Page 1
Data Sheet December 2001
16A, 100V, 0.090 Ohm, N-Channel,
UltraFET® Power MOSFETs
Packaging
JEDEC TO-251AA JEDEC TO-252AA
HUF75617D3, HUF75617D3S
Features
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
• Ultra Low On-Resistance
-r
DS(ON)
= 0.090Ω, V
GS
= 10V
• Simulation Models
DRAIN
(FLANGE)
HUF75617D3
GATE
SOURCE
HUF75617D3S
- Temperature Compensated PSPICE® and SABER™
Electrical Models
- Spice and SABER Thermal Impedance Models
- www.fairchildsemi.com
• Peak Cu rrent vs Pulse Width Curve
• UIS Rating Curve
Symbol
D
G
S
Absolute Maximum Ratings
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (R
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain Current
Continuous (T
Continuous (TC = 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figures 6, 14, 15
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
NOTE: T
CAUTION: Stresses above those listed in “ Absolute M aximum Ratings” may cause perm anent damage to th e device. This is a stress onl y rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
J
C
= 25oC to 150oC.
= 20kΩ ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GS
= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
TC = 25oC, Unless Otherwise Specified
Ordering Information
PART NUMBER PACKAGE BRAND
HUF75617D3 TO-251AA 75617D
HUF75617D3S TO-252AA 75617D
NOTE: When ordering, use the entire part number. Add the suffix T
to obtain the variant in tape and reel, e.g., HUF75617D3ST.
HUF75617D3,
HUF75617D3S UNITS
DSS
DGR
GS
D
D
DM
D
, T
J
STG
L
pkg
100 V
100 V
± 20 V
16
11
Figure 4
64
0.43
-55 to 175
300
260
A
A
W
W/oC
o
C
o
C
o
C
Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
©2001 Fairchild Semiconductor Corpo ration HUF75617D3 Rev. B
For severe environments, see our Automotive HUFA series.
Page 2
HUF75617D3
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BV
Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V
Drain to Source On Resistance r
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case R
Thermal Resistance Junction to
Ambient
SWITCHING SPECIFICATIONS (V
GS
= 10V)
Turn-On Time t
Turn-On Delay Time t
Rise Time t
Turn-Off Delay Time t
Fall Time t
Turn-Off Time t
GATE CHARGE SPECIFICATIONS
Total Gate Charge Q
Gate Charge at 10V Q
Threshold Gate Charge Q
Gate to Source Gate Charge Q
Gate to Drain "Miller" Charge Q
CAPACITANCE SPECIFICATIONS
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
DSSID
DSS
VDS = 95V, VGS = 0V - - 1 µA
V
GSS
GS(TH)VGS
DS(ON)ID
θ JC
R
θ JA
ON
VGS = ±20V - - ±100 nA
TO-251, TO-252 - - 2.34oC/W
VDD = 50V, ID = 16A
V
d(ON)
d(OFF)
OFF
g(TOT)VGS
g(10)
g(TH)
ISS
OSS
RSS
R
(Figures 18, 19)
r
f
VGS = 0V to 10V - 18 22 nC
VGS = 0V to 2V - 1.3 1.6 nC
gs
gd
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
= 250µ A, VGS = 0V (Figure 11) 100 - - V
= 90V, VGS = 0V, TC = 150oC - - 250 µA
DS
= VDS, ID = 250µ A (Figure 10) 2 - 4 V
= 16A, V GS = 10V (Figure 9) - 0.080 0.090 ¾
- - 100
o
- - 60 ns
= 10V,
GS
GS
= 12Ω
-6-n s
-3 5-n s
-4 4-n s
-2 8-n s
- - 108 ns
= 0V to 20V VDD = 50V,
= 16A,
I
D
I
= 1.0mA
g(REF)
-3 13 9n C
(Figures 13, 16, 17)
-2 . 7-n C
-6 . 4-n C
- 570 - pF
- 125 - pF
-2 0-p F
C/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TE ST CONDIT IONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V
Reverse Recovery Time t
Reverse Recovered Charge Q
©2001 Fairchild Semiconductor Corpo ration HUF75617D3 Rev. B
SD
rr
RR
ISD = 16A - - 1.25 V
= 7A - - 1.00 V
I
SD
ISD = 16A, dISD/dt = 100A/µs- - 8 0 n s
ISD = 16A, dISD/dt = 100A/µs - - 170 nC
Page 3
Typical Performance Curves
HUF75617D3
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIE R
0
0 25 50 75 100 17
125
150
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATI ON vs CASE
TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
JC
θ
Z
THERMAL IMPEDANCE
SINGLE PULSE
0.01
-5
10
10
-4
-3
10
t, RECTANGULAR PULSE DURATION (s)
18
15
V
= 10V
12
GS
9
6
, DRAIN CURRENT (A)
D
I
3
0
25
50 75 100 125 150
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
P
DM
t
1
t
NOTES:
10
DUTY FACTOR: D = t1/t
PEAK TJ = PDM x Z
-2
-1
10
2
x R
θ
JC
10
+ T
θ
JC
0
175
2
C
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
300
200
100
VGS = 10V
, PEAK CURRENT (A)
DM
I
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10
10
-5
-4
10
-3
10
-2
10
-1
10
t, PULSE WIDTH (s)
TC = 25oC
FOR TEMPERATURES
ABOVE 25
o
C DERATE PEAK
CURRENT AS FOLLOWS:
175 - T
I = I
25
0
10
C
150
10
FIGURE 4. PEAK CURRENT CAPABILITY
©2001 Fairchild Semiconductor Corpo ration HUF75617D3 Rev. B
Page 4
HUF75617D3
Typical Performance Curves
200
100
10
1
, DRAIN CURRENT (A)
D
I
0.1
OPERATION IN THIS
AREA MAY BE
LIMITED BY r
1
V
DS(ON)
10
, DRAIN TO SOURCE VOLTAGE (V)
DS
(Continued)
SINGLE PULSE
TJ = MAX RATED
T
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
30
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
= 15V
V
25
DD
20
= 25oC
C
100
100µs
1ms
10ms
100
If R = 0
tAV = (L)(IAS)/(1.3*RATED BV
If R ≠ 0
t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
10
, AVALANCHE CURRENT (A)
AS
I
20
STARTING TJ = 150oC
1
0.001 0.01 0.1 1
tAV, TIME IN AVALANCHE (ms)
- VDD)
DSS
- VDD) +1]
DSS
STARTING TJ = 25oC
1
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
30
25
20
VGS = 10V
VGS = 6V
VGS = 5V
15
10
DRAIN CURRENT (A )
D,
I
TJ = 175oC
TJ = -55oC
5
15
10
, DRAIN CURRENT (A)
D
I
5
TJ = 25oC
0
234 6
5
VGS, GATE TO SOURCE VOLTAGE (V)
0
01234
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SA TURATION CHARACTERIS TICS
3.0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
2.5
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 200
TJ, JUNCTION TEMPERATURE (oC)
VGS = 10V, ID = 16A
160
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
-80 -40 0 40 80 120 200
TJ, JUNCTION TEMPERATURE (oC)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
= 25oC
T
C
VGS = VDS, ID = 250µA
160
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
©2001 Fairchild Semiconductor Corpo ration HUF75617D3 Rev. B
FIGURE 10. NORMALIZED GA TE THRESHOLD VOL TAGE vs
JUNCTION TEMPERATURE
Page 5
HUF75617D3
Typical Performance Curves
1.2
ID = 250µA
1.1
1.0
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.9
-80 -40 0 40 80 120 200
, JUNCTION TEMPERATURE (oC)
T
J
(Continued)
160
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
VDD = 50V
8
2000
1000
C
C
+ C
≅
OSS
DS
GD
100
C, CAPACITANCE (pF)
10
0.1 1.0 10 100
VDS, DRAIN TO SOURCE VOLTAGE (V)
C
RSS
= C
GD
V
GS
C
ISS
= 0V, f = 1MHz
+ C
= C
GS
GD
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
6
4
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
01 5
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Q
g
10 20 5
, GATE CHARGE (nC)
WAVEFORMS IN
DESCENDING ORDER:
ID = 16A
= 10A
I
D
I
= 4A
D
©2001 Fairchild Semiconductor Corpo ration HUF75617D3 Rev. B
Page 6
HUF75617D3
Test Circuits and Wavefo rms
V
DS
BV
DSS
L
TO OBTAIN
VARY t
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01Ω
0
t
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
V
I
g(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
V
GS
0
g(REF)
0
V
GS
= 2V
Q
g(TH)
Q
gs
t
P
I
AS
t
AV
Q
g(TOT)
V
DS
Q
g(10)
VGS = 10V
Q
gd
V
DS
V
DD
V
= 20
GS
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS
V
DS
R
L
V
GS
+
V
DD
-
V
DS
0
DUT
R
GS
V
GS
V
GS
10%
0
t
d(ON)
90%
t
ON
50%
10%
t
r
PULSE WIDTH
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. SWITCHING TIME WAVEFORM
©2001 Fairchild Semiconductor Corpo ration HUF75617D3 Rev. B
Page 7
PSPICE Electrical Model
.SUBCKT HUF75617 d3 2 1 3 ; rev 24May 2000
CA 12 8 9.9e-10
CB 15 14 1.0e-9
CIN 6 8 5.4e-10
HUF75617D3
DBODY 7 5 DBODYMOD
DBREAK 5 11 D B REAK MOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 117.8
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
IT 8 17 1
LDRAIN 2 5 1.0e-9
LGATE 1 9 5.24e-9
LSOURCE 3 7 4.25e-9
GATE
1
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 3.9e-2
RGATE 9 20 2.45
RLDRAIN 2 5 10
RLGATE 1 9 52.4
RLSOURCE 3 7 42.5
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 3.2e-2
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTE MPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
LGATE
RLGATE
RGATE
9
CA
ESG
EVTEMP
+
18
22
20
S1A
12
13
8
S1B
EGS EDS
7
RVTEMP
19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
DPLCAP
10
RSLC2
6
8
EVTHRES
+
+
6
-
S2A
14
13
S2B
13
+
+
6
8
-
-
5
RSLC1
51
+
5
ESLC
51
50
RDRAIN
16
21
-
19
8
MSTRO
CIN
15
CB
8
14
+
5
8
-
MMED
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
11
+
17
18
-
ESLC 51 50 VALUE={(V (5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*32),3.5))}
.MODEL DBODYMOD D (IS = 6.0e-13 RS = 11.0e-3 XTI = 4.5 TRS1 = 1.1e-3 TRS2 = 7.1e-6 CJO = 6.5e-10 TT = 4.1e-8 M = 0.54)
.MODEL DBREAKMOD D (RS = 5.6e- 1TRS1 = 8.0e- 4TRS2 = 3.0e-6)
.MODEL DPLCAPMOD D (CJO = 7.0e-1 0IS = 1e-3 0M = 0.89 N = 10)
.MODEL MMEDMOD NMOS (VTO = 3.10 KP = 3 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.45)
.MODEL MSTROMOD NMOS (VTO = 3.64 KP = 42 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKM OD NMOS (VTO = 2.68 KP = 0.02 IS = 1 e -30 N = 10 TOX = 1 L = 1u W = 1u RG = 24.5)
.MODEL RBR EAKMOD RES (TC1 = 1.05e- 3TC2 = -5.0e-7)
.MODEL RDRAINMOD RES (TC1 = 1.20e-2 TC2 = 3.00e-5)
.MODEL RSLCMOD RES (TC1 = 3.2e-3 TC2 = 1.0e-6)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -2.2e-3 TC2 = -9.0e-6)
.MODEL RVTEMPMOD RES (TC1 = -2.4e- 3TC2 = -1.8e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.9 VOFF= -3.1)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.1 VOFF= -5.9)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.6 VOFF= 0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -0.6)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Gl obal
Temperature Options ; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2001 Fairchild Semiconductor Corpo ration HUF75617D3 Rev. B
Page 8
HUF75617D3
SABER Electrical Model
REV 24 May 2000
template huf75617d3 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
dp..model dbodymod = (isl = 6.0e-13, rs = 11.0e-3, xti = 4.5, trs1 = 1.1e-3, trs2 = 7.1e-6, cjo = 6.5e-10, tt = 4.1e-8, m = 0.54)
dp..model dbreakmod = (rs = 5.6e-1, trs1 = 8.0e-4, trs2 = 3.0e-6)
dp..model dplcapmod = (c jo = 7.0e-10, isl = 10e-30, m = 0.89, nl = 10)
m..model mmedmod = (type=_n, vto = 3.10, kp = 3, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.64, kp = 42, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.68, kp = 0.02, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.9, voff = -3.1)
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3.1, voff = -5.9)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.6, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -0.6)
c.ca n12 n8 = 9.9e-10
c.cb n15 n14 = 1.0e-9
c.cin n6 n8 = 5.4e-10
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1.0e-9
l.lgate n1 n9 = 5.24e-9
l.lsource n3 n7 = 4.25e-9
GATE
LGATE
1
RLGATE
RGATE
9
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -5.0e-7
res.rdrain n50 n16 = 3.9e-2, tc1 = 1.20e-2, tc2 = 3.00e-5
12
res.rgate n9 n20 = 2.45
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 52.4
res.rlsource n3 n7 = 42.5
CA
res.rslc1 n5 n51 = 1e-6, tc1 = 3.2e-3, tc2 = 1.0e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 3.2e-2, tc1 = 1e-3, tc2 = 1e-6
res.rvtemp n18 n19 = 1, tc1 = -2.4e-3, tc2 = 1.8e-6
res.rvthres n22 n 8 = 1, tc1 = -2.2e-3, tc2 = -9.0 e-6
spe.ebreak n11 n7 n17 n18 = 117.8
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc =1
ESG
EVTEMP
+
18
22
20
S1A
13
S1B
EGS EDS
DPLCAP
10
RSLC2
6
8
EVTHRES
+
+
6
-
S2A
14
13
8
S2B
13
+
+
6
8
-
-
5
RSLC1
51
ISCL
MMED
DBREAK
11
MWEAK
EBREAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
50
RDRAIN
16
21
-
19
8
MSTRO
CIN
15
CB
8
14
+
5
8
-
+
-
17
18
7
RLSOURCE
RVTEMP
19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
VBAT
DRAIN
2
SOURCE
3
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/32))* * 3. 5))
}
}
©2001 Fairchild Semiconductor Corpo ration HUF75617D3 Rev. B
Page 9
SPICE Thermal Model
REV 24 May 2000
HUF75617D
CTHERM1 th 6 1.00e-3
CTHERM2 6 5 4.00e-3
CTHERM3 5 4 4.00e-3
CTHERM4 4 3 3.60e-3
CTHERM5 3 2 7.00e-3
CTHERM6 2 tl 5.00e-2
RTHERM1 th 6 1.59e-2
RTHERM2 6 5 3.96e-2
RTHERM3 5 4 1.12e-1
RTHERM4 4 3 4.27e-1
RTHERM5 3 2 6.45e-1
RTHERM6 2 tl 7.00e-1
SABER Thermal Model
SABER thermal model HUF75617D
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 1.00e-3
ctherm.ctherm2 6 5 = 4.00e-3
ctherm.ctherm3 5 4 = 4.00e-3
ctherm.ctherm4 4 3 = 3.60e-3
ctherm.ctherm5 3 2 = 7.00e-3
ctherm.ctherm6 2 tl = 5.00e-2
rtherm.rtherm1 th 6 = 1.59e-2
rtherm.rtherm2 6 5 = 3.96e-2
rtherm.rtherm3 5 4 = 1.12e-1
rtherm.rtherm4 4 3 = 4.27e-1
rtherm.rtherm5 3 2 = 6.45e-1
rtherm.rtherm6 2 tl = 7.00e-1
}
HUF75617D3
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
2
RTHERM6
tl
CASE
©2001 Fairchild Semiconductor Corpo ration HUF75617D3 Rev. B
CTHERM6
Page 10
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
Bottomless™
CoolFET™
CROSSVOLT ™
DenseTrench™
DOME™
EcoSPARK™
E2CMOS
EnSigna
TM
TM
FACT™
FACT Quiet Series™
STAR*POWER is used under license
FAST
FASTr™
FRFET™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
LittleFET™
MicroFET™
MicroPak™
MICROWIRE™
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER
SMART START™
STAR*POWER™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant into
the body, or (b) support or sustain life, or (c) whose
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Formative or
In Design
First Production
Full Production
2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. H4