Datasheet 6n136, 6n135 Datasheet (Sharp)

Page 1
6N135/6N136
6N135/6N136
General Purpose Type Photocoupler
Features
1. High speed response t (6N135:MAX. 1.5µs at R (6N136:MAX. 0.8µs at R
2. High common mode rejection voltage (CMH:TYP. 1kV/µ
3. Standard dual-in-line package
4. Recognized by UL, file No. E64380
PHL
, t
PLH
=4.1k
L
=1.9k
L
)
s
) )
Applications
1. Computers, measuring instruments, control equipment
2. High speed line receivers, high speed logic
3. Telephone sets
4. Signal transmission between circuits of different potentials and impedances
Absolute Maximum Ratings (Ta=25˚C
Parameter Symbol Rating Unit
Forward current I
*1
Input
Peak forward current
Peak transient
*2
forward current
I
I
FM
Reverse voltage V Power dissipation P 45 mW Supply voltage V Output voltage V
Output
Emitter-base reverse with­stand voltage (Pin 5 to 7
Average output current Peak output current I Base current (Pin 7
)
)
V
EBO
I
OP
I
Power dissipation P
*3
Isolation voltage V Operating temperature
T
Storage temperature T
*4
Soldering temperature
*1 50% duty cycle, Pulse width:1ms Decreases at the rate of 1.6mA/˚C if the external temperature is 70˚C or more. *2 Pulse width<=1µs, 300 *3 40 to 60% RH, AC for 1 minute *4 For 10 seconds
P/S
T
F
F
R
-0.5 to+15
CC
-0.5 to+15
O
O
B
O
2 500
iso
-55 to+100
opr
-55 to+125
stg
so1
25 mA 50 mA
1A 5V
5V 8mA
16 mA
5mA
100 mW
260 ˚C
)
V V
V
rms
˚C ˚C
Outline Dimensions
Model
±0.3
0.85
6N
1
234
Primary side mark (
Sunken place
9.22
± 0.5
0.5TYP
3.5
± 0.5
3.7
* “OPIC” (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal­ processing circuit integrated onto a single chip.
0.5
±0.1
1.2 5678
)
±0.5
1 NC 2 Anode 3 Cathode 4 NC
±0.3
2.54
No.
± 0.5
6.5
0.8
±0.25
5 GND 6 V 7 V 8 V
(
Unit:mm
Internal connection diagram
1234
±0.3
7.62
θ=0 to 13˚
θ
±0.1
0.26
O B CC
)
5678
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
Page 2
6N135/6N136
Electro-optical Characteristics
Parameter Symbol Conditions MIN. TYP. MAX. Unit
*5
Current transfer
ratio
6N136 CTR(1 6N135 CTR(2 6N136 CTR(2
Logic (0) output voltage V
Logic (1) output current
Logic (0) supply current I
Logic (1) supply current
Input forward voltage V Input forward voltage temperature coefficient Input reverse voltage BV Input capacitance C
6N135 CTR(1
*6
Leak current (
input-output
*6
Isolation resistance (
input-output
*6
Capacitance (input-output
)
)
)
Transistor current amplification factor
*5 Current transfer ratio is the ratio of input current and output current expressed in % . *6 Measured as 2-pin element (Short 1, 2, 3, 4 *7 6N135 :IO= 1.1mA, 6N136 :IO= 2.4mA
)
Ta = 25˚C, IF= 16mA
)
V
O
) )
OL
(1)
I
OH
(2)
I
OH
(3)
I
OH
CCL
(1)
I
CCH
(2)
I
CCH
/ TaIF= 16mA - - 1.9 - mV/˚C
V
R
IN
I
I-O
R
I-O
C
I-O
h
FE
= 16mA, VO= 0.5V
I
V
CC
*7
IF= 16mA, VCC= 4.5V - 0.1 0.4 V
=25˚C, IF=0
T
a
V
CC=VO
=25˚C, IF=0
T
a
V
CC=VO
= 0, VCC=VO= 15V - - 50 A
I
IF= 16mA, VCC= 15V V
O
=25˚C, VCC= 15V
T
a
V
V
CC
V
O
Ta=25˚C, IF= 16mA - 1.7 1.95 V
Ta=25˚C, IR= 10 A 5.0 - - V VF= 0, f = 1MHz - 60 ­T
= 25˚C, 45 %RH, t = 5s
a
V
I-O
V
I-O
f = 1MHz - 0.6 ­VO= 5V, IO= 3mA - 70 -
)
(
Ta = 0 to + 70˚C unless otherwise specified
7.0 40 - %
= 0.4V, VCC= 4.5V
19 40 - %
5.0 43 - %
= 4.5V
= 5.5V
= 15V
= open
= open, IO=0
= 15V
= open, IF=0
15 43 - %
- 3.0 500 nA
- 0.01 1.0 A
- 200 - A
- 0.02 1.0 A
- - 2.0 A
µ
= 3kVDC
- - 1.0 A
= 500VDC - 10
Note) Typical volue : at Ta = 25˚C
)
µ µ µ
µ
µ
pF
µ
12
-
pF
Page 3
6N135/6N136
Switching Characteristics
*8 *9
*8 *9
*10,11
*10,11
*13
*8 R *10 Instantaneous common mode rejection voltage “ output (1)” represents a common
Parameter
Propagation delay time
Output (1)→(0
Propagation delay time
Output (0)→(1
Instantaneous common
mode rejection voltage
6N135 6N136
)
6N135 6N136
)
“ output (1)”
Instantaneous common
mode rejection voltage
“ output (0)”
Bandwidth
= 4.1k is equivalent to one LSTTL and 6.1kpull-up resistor. R =1.9k is equivalent to one TTL and 5.6k pull-up resistor.
L L
mode voltage variation that can hold the output above (1) level (V Instantaneous common mode rejection voltage “ output (0)” represents a common mode voltage variation that can hold the output above (0) level (V
*12 6N135 :RL= 4.1k 6N136 :RL= 1.9k
Symbol Conditions MIN. TYP. MAX. Unit
t
PHL
t
PHL
t
PLH
t
PLH
CM
CM
BW R
RL= 4.1k - 0.3 1.5 s RL= 1.9k - 0.3 0.8 s RL= 4.1k - 0.4 1.5 s RL= 1.9k - 0.3 0.8 s
*12
H
L
IF= 0, VCM= 10V
*12
VCM= 10V
= 100 - 2.0 - MHz
L
, IF= 16mA
P-P
> 2.0V).
O
< 0.8V).
O
(
Ta = 25˚C, VCC= 5V, IF=16mA
- - V/ s
P-P
1 000
- - V/ s
- 1 000
*13 Bandwidth represents a point where AC input goes down by 3dB.
*9 Test Circuit for Propagation Delay Time
Pulse Pulse input Duty ratio
= 1/10
IF monitor C
Generator
100
I
F
1 2 3 4
8
R
7 6 5
0.01µF
V
CC
V
O
= 15pF
I
F
0
V
O
1.5V 1.5V
t
PHL
t
)
µ µ µ µ
µ
µ
5V
PLH
*11 Test Circuit for Instantaneous Common Mode Rejection Voltage
B
V
FF
I
F
A
1 2 3 4
V
CM
+-
8 7 6
0.01µF
5
VCC= 5V
R
V
O
CM
CM
10V V
CM
0V
V
V
H O
I
IF= 16mA
90% 10%
10%
t
r
= 0
F
0.8V
90%
t
f
2V
5V
V
OL
Page 4
6N135/6N136
Fig. 1 Forward Current vs.
Ambient Temperature
30
25
) mA
(
20
15
10
Forward current I
5
0
Ambient temperature T
Fig. 3 Forward Current vs.
Forward Voltage
100
)
10
mA
(
1
Forward current I
0.1
0.01
1.0
1.2 1.4 1.6 1.8 2.0 2.2 Forward voltage V
Ta=0˚C
25˚C 50˚C
70˚C
Fig. 2 Power Dissipation vs.
Ambient Temperature
120
P
)
mW
(
100
O
80
O
60
45 40
Power dissipation P, P
20
0
(˚C)
1251007550250-55
a
-40P0 25 50 75 100 125 Ambient temperature T
70
(˚C)
a
Fig. 4 Relative Current Transfer Ratio vs.
Forward Current
150
)
%
(
100
50
Relative current transfer ratio
0
(V)
0.1
CTR = 100% at I
= 16mA
F
1 10 100
Forward current I
(mA)
V V
T
=5V
CC
= 0.4V
O
=25˚C
a
Fig. 5 Output Current vs. Output Voltage
20
V
=5V
CC
18
T
a
16
)
14
mA
(
O
12 10
8 6
Output current I
4
0
022
=25˚C
4 6 8 10 12 14 16 18 20
Output voltage V
Dotted line shows
pulse characteristics
I
= 25mA
F
20mA
15mA
10mA
5mA
(V)
O
Fig. 6 Relative Current Transfer Ratio vs.
Ambient Temperature
110
)
%
100
(
90
80
70
Relative current transfer ratio
60
-60 -40 -20
0 20 40 60 80 100
Ambient temperature T
CTR = 100 % at T
I
= 16mA
= 0.4V
V
O
V
=5V
CC
=25˚C
a
(˚C)
a
Page 5
6N135/6N136
Fig. 7 Propagation Delay Time vs.
Ambient Temperature
800 ) ns
(
PLH
600
, t
PHL
400
200 Propagation delay time t
6N135 (R
6N136 (RL= 1.9k
0
- 60 - 20 20 60 10080400-40 Ambient temperature T
= 4.1k
L
) )
t
PHL
t
PLH
a
I VCC=5V
(˚C)
Fig. 9 Frequency Response
0
-5
)
-10
dB
(
V
-15
-20
Voltage gain A
-25
-30
0.1 0.2 0.5 1 2 5 10
R
= 100
L
220 470
Frequency f (MHz
IF= 16mA
T
1k
)
= 16mA
F
=25˚C
a
Fig. 8 High Level Output Current vs.
Ambient Temperature
-5
10
) A
-6
(
10
OH
-7
10
-8
10
-9
10
High level output current I
-10
10
-11
10
- 60 - 40 - 20 0 20 100806040 Ambient temperature T
V
CC=VO
(˚C)
a
=5V
Test Circuit for Frequency Characteristic
5V
AC Input
1 2
20k
3 4
560
100
1.6V DC
0.25V AC
-
PP
8
R
7
6 5
15V
V
O
Precautions for Use
(1)
It is recommended that a by-pass capacitor of more than 0.01 F be added between V
GND near the device in order to stabilize power supply line.
(2)
Transistor of detector side in bipolar configuration is apt to be affected by static electricity for its minute design. When handling them, general counterplan against static electricity should be taken to avoid breakdown of devices or degradation of characteristics.
As for other general cautions, please refer to the chapter “ Precautions for Use ” .
(Page 78 to 93
)
µ
CC
and
Loading...