Datasheet HUF75329D3, HUF75329D3S Datasheet (Fairchild Semiconductor)

Page 1
HUF75329D3, HUF75329D3S
Data Sheet December 2001
20A, 55V, 0.026 Ohm, N-Channel UltraFE T Power MOSFETs
These N-Channel pow er MOSFETs are manufactured using the innovat ive Ul traFET® pr ocess . This
advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outsta nding performance. This device is capable of withstanding hi gh energy in the ava lan che mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, low­voltage bus switches, and pow er management in portable and battery-operated products.
Formerly developmental type TA75329.
Ordering Information
PART NUMBER PACKAGE BRAND
HUF75329D3 TO-251AA 75329D HUF75329D3S TO-252AA 75329D
NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-252AA variant in tape and reel, e.g., HUF75329D3ST.
Features
• 20A, 55V
• Simulation Models
- T emp eratu re Com pensat ed PSPI CE® and SABER™ Models
- SPICE and SABER Thermal Impedance Models Available on the WEB at: www.fairchildsemi.com
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
D
G
S
Packaging
JEDEC TO-251AA JEDEC TO-252AA
DRAIN
(FLANGE)
Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
SOURCE
DRAIN
GATE
For severe environments, see our Automotive HUFA series.
GATE
SOURCE
DRAIN
(FLANGE)
©2001 Fairchild Semiconductor Corpo ration HUF75329D3, HUF75329D3S Rev. B
Page 2
HUF75329D3, HUF75329D3S
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (R
= 20k) (Note 1) . . . . . . . . . . . . . V
GS
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DSS
DGR
GS
55 V 55 V
±20 V
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . .T
, T
J
STG
D
DM
AS
D
20
Figure 4
Figure 6
128
0.86
-55 to 175
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “A bsolute Maximu m Rating s” may cause per manent d amage to t he device. This is a str ess on ly rating and operation o f the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
300 260
A
W
W/oC
o
C
o
C
o
C
NOTE:
1. T
= 25oC to 150oC.
J
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BV Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I
DSSID
DSS
GSS
= 250µA, VGS = 0V (Figure 11) 55 - - V VDS = 50V, VGS = 0V - - 1 µA V
= 45V, VGS = 0V, TC = 150oC--250µA
DS
VGS = ±20V - - ±100 nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage V Drain to Source On Resistance r
GS(TH)VGS
DS(ON)ID
= VDS, ID = 250µA (Figure 10) 2 - 4 V
= 20A, VGS = 10V (Figure 9) - 0.022 0.026
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R SWITCHING SPECIFICATIONS (V
GS
= 10V) Turn-On Time t Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Turn-Off Time t
θJC θJA
ON
r
f
OFF
(Figure 3) - - 1.17 TO-251, TO-252 - - 100
VDD = 30V, ID 20A, R
= 1.5Ω, VGS = 10V,
L
= 9.1
R
GS
- - 60 ns
-7-ns
-30- ns
-10- ns
-33- ns
- - 65 ns
o
C/W
o
C/W
GATE CHARGE SPECIFICATIONS
Total Gate Charge Q Gate Charge at 10V Q Threshold Gate Charge Q Gate to Source Gate Charge Q Reverse Transfer Capacitance Q
g(TOT)VGS
g(10)
g(TH)
gs
gd
= 0V to 20V VDD = 30V,
20A,
I
VGS = 0V to 10V - 32 40 nC VGS = 0V to 2V - 2.0 2.5 nC
D
R
= 1.5
L
I
g(REF)
= 1.0mA
(Figure 13)
-5065nC
-5-nC
-13-nC
©2001 Fairchild Semiconductor Corpo ration HUF75329D3, HUF75329D3S Rev. B
Page 3
5
5
HUF75329D3, HUF75329D3S
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
CAPACITANCE SPECIFICATIONS
Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V Reverse Recovery Time t Reverse Recovered Charge Q
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 150
TC, CASE TEMPERATURE (oC)
125 17
ISS
OSS
RSS
SD
rr
RR
VDS = 25V, VGS = 0V, f = 1MHz (Figure 12)
- 1060 - pF
- 405 - pF
-95-pF
ISD = 20A - - 1.25 V ISD = 20A, dISD/dt = 100A/µs--68ns ISD = 20A, dISD/dt = 100A/µs - - 120 nC
25
20
15
10
, DRAIN CURRENT (A)
D
I
5
0
25
50 75 100 125 150 17
TC, CASE TEMPERA TURE (oC)
FIGURE 1. NORMALIZED POWER DISSIP ATION vs CASE
TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
1
0.2
0.1
0.05
0.02
0.01
0.1
, NORMALIZED
θJC
Z
THERMAL IMPEDANCE
0.01
-5
10
SINGLE PULSE
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
P
DM
t
1
NOTES: DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-2
10
-1
10
1/t2
x R
θJC
0
10
t
θJC
2
+ T
C
1
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
©2001 Fairchild Semiconductor Corpo ration HUF75329D3, HUF75329D3S Rev. B
Page 4
0 0
5
5
HUF75329D3, HUF75329D3S
Typical Performance Curves
1000
VGS = 10V
100
, PEAK CURRENT (A)
DM
I
500
100
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
10
-5
10
-4
10
(Continued)
-3
10
t, PULSE WIDTH (s)
-2
10
FIGURE 4. PEAK CURRENT CAPABILITY
200
TJ = MAX RATED T
= 25oC
C
100
TC = 25oC
FOR TEMPERATURES ABOVE 25 CURRENT AS FOLLOWS:
I = I
-1
10
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R ≠ 0 t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
o
C DERATE PEAK
25
0
10
- VDD)
DSS
DSS
175 - T
150
- VDD) +1]
C
1
10
100µs
10
10
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS AREA MAY BE LIMITED BY r
V
DSS(MAX)
1
120
DS(ON)
= 55V
10 100
1ms
10ms
, AVALANCHE CURRENT (A)
AS
I
VDS, DRAIN TO SOURCE VOLTAGE (V)
STARTING TJ = 150oC
1
0.01
0.1 10 tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
100
80
60
40
, DRAIN CURRENT (A)
D
I
20
0
023
VDS, DRAIN TO SOURCE VOLTAGE (V)
V
= 20V
GS
VGS = 10V VGS = 8V VGS = 7V
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
= 25oC
T
C
41
VGS = 6V
VGS = 5V
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
100
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
80
60
40
, DRAIN CURRENT (A)
D
I
20
0
0 3.0 4.5 6.0 7.
1.5 VGS, GATE TO SOUR CE VOLTAGE (V)
STARTING TJ = 25oC
110
-55oC
175oC
V
25oC
DD
= 15V
FIGURE 7. SATURATION CHARACTERIS TICS FIGURE 8. TRANSFER CHARACTERISTICS
©2001 Fairchild Semiconductor Corpo ration HUF75329D3, HUF75329D3S Rev. B
Page 5
5
HUF75329D3, HUF75329D3S
Typical Performance Curves
2.5
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
= 10V, ID = 20A
V
GS
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-40 0 40 80 120 160 200
-80 TJ, JUNCTION TEMPERATURE (oC)
(Continued)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
1.2 ID = 250µA
1.1
1.2
1.0
0.8
NORMALIZED GATE
0.6
THRESHOLD VOLTAGE
0.4
-40 0 40 80 120 160 200
-80 TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
FIGURE 10. NORMALIZED GA TE T HRESHOLD V OLT A GE vs
JUNCTION TEMPERATURE
1500
1200
C
ISS
V
= 0V, f = 1MHz
GS
= CGS + C
C
ISS
C
= C
RSS
C
≈ CDS + C
OSS
GD
GD
GD
1.0
0.9
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.8
-40 0 40 80 120 160 200-80 T
, JUNCTION TEMPERATURE (oC)
J
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
8
6
4
2
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
0
510
Q
900
600
C, CAPACITANCE (pF)
300
0
0 1020304050
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
WAVEFORMS IN DESCENDING ORDER:
ID = 20A
= 12.5A
I
D
= 5A
VDD = 30V
15 20 3
, GATE CHARGE (nC)
g
I
D
25 30
C
OSS
C
RSS
, DRAIN TO SOURCE VOLTAGE (V)
V
DS
60
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
©2001 Fairchild Semiconductor Corpo ration HUF75329D3, HUF75329D3S Rev. B
Page 6
V
I
HUF75329D3, HUF75329D3S
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01
0
t
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
V
I
G(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
V
GS
0
g(REF)
0
V
GS
= 2V
Q
g(TH)
Q
gs
t
P
I
AS
t
AV
Q
g(TOT)
V
DS
Q
g(10)
VGS = 10V
Q
gd
V
DS
V
DD
V
= 20
GS
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM
V
DS
R
L
V
GS
+
V
DD
-
V
DS
0
DUT
R
GS
V
GS
V
GS
10%
0
t
d(ON)
90%
t
ON
50%
t
10%
r
PULSE WIDTH
t
d(OFF)
90%
t
OFF
50%
t
f
90%
10%
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
©2001 Fairchild Semiconductor Corpo ration HUF75329D3, HUF75329D3S Rev. B
Page 7
PSPICE Electrical Model
.SUBCKT HUF75329D 2 1 3 ; rev 6/19/97
CA 12 8 1.72e-9 CB 15 14 1.52e-9 CIN 6 8 9.61e-10
DBODY 7 5 DBODYMOD DBREAK 5 11 D B REAK MOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 58.13 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
GATE
IT 8 17 1 LDRAIN 2 5 1e-9
LGATE 1 9 2.86e-9 LSOURCE 3 7 2.69e-9
MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1e-3 RGATE 9 20 1.52 RLDRAIN 2 5 10 RLGATE 1 9 26.9 RLSOURCE 3 7 28.6 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 13.85e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTE MPMOD 1
LGATE
1
RLGATE
RGATE
9
CA
HUF75329D3, HUF75329D3S
-
ESG
+
EVTEMP +
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
6 8
13
10
RSLC2
6
14 13
+
+
6 8
-
-
DPLCAP
EVTHRES
+
S2A
S2B
5
RSLC1
51
+
5
ESLC
51
-
50
RDRAIN
16
21
-
19
8
MMED
MSTRO
CIN
15
CB
8
14
+
5 8
-
8
DBREAK
11
+
17
EBREAK
18
-
MWEAK
RSOURCE
RBREAK
17 18
IT
RVTHRES
7
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*135),3.5))} .MODEL DBODYMOD D (IS = 7. 50e-13 RS = 5.05e-3 TRS1 = 2.21e-3 TRS2 = 1.02e-6 CJO = 1.51e-9 TT = 4.05e-8 M = 0.5)
.MODEL DBREAKMOD D (RS = 2.14e- 1TRS1 = 9.62e- 4TRS2 = 1.23e-6) .MODEL DPLCAPMOD D (CJO = 13.5e-1 0IS = 1e-3 0N = 10 M = 0.85) .MODEL MMEDMOD NMOS (VTO = 3.25 KP = 2.50 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.52) .MODEL MSTROMOD NMOS (VTO = 3.80 KP = 70.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKM OD NMOS (VTO = 2 . 91 K P = 0.06 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 15.2 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.05e- 3TC2 = 1.94e-7) .MODEL RDRAINMOD RES (TC1 = 8.04e-2 TC2 = 1.37e-4) .MODEL RSLCMOD RES (TC1 = 4.83e-3 TC2 = 1.16e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -3.43e-3 TC2 = -1.63e-5) .MODEL RVTEMPMOD RES (TC1 = -1.35e- 3TC2 = 1.16e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.90 VOFF= -4.90) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.90 VOFF= -7.90) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -0.50 VOFF= 2.50) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.50 VOFF= -0.50)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Gl obal Temperature Options; IEEE Pow er Electronics Specialist Conference Records, 1991, w ritten by William J. Hepp and C. Frank Wheatley.
©2001 Fairchild Semiconductor Corpo ration HUF75329D3, HUF75329D3S Rev. B
Page 8
E
HUF75329D3, HUF75329D3S
SABER Electrical Model
REV June 1997 template huf75329d n2, n1, n3
electrical n2, n1, n3 { var i iscl d..model dbodymod = (is = 7.50e-13, cjo = 1.51e-9, tt = 4.05e-8, m = 0.5) d..model dbreakmod = () d..model dplcapmod = (cjo = 13. 5e-10, is = 1e-30, n = 10, m = 0.85) m..model mmedmod = (type=_n, vto = 3.25, kp = 2.50, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.80, kp = 70, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.91, kp = 0.06, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -7.90, voff = -4.90) sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -4.90, voff = -7.90) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.50, voff = 2.50) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 2.50, voff = -0.50)
c.ca n12 n8 = 1.72e-9 c.cb n15 n14 = 1.52e-9 c.cin n6 n8 = 9.61e-10
d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
GATE
LGATE
1
RLGATE
l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 2.86e-9 l.lsource n3 n7 = 2.69e-9 k.k1 i(l.lgate) i(l.lsource) = l(l.lgate), l(l.lsource), 0.0085
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = 1.94e-7 res.rdbody n71 n5 = 5.05e-3, tc1 = 2.21e-3, tc2 = 1.02e-6 res.rdbreak n72 n5 = 2.14e-1, tc1 = 9.62e-4, tc2 = 1.23e-6 res.rdrain n50 n16 = 1e-3, tc1 = 8.04e-2, tc2 = 1.37e-4 res.rgate n9 n20 = 1.52 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 26.9 res.rlsource n3 n7 = 28.6 res.rslc1 n5 n51 = 1e-6, tc1 = 4.83e-3, tc2 = 1.16e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 13.85e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.35e-3, tc2 = 1.16e-6 res.rvthres n22 n 8 = 1, tc1 = -3.43e-3, tc2 = -1.63e-5
spe.ebreak n11 n7 n17 n18 = 58.13 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1
RGATE
9
CA
ESG
EVTEMP +
20
S1A
12
S1B
DPLCAP
10
RSLC2
-
6 8
EVTHRES
+
+
6
-
18 22
S2A
14
13
13
8
S2B
13
+
+
6
EGS EDS
8
-
-
71
7
RLSOURCE
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
RDBODY
DBODY
LSOURCE
VBAT
5
RSLC1
51
ISCL
50 RDRAIN
16
21
-
19
8
MSTRO
CIN
15
CB
14
+
5 8
-
8
MMED
RDBREAK
72
DBREAK
11
MWEAK
EBREAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
+
17 18
-
DRAIN
2
SOURC
3
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc = 1 equations {
i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/135))** 3.5)) } }
©2001 Fairchild Semiconductor Corpo ration HUF75329D3, HUF75329D3S Rev. B
Page 9
HUF75329D3, HUF75329D3S
SPICE Thermal Model
REV 23 February 1999
HUF75329D
CTHERM1 th 6 2.80e-3 CTHERM2 6 5 1.00e-2 CTHERM3 5 4 6.80e-3 CTHERM4 4 3 7.00e-3 CTHERM5 3 2 1.60e-2 CTHERM6 2 tl 15.55
RTHERM1 th 6 7.94e-3 RTHERM2 6 5 1.98e-2 RTHERM3 5 4 5.57e-2 RTHERM4 4 3 3.13e-1 RTHERM5 3 2 4.71e-1 RTHERM6 2 tl 6.26e-2
SABER Thermal Model
SABER thermal model HUF75329D template thermal_model th tl
thermal_c th, tl { ctherm.ctherm1 th 6 = 2.80e-3 ctherm.ctherm2 6 5 = 1.00e-2 ctherm.ctherm3 5 4 = 6.80e-3 ctherm.ctherm4 4 3 = 7.00e-3 ctherm.ctherm5 3 2 = 1.60e-2 ctherm.ctherm6 2 tl = 15.55
rtherm.rtherm1 th 6 = 7.94e-3 rtherm.rtherm2 6 5 = 1.98e-2 rtherm.rtherm3 5 4 = 5.57e-2 rtherm.rtherm4 4 3 = 3.13e-1 rtherm.rtherm5 3 2 = 4.71e-1 rtherm.rtherm6 2 tl = 6.26e-2 }
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
RTHERM6
JUNCTION
th
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
2
CTHERM6
tl
CASE
©2001 Fairchild Semiconductor Corpo ration HUF75329D3, HUF75329D3S Rev. B
Page 10
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOS EnSigna
TM
TM
FACT™ FACT Quiet Series™
STAR*POWER is used under license
FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™
OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench
QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER
SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™
UltraFET
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
PRODUCT STATUS DEFINITIONS Definition of Terms
Datasheet Identification Product Status Definition
Advance Information
Preliminary
No Identification Needed
Formative or In Design
First Production
Full Production
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or
effectiveness.
This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. H4
Loading...