Datasheet HUF75333P3 Datasheet (intersil)

Page 1
查询HUF75333G3供应商
HUF75333G3, HUF75333P3, HUF75333S3S
Data Sheet June 1999 File Number
66A, 55V, 0.016 Ohm. N-Channel UltraFET Power MOSFETs
This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching convertors, motor drivers, relay drivers, low­voltage bus switches, and power management in portable and battery-operated products.
Formerly developmental type TA75333.
Ordering Information
PART NUMBER PACKAGE BRAND
HUF75333G3 TO-247 75333G HUF75333P3 TO-220AB 75333P HUF75333S3S TO-263AB 75333S
NOTE: Whenordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUF75333S3ST.
Features
• 66A, 55V
• Simulation Models
®
- Temper ature Compensated PSPICE
and SABER
Models
- SPICE and SABER Thermal Impedance Models Available on the WEB at: www.Intersil.com/families/models.htm
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
D
G
S
4362.5
©
Packaging
DRAIN (TAB)
JEDEC STYLE TO-247 JEDEC TO-220AB
SOURCE
DRAIN
GATE
GATE SOURCE
JEDEC TO-263AB
(FLANGE)
DRAIN
(FLANGE)
DRAIN
SOURCE
DRAIN
GATE
103
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.
SABER is a Copyright of Analogy, Inc. http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
HUF75333G3, HUF75333P3, HUF75333S3S
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DSS
DGR
GS
55 V 55 V
±20 V
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
DM
AS
D
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
66
Figure 4
Figures 6, 14, 15
150
1
-55 to 175
300 260
A
W
W/oC
o
C
o
C
o
C
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BV Zero Gate Voltage Drain Current I
DSSID
DSS
= 250µA, VGS = 0V (Figure 11) 55 - - V VDS = 50V, VGS = 0V - - 1 µA VDS = 45V, VGS = 0V, TC = 150oC - - 250 µA
Gate to Source Leakage Current I
GSS
VGS = ±20V - - ±100 nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V Drain to Source On Resistance r
GS(TH)VGS
DS(ON)ID
= VDS, ID = 250µA (Figure 10) 2 - 4 V
= 66A, VGS = 10V (Figure 9) - 0.013 0.016
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R
θJC θJA
(Figure 3) - - 1 TO-247 - - 30 TO-220, TO-263 - - 62
o
C/W
o
C/W
o
C/W SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time t Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Turn-Off Time t
ON
OFF
VDD = 30V, ID≅ 66A, RL = 0.455, VGS= 10V, RGS = 6.8
r
f
- - 100 ns
-12- ns
-55- ns
-11- ns
-25- ns
- - 55 ns
GATE CHARGE SPECIFICATIONS
Total Gate Charge Q Gate Charge at 10V Q Threshold Gate Charge Q Gate to Source Gate Charge Q Reverse Transfer Capacitance Q
g(TOT)VGS
g(10)
g(TH)
gs gd
= 0V to 20V VDD = 30V, VGS = 0V to 10V - 40 50 nC VGS = 0V to 2V - 2.5 3.0 nC
ID≅ 66A, RL = 0.455 I
= 1.0mA
g(REF)
(Figure 13)
-7085nC
- 6.2 - nC
-16-nC
104
Page 3
HUF75333G3, HUF75333P3, HUF75333S3S
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
CAPACITANCE SPECIFICATIONS
Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V Reverse Recovery Time t Reverse Recovered Charge Q
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 150
TC, CASE TEMPERATURE (oC)
125 175
ISS
OSS
RSS
SD
rr
RR
VDS = 25V, VGS = 0V, f = 1MHz (Figure 12)
- 1300 - pF
- 480 - pF
- 115 - pF
ISD = 66A - - 1.25 V ISD = 66A, dISD/dt = 100A/µs--75ns ISD = 66A, dISD/dt = 100A/µs - - 140 nC
70
60
50
40
30
20
, DRAIN CURRENT (A)
D
I
10
0
50 75 100 125 150 17525
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PULSE
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
105
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
P
DM
t
1
NOTES: DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-2
10
-1
10
1/t2
x R
θJC
θJC
0
10
t
+ T
2
C
1
10
Page 4
HUF75333G3, HUF75333P3, HUF75333S3S
Typical Performance Curves
1000
VGS = 10V
, PEAK CURRENT (A)
100
I
DM
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
50
-5
10
500
100
-4
10
(Continued)
-3
10
t, PULSE WIDTH (s)
-2
10
FIGURE 4. PEAK CURRENT CAPABILITY
TJ = MAX RATED
T
= 25oC
C
TC = 25oC
-1
10
500
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R 0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
FOR TEMPERATURES ABOVE 25 CURRENT AS FOLLOWS:
I = I
o
C DERATE PEAK
25
0
10
- VDD)
DSS
175 - T
150
- VDD) +1]
DSS
C
1
10
100µs
10
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS AREA MAY BE LIMITED BY r
V
DSS(MAX)
1
1
V
DS
DS(ON)
= 55V
10 100
, DRAIN TO SOURCE VOLTAGE (V)
1ms
10ms
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
150
120
90
60
, DRAIN CURRENT (A)
D
I
30
0
1.5 3.0 4.5 6.0 7.50 VDS, DRAIN TO SOURCE VOLTAGE (V)
V
= 20V
GS
VGS = 10V
VGS = 7V VGS = 6V
VGS = 5V
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX T
= 25oC
C
200
100
, AVALANCHE CURRENT (A)
AS
I
10
0.001
STARTING TJ = 150oC
0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms)
STARTING TJ = 25oC
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
150
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
= 15V
V
DD
120
90
60
, DRAIN CURRENT (A)
D
I
30
0
1.5 3.0 4.5 6.0 7.50 V
, GATE TO SOURCE VOLTAGE (V)
GS
-55oC
25oC
175oC
FIGURE 7. SATURATION CHARACTERISTICS FIGURE 8. TRANSFER CHARACTERISTICS
106
Page 5
HUF75333G3, HUF75333P3, HUF75333S3S
Typical Performance Curves
2.5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 66A
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-40 0 40 80 120 160 200
-80 TJ, JUNCTION TEMPERATURE (oC)
(Continued)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2 ID = 250µA
1.1
1.0
1.2 VGS = VDS, ID = 250µA
1.0
0.8
NORMALIZED GATE
0.6
THRESHOLD VOLTAGE
0.4
-80 -40 0 40 80 120 160 200 T
, JUNCTION TEMPERATURE (oC)
J
FIGURE 10. NORMALIZED GATETHRESHOLD VOLTAGEvs
JUNCTION TEMPERATURE
2000
1500
1000
C
ISS
VGS= 0V, f = 1MHz
= CGS + C
C C C
ISS RSS OSS
= C
C
GD
DS
GD
+ C
GD
0.9
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.8
-40 0 40 80 120 160 200
-80 TJ, JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
, GATE TO SOURCE VOLTAGE (V)
GS
V
= 30V
V
DD
8
6
4
2
0
0
10 20 30 40
Q
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
C, CAPACITANCE (pF)
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
WAVEFORMS IN DESCENDING ORDER:
, GATE CHARGE (nC)
g
500
0
0
ID = 66A I
= 50A
D
I
= 33A
D
= 16A
I
D
C
OSS
C
RSS
10 20 30 40 50 60
VDS, DRAIN TO SOURCE VOLTAGE (V)
107
Page 6
HUF75333G3, HUF75333P3, HUF75333S3S
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01
0
t
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
V
I
G(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
VGS= 2V
0
I
g(REF)
0
V
GS
Q
g(TH)
Q
gs
t
P
I
AS
t
AV
Q
g(TOT)
V
DS
Q
g(10)
VGS = 10V
Q
gd
V
DS
V
DD
VGS= 20V
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM
V
DS
R
L
V
GS
+
V
DD
-
V
DS
0
DUT
R
GS
V
GS
V
GS
10%
0
t
d(ON)
90%
t
ON
50%
t
10%
r
PULSE WIDTH
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
108
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
Page 7
HUF75333G3, HUF75333P3, HUF75333S3S
PSPICE Electrical Model
.SUBCKT HUF75333 2 1 3 ; rev 02/24/99
CA 12 8 1.8e-9 CB 15 14 1.73e-9 CIN 6 8 1.19e-9
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 58.85 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1
ESG
EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
GATE
IT 8 17 1 LDRAIN 2 5 1e-9
LGATE
1
RLGATE
9
RGATE
EVTEMP +
18 22
20
LGATE 1 9 1e-9 LSOURCE 3 7 1e-9 K1 LSOURCE LGATE 0.0085
MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 4.50e-3 RGATE 9 20 1
CA
S1A
12
13
S1B
RLDRAIN 2 5 10 RLGATE 3 7 10 RLSOURCE 3 7 11
EGS EDS
RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 5.95e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*180),4))} .MODEL DBODYMOD D (IS = 1.3e-12 RS =0.003 TRS1 = 2.7e-3 TRS2 = 7e-7 CJO = 1.7e-9 TT = 40e-8 M = 0.45 IKF= 20 XTI= 6)
.MODEL DBREAKMOD D (RS = 0.1e-1 TRS1 = -4e-4 TRS2 = 1.55e-5 IKF= 1e-5) .MODEL DPLCAPMOD D (CJO = 1.8e-9 IS = 1e-30 N = 1 M = 0.9 vj= 1.45) .MODEL MMEDMOD NMOS (VTO = 3.183 KP = 2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1) .MODEL MSTROMOD NMOS (VTO = 3.66 KP = 51.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.703 KP = 0.008 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10 ) .MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = 4.5e-7) .MODEL RDRAINMOD RES (TC1 = 1.16e-2 TC2 = 1.7e-5) .MODEL RSLCMOD RES (TC1 = 3.96e-3 TC2 = 2.7e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-5) .MODEL RVTHRESMOD RES (TC = -2.8e-3 TC2 = -1.0e-6) .MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 0.5e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -8 VOFF= -3) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3 VOFF= -8) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0 VOFF= 0.5) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= 0)
.ENDS
DPLCAP
10
RSLC2
-
6 8
EVTHRES
+
+
6
-
S2A
14
8
13
S2B
13
+
+
6 8
-
-
5
RSLC1
51
+
5
ESLC
51
-
50 RDRAIN
16
21
-
19
8
MMED
MSTRO
CIN
15
CB
+
8
14
5 8
-
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
11
+
17 18
-
7
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
109
Page 8
HUF75333G3, HUF75333P3, HUF75333S3S
SABER Electrical Model
REV August 1997 template huf75333 n2, n1, n3
electrical n2, n1, n3 { var i iscl d..model dbodymod = (is = 1.3e-12, xti = 6, cjo = 1.7e-9, tt = 40e-8, n = 1, m = 0.45, vj=0.75) d..model dbreakmod = () d..model dplcapmod = (cjo = 1.8e-9, is = 1e-30, n = 1, m = 0.9, vj = 1.45, fc=0.5) m..model mmedmod = (type=_n, vto = 3.183, kp = 2, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.66, kp = 51.5, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.703, kp = 8e-3, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -8, voff = -3) sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3, voff = -8) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = .5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = .5, voff = 0)
c.ca n12 n8 = 1.8e-9 c.cb n15 n14 = 1.73e-9 c.cin n6 n8 = 1.19e-9
d.dbody n7 n71 = model=dbodymod
ESG
d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod
GATE
i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9
LGATE
1
RLGATE
RGATE
9
EVTEMP +
18 22
20
l.lgate n1 n9 = 1e-9 l.lsource n3 n7 = 1e-9
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u
res.rbreak n17 n18 = 1, tc1 = 1.07e-3, tc2 = 4.5e-7 res.rdbody n71 n5 = 3e-3, tc1 = 2.7e-3, tc2 = 7e-7 res.rdbreak n72 n5 = 1.1e-1, tc1 = -4e-4, tc2 = -1.55e-5 res.rdrain n50 n16 = 4.5e-3, tc1 = 1.16e-2, tc2 = 1.7e-5 res.rgate n9 n20 = 1 res.rldrain n2 n5 = 10
CA
S1A
12
13
S1B
EGS EDS
res.rlgate n1 n9 = 10 res.rlsource n3 n7 = 10 res.rslc1 n5 n51 = 1e-6, tc1 = 3.96e-3, tc2 = 2.7e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 5.95e-3, tc1 = 1e-3, tc2 = 1e-5 res.rvtemp n18 n19 = 1, tc1 = -2.75e-3, tc2 = 0.5e-6 res.rvthres n22 n8 = 1, tc1 = -2.8e-3, tc2 = -1e-6
spe.ebreak n11 n7 n17 n18 = 58.85 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc = 1 equations {
i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/180))** 4)) } }
DPLCAP
10
RSLC2
-
6 8
EVTHRES
+
+
19
8
6
-
S2A
14
8
13
S2B
13
+
+
6 8
-
-
CIN
15
CB
-
+
5 8
-
5
RSLC1
51
50 RDRAIN
21
MSTRO
14
ISCL
16
8
RDBREAK
MMED
8
72
DBREAK
11
MWEAK
EBREAK
+
17 18
-
RSOURCE
RBREAK
17 18
IT
RVTHRES
71
7
RLSOURCE
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
RDBODY
DBODY
LSOURCE
VBAT
DRAIN
2
SOURCE
3
110
Page 9
SPICE Thermal Model
REV January 1999
HUF75333
CTHERM1 th 6 4.9e-4 CTHERM2 6 5 4.5e-3 CTHERM3 5 4 6.0e-3 CTHERM4 4 3 8.5e-3 CTHERM5 3 2 1.0e-2 CTHERM6 2 tl 5.0e-2
RTHERM1 th 6 6.0e-4 RTHERM2 6 5 6.8e-3 RTHERM3 5 4 3.3e-2 RTHERM4 4 3 9.7e-2 RTHERM5 3 2 3.3e-1 RTHERM6 2 tl 3.6e-1
HUF75333G3, HUF75333P3, HUF75333S3S
JUNCTION
th
RTHERM1
6
RTHERM2
5
CTHERM1
CTHERM2
SABER Thermal Model
SABER thermal model HUF75333 template thermal_model th tl
thermal_c th, tl { ctherm.ctherm1 th 6 = 4.9e-4 ctherm.ctherm2 6 5 = 4.5e-3 ctherm.ctherm3 5 4 = 6.0e-3 ctherm.ctherm4 4 3 = 8.5e-3 ctherm.ctherm5 3 2 = 1.0e-2 ctherm.ctherm6 2 tl = 5.0e-2
rtherm.rtherm1 th 6 = 6.0e-4 rtherm.rtherm2 6 5 = 6.8e-3 rtherm.rtherm3 5 4 = 3.3e-2 rtherm.rtherm4 4 3 = 9.7e-2 rtherm.rtherm5 3 2 = 3.3e-1 rtherm.rtherm6 2 tl = 3.6e-1 }
RTHERM3
RTHERM4
RTHERM5
RTHERM6
CTHERM3
4
CTHERM4
3
CTHERM5
2
CTHERM6
CASE
tl
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
111
Loading...