4V
20
DRAIN CURRENT (A)
10
D,
I
TJ = 25oC
0
1.5 2.0 2.5 3.0 3.5 4.0 4. VGS, GATE TO SOURCE VOLTAGE (V)
TJ = 175oC
TJ = -55oC
20
, DRAIN CURRENT (A)
10
D
I
PULSE DURATION = 80µs
0
0123
DUTY CYCLE = 0.5% MAX
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SA TURATION CHARACTERISTICS
90
ID = 20A
75
60
, DRAIN TO SOURCE
ON RESISTANCE (mΩ)
DS(ON)
r
ID = 5A
45
30
24681
ID = 15A
, GATE TO SOURCE VOLTAGE (V)
V
GS
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
T
= 25oC
C
2.5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
2.0
1.5
1.0
ON RESIST ANCE
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 20 TJ, JUNCTION TEMPERATURE (oC)
VGS = 3.5V
VGS = 3V
T
= 25oC
C
VGS = 10V, ID = 20A
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
©2001 Fairchild Semiconductor Corpo ration HUF76413D3, HUF76413D3S Rev. B
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
Page 5
0
0
0 0
0
0
HUF76413D3, HUF76413D3S
Typical Performance Curves
1.2
1.0
0.8
NORMALIZED GATE
0.6
THRESHOLD VOLTAGE
0.4
-80 -40 0 40 80 120 160 20 TJ, JUNCTION TEMPERATURE (oC)
(Continued)
VGS = VDS, ID = 250µA
FIGURE 11. NORMALIZED GA TE THRESHOLD V OLT AGE vs
JUNCTION TEMPERATURE
2000
= C
1000
C
C
ISS
OSS
C
GS
DS
+ C
+ C
GD
GD
1.2 ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 160 20 , JUNCTION TEMPERATURE (oC)
T
J
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
VDD = 30V
8
6
100
C, CAPACITANCE (pF)
V
= 0V, f = 1MHz
GS
10
0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V)
C
RSS
= C
GD
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
250
VGS = 4.5V, VDD = 30V, ID = 15A
200
t
r
150
100
t
SWITCHING TIME (ns)
50
0
0 102030405
RGS, GATE TO SOURCE RESISTANCE (Ω)
f
t
d(OFF)
t
d(ON)
4
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
6
0 5 10 15 2
Qg, GATE CHARGE (nC)
WAVEFORMS IN DESCENDING ORDER:
ID = 20A I
= 15A
D
I
= 5A
D
NOTE: Refer to Fairchild Application Notes AN7254 and AN 7260.
FIGURE 14. GATE CHARGE W AVEFORMS FOR CONSTANT
GATE CURRENT
125
VGS = 10V, VDD = 30V, ID = 20A
100
75
50
SWITCHING TIME (ns)
25
0
0 102030405
RGS, GATE TO SOURCE RESISTANCE (Ω)
t
d(OFF)
t
f
t
r
t
d(ON)
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
©2001 Fairchild Semiconductor Corpo ration HUF76413D3, HUF76413D3S Rev. B
Page 6
V
I
HUF76413D3, HUF76413D3S
Test Circuits and Waveforms
V
DS
BV
DSS
L
TO OBTAIN
VARY t
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01
0
t
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
V
I
g(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
V
GS
0
g(REF)
0
V
= 1V
GS
Q
g(TH)
Q
gs
t
P
I
AS
t
AV
Q
g(TOT)
V
DS
Q
g(5)
VGS = 5V
Q
gd
V
DS
V
DD
V
= 10
GS
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
V
DS
R
L
V
GS
+
V
DD
-
V
DS
0
DUT
R
GS
V
GS
V
GS
10%
0
t
d(ON)
90%
t
ON
50%
10%
t
r
PULSE WIDTH
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
FIGURE 21. SWITCHING TIME TEST CIRCUIT FIGURE 22. SWITCHING TIME WAVEFORM
©2001 Fairchild Semiconductor Corpo ration HUF76413D3, HUF76413D3S Rev. B
Page 7
HUF76413D3, HUF76413D3S
PSPICE Electrical Model
.SUBCKT HUF76413D3 2 1 3 ; rev 31 August 1999
CA 12 8 8.5e-10 CB 15 14 8.5e-10 CIN 6 8 6.05e-10
DBODY 7 5 DBODYMOD DBREAK 5 11 D B REAK MOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 65.6 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
IT 8 17 1 LDRAIN 2 5 1e-9
LGATE 1 9 5.1e-9 LSOURCE 3 7 4.8e-9
GATE
1
MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.2e-2 RGATE 9 20 2.4 RLDRAIN 2 5 10 RLGATE 1 9 51 RLSOURCE 3 7 48 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 1.03e-2 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTE MPMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
LGATE
RLGATE
RGATE
9
CA
-
ESG
+
EVTEMP
+
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
6 8
13
10
RSLC2
6
14 13
+
+
6 8
-
-
DPLCAP
EVTHRES
+
19
8
S2A
S2B
15
CB
CIN
-
+
5 8
-
5
RSLC1
51
+
5
51
-
50 RDRAIN
21
MSTRO
14
ESLC
16
8
MMED
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
LDRAIN
RLDRAIN
11
+
17 18
DBODY
DRAIN
2
-
LSOURCE
7
RLSOURCE
RVTEMP 19
SOURCE
3
-
VBAT
+
22
ESLC 51 50 VALUE={(V (5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*50),3.9))} .MODEL DBODYMOD D (IS = 5.4e-13 RS = 1.1e-2 TRS1 = 1.5e-3 TRS2 = 5e-6 CJO = 8.2e-10 TT = 3.8e-8 M = 0.52)
.MODEL DBREAKMOD D (RS = 3.5e- 1TRS1 = 1e- 3TRS2 = -6.5e-6) .MODEL DPLCAPMOD D (CJO = 5.5e-1 0IS = 1e-3 0N = 10 M = 0.8) .MODEL MMEDMO D N MOS (VTO = 1.95 K P = 2.6 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.4) .MODEL MSTROMOD NMOS (VTO = 2.32 KP = 28 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.65 KP = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 24 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.2e- 3TC2 = -1e-6) .MODEL RDRAINMOD RES (TC1 = 7.8e-3 TC2 = 1.5e-5) .MODEL RSLCMOD RES (TC1 = 3.5e-3 TC2 = 2e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (T C1 = -2e-3 TC2 = -4.3 e-6) .MODEL RVTEMPMOD RES (TC1 = -1.7e- 3TC2 = 1e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.5 VOFF= -2.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.5 VOFF= -5.5) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.5 VOFF= 0) .MODEL S2BMOD VSWITCH (RON = 1e -5 ROFF = 0.1 VON = 0 VOFF= -0.5)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Pow er Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2001 Fairchild Semiconductor Corpo ration HUF76413D3, HUF76413D3S Rev. B
Page 8
HUF76413D3, HUF76413D3S
SABER Electrical Model
REV 31 August 1999 template huf76413d3 n2,n1,n3
electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 5.4e-13, cjo = 8.2e-10, tt = 3.8e-8, m = 0.52) d..model dbreakmod = () d..model dplcapmod = (cjo = 5.5e-10, is = 1e-30, n=10, m = 0.8 ) m..model mmedmod = (type=_n, vto = 1.95, kp = 2.6, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.32, kp = 28, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.65, kp = 0.02, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.5, voff = -2.5) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.5, voff = -5.5) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0, voff = -0.5)
c.ca n12 n8 = 8.5e-10 c.cb n15 n14 = 8.5e-10 c.cin n6 n8 = 6.05e-10
d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9
GATE
l.lgate n1 n9 = 5.1e-9 l.lsource n3 n7 = 4.8e-9
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n1 7 n1 8 = 1, tc1 = 1.2e-3, tc2 = -1e-6 res.rdbody n71 n5 = 1.1e-2, tc1 = 1.5e-3, tc2 = 5e-6 res.rdbreak n72 n5 = 3.5e-1, tc1 = 1e-3, tc2 = -6.5e-6 res.rdrain n50 n16 = 2.2e-2, tc1 = 7.8e-3, tc2 = 1.5e-5 res.rgate n9 n20 = 2.4 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 51 res.rlsource n3 n7 = 48 res.rslc1 n5 n51 = 1e-6, tc1 = 3.5e-3, tc2 = 2e-6 res.rslc2 n5 n50 = 1e3 res.rsour ce n8 n7 = 1.03e-2, tc1 = 1e-3, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.7e-3, tc2 = 1e-6 res.rvthres n22 n 8 = 1, tc1 = -2e-3, tc2 = -4.3e-6
LGATE
1
RLGATE
RGATE
9
CA
EVTEMP
+
20
12
10
RSLC2
-
6
ESG
8
+
6
-
18 22
S1A
S1B
S2A
14
13
13
8
S2B
13
+
+
6
EGS EDS
8
-
-
DPLCAP
EVTHRES
+
19
8
CIN
15
CB
-
+
-
5
RSLC1
51
50 RDRAIN
21
MSTRO
14
5 8
ISCL
16
8
MMED
RDBREAK
72
DBREAK
11
MWEAK
EBREAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
+
-
17 18
71
7
RLSOURCE
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
RDBODY
DBODY
LSOURCE
VBAT
DRAIN
2
SOURCE
3
spe.ebreak n11 n7 n17 n18 = 65.6 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc =1 equations {
i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/50))** 3.9)) } }
©2001 Fairchild Semiconductor Corpo ration HUF76413D3, HUF76413D3S Rev. B
Page 9
SPICE Thermal Model
REV 31 August 99
T76413d3
CTHERM1 th 6 7.5e-4 CTHERM2 6 5 2.8e-3 CTHERM3 5 4 3.0e-3 CTHERM4 4 3 3.4e-3 CTHERM5 3 2 5.3e-3 CTHERM6 2 tl 9.5e-2
RTHERM1 th 6 6.5e-3 RTHERM2 6 5 2.1e-2 RTHERM3 5 4 1.5e-1 RTHERM4 4 3 4.9e-1 RTHERM5 3 2 8.3e-1 RTHERM6 2 tl 5.0e-1
SABER Thermal Model
SABER thermal model t76413d3 template thermal_model th tl thermal_c th, tl
{ ctherm.ctherm1 th 6 = 7.5e-4 ctherm.ctherm2 6 5 = 2.8e-3 ctherm.ctherm3 5 4 = 3.0e-3 ctherm.ctherm4 4 3 = 3.4e-3 ctherm.ctherm5 3 2 = 5.3e-3 ctherm.ctherm6 2 tl = 9.5e-2
rtherm.rtherm1 th 6 = 6.5e-3 rtherm.rtherm2 6 5 = 2.1e-2 rtherm.rtherm3 5 4 = 1.5e-1 rtherm.rtherm4 4 3 = 4.9e-1 rtherm.rtherm5 3 2 = 8.3e-1 rtherm.rtherm6 2 tl = 5.0e-1 }
HUF76413D3, HUF76413D3S
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
RTHERM6
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
2
CTHERM6
tl
CASE
©2001 Fairchild Semiconductor Corpo ration HUF76413D3, HUF76413D3S Rev. B
Page 10
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOS EnSigna
TM
TM
FACT™ FACT Quiet Series™
STAR*POWER is used under license
FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™
OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench
QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER
SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™
UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Formative or In Design
First Production
Full Production
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness.
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. H4
Loading...