Carrier Fb4cnf036 Owner's Manual

4.4 (25)

FB4, FE4, FF1E, FH4, FV4, FX4, PF4, FFM

Residential Fan Coil Units

Service and Maintenance Instructions

NOTE: Read the entire instruction manual before starting the installation.

TABLE OF CONTENTS

PAGE SAFETY CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 FAN COIL DESCRIPTION AND TROUBLESHOOTING 2-19

FY5, FH4, PF4 (even sizes), and FF1E (even sizes),

. . . . . . 2

FB4C, FX4D, PF4 (odd sizes) and FF1E (odd sizes)

. . . . . . 5

FV4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 7

FE4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 13

FFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 18

ELECTRIC HEATER FUNCTION

 

AND TROUBLESHOOTING . . . . . . . . . . . . . . . . . . .

. . 22-23

FB4, FE4, FF1E, FH4, FV4, FX4, and PF4 . . . . . . .

. . . . . 22

FFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 23

CARE AND MAINTENANCE . . . . . . . . . . . . . . . . . . . . 23-25 FB4, FE4, FH4, FV4, FX4, and PF4 . . . . . . . . . . . . . . . . . 23 FF1E and FFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 REFRIGERANT FLOW-CONTROL DEVICE . . . . . . . 26-27 Thermostatic Expansion Valve (TXV) . . . . . . . . . . . . . . . . 26 Piston Body Cleaning and Replacement . . . . . . . . . . . . . . . 27 ALUMINUM COIL REPAIR . . . . . . . . . . . . . . . . . . . . . . . . 27

COIL & CONDENSATE PAN REMOVAL

and REPLACEMENT (FB4, FE4, FX4 and FV4) . . . . . . 28-29 PURON QUICK REFERENCE GUIDE . . . . . . . . . . . . . . . . 30

SAFETY CONSIDERATIONS

Improper installation, adjustment, alteration, service, maintenance, or use can cause explosion, fire, electrical shock, or other conditions which may cause death, personal injury or property damage. Consult a qualified installer, service agency, or your distributor or branch for information or assistance. The qualified installer or agency must use factory-authorized kits or accessories when modifying this product. Refer to the individual instructions packaged with kits or accessories when installing.

Follow all safety codes. Wear safety glasses, protective clothing and work gloves. Have a fire extinguisher available. Read these instructions thoroughly and follow all warnings or cautions included in literature and attached to the unit. Consult local building codes and the current editions of the National Electrical Code (NEC) NFPA 70.

In Canada, refer to the current editions of the Canadian Electrical Code CSA C22.1.

Recognize safety information. This is the safety-alert symbol . When you see this symbol on the unit and in instruction manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, and CAUTION. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies hazards which could result in personal injury or death. CAUTION is used to identify unsafe practices which may result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation.

!WARNING

UNIT OPERATION AND SAFERTY HAZARD

Failure to follow this warning could result in personal injury or death.

Puron (R-410A) systems operate at higher pressures than R-22 systems. Do not use R-22 service equipment or components on R-410 equipment. Ensure service equipment is rated for R-410.

INTRODUCTION

The “F” and “PF” series fan coil units are designed for flexibility in a variety of applications that meet upflow, horizontal, or downflow requirements. Units are available in 1-1/2 through 5 ton nominal cooling capacities. Factory-authorized, field-installed electric heater packages are available in 3 through 30 kilowatts.

!WARNING

ELECTRICAL OPERATION HAZARD

Failure to follow this warning could result in personal injury or death.

Before installing or servicing unit, always turn off all power to unit. There may be more than one disconnect switch. Turn off accessory heater power if applicable. Lock out and tag switch with a suitable warning label.

1

FAN COIL DESCRIPTION

AND TROUBLESHOOTING

FY5, FH4, PF4 (even sizes) and FF1E (even sizes),

FAN MOTOR

The motor is two or three speed direct drive. High-speed lead is black, low-speed lead is red, and common lead is yellow. Be sure proper blower speed has been selected..

The motor is turned on through two different routes. The first occurs when thermostat calls for the fan in cooling, heat pump, or fan-only mode. A 24-Vac signal is sent to relay, causing relay to close its normally open contacts, turning fan on.

The second occurs when there is a call for electric heat. A 24-Vac signal is sent to heater sequencer/relay, causing it to close, directing 230V through the normally closed contact of fan relay, turning fan on. The fan remains on until sequencer/relay opens.

If motor does run, test motor for an open winding or a winding shorted to motor case. If either is present, replace motor.

ELECTRIC HEATER SERVICE

Service can be completed with heater in place. Shut off power before servicing.

A. Limit Switch

Refer to Electric Heater Function and Troubleshooting section of this manual.

B. Sequencer

Refer to Electric Heater Function and Troubleshooting section of this manual.

C. Transformer

A 40-VA transformer supplies 24-V power for control circuit. Check for 208/230V on primary side of transformer. If present, check for 24V on secondary side.

NOTE: Transformer is fused. Do not short circuit.

D. Fan Relay

Relay coil is 24-V. Check for proper control voltage. Replace relay if faulty.

CLEANING OR REPLACING REFRIGERANT FLOW-CONTROL DEVICE

Refer to Fig. 22 and instructions given in “Piston Body Cleaning or Replacement” section.

The refrigerant flow-control device is protected by a wire mesh strainer. It is located inside the 3/8-in. liquid tube at field braze joint next to flow-control device. Access to strainer is through field braze joint.

SEQUENCE OF OPERATION

A. Condensing Unit

COOLING

When thermostat calls for cooling, the circuit between R and G is complete and single-pole single-throw relay FR is energized. The normally open contacts close causing blower to operate.

The circuit between R and Y is also complete. This completed circuit causes contactor in outdoor unit to close which starts compressor and outdoor fan.

HEATING

When thermostat calls for heating and FAN switch is set on AUTO, the circuit between R and W is complete. The heater sequence SEQ is energized which closes contacts of relay. There will be a time delay. This completed circuit energizes all heating elements HTR and blower motor.

B. Heat Pump

COOLING

On a call for cooling, the thermostat makes circuits R-O, R-Y, and R-G. Circuit R-O energizes reversing valve, switching it to cooling position. Circuit R-Y energizes contactor starting outdoor fan motor and compressor. Circuit R-G energizes indoor unit blower relay starting indoor blower motor.

When thermostat is satisfied, its contacts open de-energizing contactor reversing valve and blower relay. This stops compressor and fan motors.

HEATING

On a call for heating, the thermostat makes circuits R-Y and R-G. Circuit R-Y energizes contactor starting outdoor fan motor and compressor. Circuit R-G energizes indoor blower relay starting blower motor.

Should temperature continue to fall, R-W circuit is made through second-stage room thermostat bulb. Circuit R-W energizes a sequencer bringing on supplemental electric heat.

When thermostat is satisfied, its contacts open de-energizing contactor and sequencer. All heaters and motors should stop.

CES013003-00, 01 (HK61EA002, HK61EA006) CONTROL BOARDS

This section of the service manual describes the CESO130003-00 and -01 PCB by examining the functional operation of the PCB components.

Printed Circuit Board (PCB) Component

Layout of the actual PCB is depicted in Fig. 1 and Fig. 2.

1.The low-voltage stripped leads are used to connect the 24-V side of transformer to indoor thermostat and outdoor section.

2.A 5-amp fuse is used to protect the low-voltage transformer secondary.

3.The fan relay is controlled by thermostat and turns fan on and off.

4.A plug is used as the connection for PCB power and electric heaters. Note the pin numbers on plug.

5.A time-delay relay circuit keeps fan motor running for approximately 90 seconds after G is de-energized. The timedelay can be defeated by cutting jumper JW1 on the CES0130003-01, HK61EA002 and HK61EA006.

UNIT FUNCTIONS

A.Transformer

1.Proper Wiring of Transformer Primary or High Side Yellow wire from Molex plug is wired to C terminal on transformer and black wire from PCB relay (normallyopen) terminal is wired to 208-V or 230-V terminal on transformer. Units are factory wired at 230-V terminal.

2.Proper Wiring of Transformer Secondary or 24-V Side Red wire of transformer is wired to T terminal on PCB and brown wire of transformer is wired to C terminal on PCB.

NOTE: T terminal on PCB is used to protect the transformer. T terminal is connected through the fuse to R terminal on PCB.

B.Indoor Fan

1.Wiring

Indoor fan motor yellow lead is wired to C terminal on transformer. The red, blue, or black speed lead is wired to SPT terminal on fan relay part of PCB. Units are factory wired on medium speed (blue lead connected).

NOTE: Unused fan speed leads must be capped or taped off to prevent direct short to cabinet surface.

2.Functional Control

a.Thermostat and Relay Control

When thermostat calls for the fan in cooling, heat pump, heating, or fan-only mode, a 24-Vac signal is sent to relay. This causes the relay to close its normally-open contacts, turning on fan. When thermostat no longer calls for the fan,

2

the signal sent to relay is turned off and relay opens causing fan to turn off after a 90-second fan-off delay.

b.Sequencer/Electric Heat Relay Interlock

The fan will also operate whenever there is a call for electric heat, even if fan relay is not energized. This happens because fan is interlocked with first stage of electric heat through the normally-closed contact of fan relay.

NOTE: The fan interlock is only connected to first stage electric heat (W2). W3 and E do not contain an interlock with fan. See outdoor thermostat installation instructions when electric heat staging is desired.

C. Electric Heat

When thermostat calls for electric heat, a 24-Vac signal is sent to sequencer/heat relay through W2, causing first stage to turn on. W3 and E also receive signal if wired in with W2. If W3 and E are not wired to W2, the sequencers/heat relays can be controlled individually to stage additional electric heat. The sequence control is described in the following section:

1.W2

When thermostat sends a signal to W2, a 24-Vac signal is applied across sequencer/relay No. 1, causing it to close. When sequencer/relay No. 1 closes, first stage of electric heat is energized. In straight electric heat, fan is also energized through the normally closed contacts of fan relay. In cooling, heat pump, or manual fan mode, fan will already be running since fan relay would have been energized. When thermostat stops calling for electric heat, the 24-Vac signal to sequencer/relay No. 1 turns off and sequencer opens after a delay of 60 to 90 seconds. Heaters equipped with relays will be de-energized immediately. When sequencer/relay opens, first stage of heat turns off along with fan, providing thermostat is not calling for the fan.

2.W3

When a signal is sent to W3, a 24-Vac signal to sequencer/ relay No. 2 causes it to close, with second stage of electric heat turning on. The 24-Vac signal applied to sequencer/relay No. 1 causes fan to operate. Timing is such that sequencer/relay No. 1 will turn on before sequencer/relay No. 2. When signal to W3 is turned off, sequencer/relay No. 2 opens. If W2 is also satisfied, first stage of electric heat and fan will also turn off, providing thermostat is not calling for the fan.

3.E

When thermostat sends a signal to E, a 24-Vac signal is sent to sequencer/relay No. 3. The 24-Vac signal applied to sequencer/relay No. 3 turns on third stage of electric heat. The 24-Vac signal applied to sequencer/relay No. 1 turns on first stage of electric heat and fan. When thermostat stops calling for electric heat, the signal to sequencers/relays 1, 2, and 3 are turned off, and sequencers/relays open. This causes electric heat to turn off with fan, providing thermostat is not calling for the fan.

NOTE: Electric heaters are factory wired with all stages tied together. If independent staging is desired, consult outdoor thermostat installation instructions, or corporate thermostat instructions.

TROUBLESHOOTING THE PRINTED CIRCUIT BOARD (CES013000-00, 01 / HK61EA002 / HK61EA006)

Use wiring schematics shown in Fig. 1, and Fig. 2 as a guide in troubleshooting PCB unless otherwise noted.

A. If Fan Will Not Turn On from Thermostat:

IF THERE IS NO HIGH VOLTAGE TO TRANSFORMER:

1.Check plug/receptacle connection. This supplies power from heaters to PCB Fan Relay. Be sure plug is connected properly.

2.Check sequencer/relay No. 1 and plug wiring. Yellow wire should be connected to Pin No. 9 of plug and to limit switch. Black wire should be connected to Pin No. 7 of plug and to sequencer/relay No. 1.

3.Check field power leads L1 and L2. If these are not receiving power, system cannot function.

IF TRANSFORMER HAS HIGH VOLTAGE APPLIED TO IT:

1.Check low-voltage transformer leads R (red) and C (brown). Be sure they are wired to correct locations.

2.Check output voltage of transformer secondary side R (red) and C (brown). Be sure transformer output is between 18Vac and 30Vac. If transformer output is incorrect and transformer is receiving correct input voltage (208V or 230V), then transformer needs to be replaced with recommended transformer. If no problem exists with transformer secondary, proceed to items 3 and 4.

3.Check low-voltage fuse shown in Fig. 1 or Fig. 2. If fuse is blown, replace it with an identical 5-amp fuse. The transformer cannot supply power to board with fuse blown or loose. If fuse blows when unit has power applied to it, the system most likely has one of the following problems:

a.Check all 24-V wiring for an electrical short.

b.The maximum load on transformer is 40 VA. If load on transformer is excessive, the low-voltage 5-amp fuse will blow to protect transformer. If load exceeds VA rating of transformer, a larger VA rated transformer needs to be installed. Check sequencers/relays for excessive current draw.

c.Check wiring of heaters. If a heater is miswired, fuse may blow. If a heater is miswired, correct miswiring by comparing it to heater wiring label.

4.Check connections on primary side of transformer. If they are not connected properly, the transformer secondary cannot supply the 24-V signal to energize fan relay. If transformer is receiving correct primary voltage but is not putting out correct secondary voltage, transformer needs to be replaced.

B.If Electric Heat Stages Will Not Turn On But Fan Will Turn On:

IF THERE IS NO HIGH VOLTAGE TO TRANSFORMER:

1.Check plug connection between heaters and board. This supplies power to transformer and fan. Be sure plug is connected properly.

2.Check sequencer/relay No. 1 and plug wiring. Yellow wire should be connected to Pin No. 9 of plug and to limit switch. Black wire should be connected to Pin No. 7 of plug and to sequencer/relay No. 1.

3.Check incoming high-voltage power leads. If these are not receiving power, system cannot function.

IF TRANSFORMER HAS VOLTAGE APPLIED TO IT:

1.Check low-voltage transformer leads R (red) and C (brown). Make sure they are wired to correct location. The unit will not function without proper connections.

2.Check output voltage of transformer secondary side R (red) and C (brown). If transformer output is low (less than 18Vac), refer to items 3 and 4 of previous “If Transformer Has High Voltage Applied To It” section.

IF TRACES ARE OVERHEATED ON BACK OF PCB:

Usually whenever a trace is blown on PCB, it means either there has been a high-voltage short or high voltage has been applied to low-voltage circuit. This can be prevented by making sure PCB is wired correctly before PCB has power applied to it.

C. If Transformer Fuse Keeps Blowing:

When low-voltage fuse blows, it means transformer would have blown if fuse had not been in circuit to protect it. The fuse usually

3

blows when there is a high current draw on transformer, high voltage applied to low-voltage circuit, or a direct secondary short. When there is a high current draw on transformer, it is most likely because transformer has been shorted or system is trying to draw more VA than transformer rating allows. When fuse blows because of high voltage, the system has mixed highand low-voltage signals.

1.Check wiring of sequencers/relays as shown in Fig. 1 and Fig. 2. Be sure transformer is not shorting out because thermostat wires are miswired.

2.Check wiring of relays as shown in Fig. 1 And Fig. 2. Be sure low-voltage and high-voltage wiring is correct.

3.Check VA draw on transformer. If VA draw is more than VA rating of transformer, fuse will blow. If this is the case,

replace transformer with one that has a higher VA rating and meets system specifications.

D.If Fan Runs Continuously:

1.If PCB has no low-voltage power, check blue and black fan leads. These may be switched at sequencer/relay.

2.If PCB has low-voltage power, check fan relay to see if it is opening and closing. It may be stuck in the normally closed position due to debris in relay.

E.Transformer Failure:

Check 208-V and 230-V transformer connections. They may be miswired.

161

 

C8

-01

 

 

 

 

 

 

 

 

 

C7

R7

CESO130003

 

T

CT

 

 

 

 

 

 

-

 

 

 

 

 

 

 

 

 

 

 

 

1005

 

 

 

 

C

 

 

 

LOW

 

 

 

 

 

R10

 

 

 

 

 

VOLTAGE

PCB BLOCK WIRING

 

 

R9

 

 

 

 

 

 

FUSE

 

 

 

 

 

GR

AMP5

 

 

 

 

R2

 

U1

C4

 

G

JW1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R3

 

 

 

 

 

 

 

NO

NC

 

TIME

 

 

 

 

 

 

 

 

 

C3

 

 

 

 

 

 

 

 

 

 

 

 

C6

 

 

R

 

 

 

 

 

 

DELAY

R6

 

 

® HSCI

 

 

 

 

SPT

 

 

 

 

 

F1

 

 

 

 

R11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z1

 

®

K1

 

 

 

SPT

FAN RELAY

 

 

 

 

1005E-CPC-83161A- 0-94V

 

 

 

 

 

 

 

 

R1

R8

C5

 

 

 

 

NC

 

 

 

 

 

C2

C1

R5

 

 

 

 

NO

 

 

 

 

 

 

 

R4

 

 

 

 

 

 

 

 

 

 

D2

 

 

Q1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FUSE

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D1

 

 

 

 

 

 

 

 

 

 

 

 

 

LR40061

 

 

 

 

 

 

G

R

T

C

 

 

 

 

 

 

 

 

 

 

 

FAN RELAY

A97020

Fig. 1 - Fan Coil Printed Circuit Board (CES013003-00, 01 / HK61EA002)

 

 

C8

 

 

 

R10

 

 

 

R9

 

C7

R7

 

 

R2

 

U1

C4

 

 

 

 

 

R3

 

 

 

C3

 

C6

 

R6

 

 

 

 

 

R11

 

 

 

Z1

 

C5

 

R1

R8

 

 

 

C2

C1

R5

 

 

 

R4

 

Q1

CPC-E 94V-0

D2

 

 

 

®

 

 

 

 

 

 

 

D1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LR40061

C

 

 

C

 

 

C

AMP5

JW1

R

T

 

 

G

 

 

® HSCI

F1

 

 

FAN RELAY

 

NC

K1

NO

 

 

 

 

SPT

 

A03010

Fig. 2 - Fan Coil Printed Circuit Board (HK61EA006)

4

312753

60TX11D-O-T

HH19ZA945

C9725

55F-L145

312753

60TX11D-O-T

HH19ZA945

C9725

55F-L145

 

 

WARNING

 

 

 

 

 

 

 

 

 

 

 

 

ELECTRIC SHOCK

 

 

 

 

 

 

 

 

 

 

 

 

HAZARD

 

 

 

 

 

 

 

 

 

 

 

 

DISCONNECT

 

 

 

 

 

 

 

 

 

 

 

 

REMOTE POWER

 

 

 

 

 

 

 

 

 

 

 

 

SUPPLY BEFORE

 

 

 

 

 

 

 

 

 

 

 

 

OPENING PANEL.

 

 

 

 

 

 

 

 

 

 

NO

5

PULL TO OPEN

 

 

 

 

 

 

 

 

 

SPT

NC

 

 

 

 

 

 

 

 

 

 

 

 

FAN

 

 

 

 

 

 

 

 

 

 

 

 

RELAY

 

 

 

 

 

 

 

 

 

 

 

 

 

322861-101 REV. A

FF1E CONTROL BOX

A13032

Fig. 3 - Electric Heater Control Box

FB4C, FX4D, PF4 (odd sizes) and FF1E (odd sizes)

FAN MOTOR

The multi-speed ECM motor used with this product contains two parts: the control module and the motor winding section. Do not assume the motor or module is defective if it will not start. Go through the steps described below before replacing control module or entire motor. The control module is available as a replacement part.

A.It is normal for the motor to rock back and forth on startup. Do not replace the motor if this is the only problem identified.

B.If the motor is not running:

1.Check for proper high voltage and ground at the L,G, and N connections at the motor. Correct any voltage issue before proceeding to the next step.

2.The motor is communicated through 24-Vac signals to the 1,2,3,4,5 and C (common) terminals. Not all taps are programmed, if low voltage is applied to an non-programmed terminal, the motor will not operate, which is normal. Verify the part number of the motor matches the correct replacement motor part number for the unit model number.

3.Initiate a demand from the thermostat and check the voltage between C (common) and terminal 1- 5. If voltage is present and the motor isn’t operating, then the motor/control module is failed.

C.Prior to installing the replacement control module, the motor section condition needs to be verified.

1.Check to see if the blower wheel spins freely.

2.To check for short to ground, use an ohmmeter to measure the resistance from any one of the motor connector pins to the aluminum end plate of the motor. This resistance should be greater than 100,000 ohms.

3.Check the motor phase-to-phase resistance between each of the leads in the three-pin motor connector. The lead-to- lead resistance across any two leads should be less than 20 ohms. Each lead-to-lead resistance should be the same within -/+ 10 percent.

4.If any motor fails any of the three tests, do not install a new control module. The new control can fail if placed on a defective motor.

The prior fan coil models with multi-speed ECM blower motors used a printed circuit board, similar to the PSC models. The current fan coils do not use the printed circuit board and rely on the motor control programming to provide the off-delay timing.

Another design aspect of the control board was to provide a resistor in the “G” circuit in case a power stealing thermostat was used. This resistor is no part of the wiring harness, as shown on wiring diagram. The resistor is a 2-watt, 1500-ohm resistor.

If the resistor has failed open, a likely cause is due to the power stealing thermostat. Connecting C (common) may resolve the issue. Having an open resistor should not affect the operation of the motor.

Fan Speed Selection

The fan speed selection is done at the motor connector. Units with or without electric heaters require a minimum CFM. Refer to the unit wiring label to ensure that the fan speed selected is not lower than the minimum fan speed indicated.

To change motor speeds disconnect the BLUE fan lead from motor connector terminal No. 2 (factory default position) and move to desired speed-tap; 1, 2, 3, or 5.

Speed-taps 1, 2, and 3 have a 90-second blower off time delay pre-programmed into the motor. Speed-tap 4 is used for electric heat only (with 0 second blower time delay) and the WHITE wire should remain on tap 4. Speed-tap 5 is used for high static applications, but has a 0-second blower time delay pre-programmed into the motor. See Airflow Performance tables for actual CFM. Also, see Fig. 4 for motor speed selection location.

NOTE: In low static applications, lower motor speed tap should be used to reduce possibility of water being blown off coil.

Tap 1

Low

90 sec off delay

Tap 2

Medium

90 sec off delay

 

High

 

Tap 3

90 sec off delay

 

Electric heat †

 

Tap 4

0 sec off delay

 

Max ‡

 

Tap 5

0 sec off delay

† electric heat airflow is same CFM as Tap 3, except 0 sec off delay

‡ high static applications, see airflow tables for max airflow

5

Carrier Fb4cnf036 Owner's Manual

LABEL

1 2 3 4 5

LATEEPMNA

Speed Taps may be located on motor, or on plug close to motor.

1 2 3 4 5

N G L C

A11048

 

 

 

 

A13028

Fig. 4 - Motor Speed Selection for FB4C, FX4D & PF4 (odd

Fig. 5 - FV4 motor/ECM5.0 Motor

sizes)

 

 

 

 

 

OPTIONAL SAFETY GROUND

 

 

 

 

 

DRAIN HOLE

 

 

 

 

 

 

1

2

3

4

5

 

POWER CONNECTOR

DRAIN HOLE

OPTIONAL SAFETY GROUND

CONTROL

POWER

9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

CONTROL CONNECTOR

ENDSHIELD

DRAIN HOLE

A98201

Fig. 6 - FV4 motor/ECM2.3 Motor

6

FV4

Constant Air Flow

Unlike fan coils using induction motors where static pressure affects airflow, these fan coils are constant airflow units. The blower delivers requested airflow regardless of static pressure. Consult fan coil Product Data for static pressure limits. The ECM2.3/5.0 is pre-programmed and contains airflow tables for all modes of operation. Blower characteristics (requested airflow, torque, and speed) are known from laboratory testing If any two characteristics are known, the third is defined.

Requested airflow is known from Easy Select board configuration and thermostat signals. Torque is known because it is directly related to stator current, which is measured by motor control. Speed is measured by counting back EMF pulses from stator windings. This information is entered into an expression that calculates torque from speed and airflow numbers. If calculation does not match stored blower characteristics, torque is adjusted until agreement is reached. This calculation and adjustment is performed every 0.8 seconds while motor is in operation. There is no direct measure of static pressure, but unit does react to a change in static to maintain constant airflow. A change in pressure will result in a change in stator speed and torque. The motor will begin to adjust on the next sampling, calculate new desired speed and torque, and adjust as necessary.

INTEGRATED CONTROLS AND MOTOR ECM2.3/5.0

An ECM2.3/5.0 is fed high voltage AC power through the 5-pin connector. (See Fig. 6 or Fig. 5.) The AC power is then internally rectified to DC by a diode module. After rectification, DC signal is electronically communicated and fed in sequential order to three stator windings. The frequency of these commutation pulses determines motor speed. The rotor is permanently magnetized.

An ECM2.3/5.0 is powered with high voltage at all times. The motor will not run with high voltage alone. Low voltage must be applied to control plug to run motor.

ECM2.3/5.0 Control Power

The ECM2.3/5.0 control power is supplied from R circuit through printed circuit runs to motor control Connector-Pin 8, through motor control harness to motor. The C side of low-voltage control power circuit is connected by printed circuit runs to motor Connector -Pins 9, 10, and 11 then through motor control harness to motor.

Low-Voltage Circuit Fusing and Reference

The low-voltage circuit is fused by a board-mounted 5-amp automotive-type fuse placed in series with transformer SEC2 and R circuit. The C circuit of transformer is referenced to chassis ground through a printed circuit run at SEC1 connected to metal standoff marked.

NOTE: The PCB must be mounted with two screws and motor ground lead secured to blower housing or erratic motor operation can result.

Transformer, Motor, and Electric Heater Power Connection

Transformer high voltage supplied from electric heater package or high voltage leads through 12-pin heater connector plug/recp2. The ECM2.3/5.0 power connections are made at the transformer primary terminals. The transformer secondary connections are made at SEC1 and SEC2 connectors.

PCB LAYOUT AND DESCRIPTION (FV4)

NOTE: Layout of actual PCB is depicted in Fig.7.

The Easy Select Board is the interface between the ECM motor and other system components. The board offers choices of electric

heater size, outdoor unit size and type, comfort or efficiency settings, on and off delay profiles, and continuous fan speed. The installer should select the correct size of components that are being installed in each installation. If no selections are made, the factory default settings are for the largest heater, largest outdoor unit, AC system type, nominal airflow adjust, and 0/90 time delay.

NOTE: Outdoor unit model should have an AHRI rating with the variable speed fan coil. Some outdoor unit models will not work properly with this fan coil.

Power for system is supplied from a 230-Vac, 60-Hz line. Class 2 voltage (24 Vac nom.), used for thermostat connections, is derived from transformer located in close proximity to PCB. The 24-Vac secondary circuit includes 5-amp automotive-type fuse in SEC2 circuit.

Connection to heater panel is made through 12-pin connector PL-1. Connections to thermostat are made at screw terminals. Twenty-one pin terminals comprise field select taps for motor.

Fuse Data: 5-amp automotive-type ATC/ATO (tan) 32V

200 percent current opening time of five seconds maximum

Electrical Connections

Twenty-one 0.110-in pin terminals are used to provide programming selections for operating modes of ECM2.3/5.0. The 6 selection modes are listed below. For additional information, refer to Easy Select Configuration Taps section.

AUX Heat Range—(Violet Wire)

AC/HP Size—(Blue Wire) Type—(Orange Wire) AC/HP CFM Adjust—(Black Wire)

AC/HP Time Delay—(Grey Wire)

Continuous Fan—(Yellow Wire)

SEQUENCE OF OPERATION (FV4) A. Continuous Fan Mode

The thermostat closes circuit R to G. The unit delivers the airflow selected for fan only operation.

B. Cooling Mode—Single Speed or Two-Speed High

Thermostat closes circuits R to G, R to Y/Y2 and R to O (heat pump only). A circuit R to Y1 is required for two-speed high operation. Airflow delivered the airflow selected by AC/HP SIZE selection and CFM ADJUST selection.

C. Cooling Mode—Two-Speed Low

Thermostat closes R to G and R to Y1 and R to O (heat pump only). Unit delivers two-speed low airflow for AC/HP SIZE and CFM ADJUST selected.

D.Cooling + Dehumidify Mode (Thermidistat or Comfort Zone II-B and Single-Speed Outdoor Unit Installed)

J1 jumper must be pulled from Easy Select Board. Control closes R to G, R to Y/Y2, and R to O (heat pump only) and open R to DH. Dehumidification is active when 24Vac is removed from DH terminal. Unit delivers 20 percent less airflow.

E. SuperDehumidify Mode

(Thermidisat or Comfort Zone II-B indoor control, Single-Speed Outdoor Unit)

This mode is only activated by the indoor control when COOL to DEHUMIDIFY and SUPERDEHUMIDIFY are configured at the control and there is a call for dehumidfication without a call for cooling. The control closes R to Y/Y2, R to O (heat pump only) and opens R to DH and R to G. This signals the fan coil to run at minimum airflow for maximum humidity removal. The control will cycle the equipment 10 minutes on and 10 minutes off until satisfied.

7

Table 1 – Motor and Modules

Model Size

Motor Type

Current Blower Motor P/N

Required Control Module

Replacement Kit Number

 

 

 

 

 

 

 

FV4B_002

ECM2.3

HD44AE131

RMOD44AE131

FV4B_003

ECM2.3

HD44AE132

RMOD44AE132

FV4B_005

ECM2.3

HD44AE133

RMOD44AE133

FV4B_006

ECM2.3

HD46AE244

RMOD46AE244

FV4C_002 (Series A)

ECM2.3

HD44AR131

RMOD44AR131

FV4C_003 (Series A)

ECM2.3

HD44AR132

RMOD44AR132

FV4C_005 (Series A)

ECM2.3

HD44AR133

RMOD44AR133

FV4C_006 (Series A)

ECM2.3

HD46AR244

RMOD46AR244

FV4C_002 (Series B)

ECM5.0

HD44AR120

HK44ER120

FV4C_003 (Series B)

ECM5.0

HD44AR121

HK44ER121

FV4C_005 (Series B)

ECM5.0

HD44AR122

HK44ER122

FV4C_006 (Series B)

ECM5.0

HD46AR223

HK46ER223

®

 

 

 

5 AMP.

STI

YYWWX

 

 

SEC1

SEC2

 

 

 

 

 

 

 

 

 

 

 

 

 

MAX.

J1

 

 

DH

®

 

 

 

 

 

 

 

 

EASY SELECT

 

 

 

 

 

 

 

 

 

AUX/HEAT KW/CFM

 

5

 

 

 

 

R

 

 

 

 

 

 

 

0-30 0-20 0-10

0-5

 

 

F1

 

 

 

 

 

1075

875

725

625

 

 

J2

 

 

W1

VIO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AC/HP SIZE

 

 

 

 

 

 

 

W2

036

030

024

018

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BLU

 

 

 

 

 

 

 

 

 

Y1

 

SYSTEM TYPE

 

 

D4

 

 

 

 

 

 

AC

HP-COMFORT HP-EFF

 

 

 

 

Y/Y2

 

 

 

 

 

ORN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AC/HP CFM ADJUST

 

D5

R1

R2

 

 

 

G

NOM

LO

 

HI

 

 

 

 

BLK

 

 

 

 

 

D3

D1

 

 

 

O

 

ON/OFF DELAY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

30

0

ENH

 

 

 

 

 

 

 

C

90

90

0

 

 

D2

 

 

 

 

 

WHT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTINUOUS FAN

 

 

 

AUX1

HUM1

HK61EA006

LO

MED

HI

YEL

 

 

 

 

 

 

 

YEL

 

 

 

 

 

 

AUX2

HUM2

 

 

 

 

 

 

 

 

 

PL1

 

 

 

 

 

 

 

24VAC

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HEATER/MOTOR

 

 

 

GRY

 

 

 

A13029

Fig. 7 - Easy Select Board

AUX1 1/4"

HUM1 1/4"

AUX2 1/4"

HUM2 1/4"

GRY 1/4"

SYSTEM DIAGRAM

HEATER/MOTOR

SEC1

SEC2

 

 

1

1

 

12 11 10 9 8 7 6 5 4 3 2 1

"4/

"4/

 

 

 

5 AMP

DH

 

 

J1

 

 

 

 

 

 

R

 

 

 

W1

 

 

 

J2

 

 

 

W2

 

 

 

Y1

 

 

 

Y/Y2

DIODE

 

 

G

LOGIC

 

 

 

 

 

 

 

 

O

 

 

 

C

AUX HEAT

AC/HP

SYSTEM AC/HP CFM

ON/OFF

CONTINUOUS

KW/CFM

SIZE

TYPE

ADJUST

DELAY

FAN

A96431

Fig. 8 - Easy Select Board Schematic

8

Table 2 – Connections and Connectors (FK4C)

Type Connection

Type Connector

Pin No.

Description

 

 

Pin 1

Common to screw terminal G

 

 

Pin 2

Common to screw terminal Y/Y2 through diode D3

 

 

Pin 3

Common through Y1 through diode D2

 

 

Pin 4

Common to W2 screw terminal

 

 

Pin 5

Common to W2 screw terminal

Heater Connection

12-Pin

Pin 6

Common to W1 screw terminal

Pin 7

Common to W1 screw terminal

 

 

 

 

Pin 8

R 24Vac

 

 

Pin 9

Common to transformer C

 

 

Pin 10

Common to transformer C

 

 

Pin 11

Common to transformer C

 

 

Pin 12

Common to DH screw terminal

Table 3 – Typical Operating Modes

Operating Mode

Terminals Energized

Heat Pump Only Heating

R, Y/Y2, G, DH

Heat Pump Only Heating + Super Comfort Heat Mode

R, Y/Y2, DH

Heat Pump Heating + Auxiliary Heat (non-staged)

R, Y/Y2, G, DH, W2

Cooling

R, Y/Y2, G, DH, O

Cooling + Dehumidification

R, Y/Y2, G, O

Cooling + Superhumidification

R, Y/Y2, O

F.Heat Pump Heating Mode — Single Speed or Two-Speed High

Thermostat closes R to Y/Y2 and R to G. A circuit R to Y1 is required for two-speed high operation. The unit delivers airflow selected by AC/HP SIZE selection and CFM ADJUST selection. Selected delay profile is active in this mode.

G. Heat Pump Heating Mode — 2-Speed Low

Thermostat closes R to G and R to Y1. Unit delivers two-speed low airflow for AC/HP SIZE and CFM ADJUST selected. Selected delay profile is active in this mode.

H. Non-Staged Auxiliary with Heat Pump Heating Mode

Thermostat should already have closed R to G, R to Y2 for heat pump heating operation. With J2 jumper in place, energizing either W1 or W2 will produce the W2 airflow. This is the greater of heat pump heating and auxiliary heat airflow plus an additional 15 percent. The elected delay profile is not active in this mode.

I. Staged Auxiliary Heat with Heat Pump Heating Mode

The auxiliary heat can be staged by removing the J2 jumper that ties W1 and W2 terminals together. Staging can be done by using outdoor thermostats or by using the Intelligent Heat Staging option where the indoor control can be configured for three-stage electric heat. The unit will automatically adjust airflow when the different stages of heat are energized. The airflow delivered will depend on the heat pump size selected and electric heat size selected. The greater of the two airflows will be delivered. The selected delay profile is not active in this mode.

J. Electric Heat without Heat Pump

Thermostat closes R to W and thermostat should be set up to energize G with W. This is due to the Super Comfort Heat programming in the motor. Energizing W without G will result in 25% lower airflow delivery. The selected delay profile is not active in this mode.

K. Super Comfort Heat Mode

This is a special heating mode only available on FV4 fan coils combined with a Thermidistat Control or Comfort Zone II-B. When this option is selected, the indoor control will monitor the outdoor temperature. The control will drop the G signal to the fan coil when the outdoor temperature is between 10_ and 40_ F. This triggers the motor to slow to approximately 213 CFM per ton. The heaters will stage as needed during this mode and the motor will adjust airflow as required. Below 10_ F., the W1 control output

will automatically energize on a call for heat. The ECM2.3/5.0 power connections are made at the transformer primary terminals. The transformer secondary connections are made at SEC1 and SEC2 connectors.

EASY SELECT CONFIGURATION TAPS

The Easy Select taps are used by installer to configure system. The ECM2.3/5.0 uses selected taps to modify its operation to a pre-programmed table of airflows. Airflows are based on system size and mode of operation and those airflows are modified in response to other inputs such as the need for de-humidification. (See Fig. 7.)

The FV4 Fan Coils must be configured to operate properly with system components with which it is installed. To successfully configure a basic system (see information printed on circuit board located next to select pins), move the six select wires to pins which match components used, along with homeowner preferences.

A. Auxiliary Heat Range

The installer must select the auxiliary heat airflow approved for application with kW size heater installed. Each select pin is marked with a range of heaters for which airflow (also marked) is approved. For increased comfort select the narrowest kW range matching the heater size, for example, 0-10 for a 10-kW heater. This airflow must be greater than the minimum CFM for electric heater application with the size system installed for safe and continuous operation. Note that airflow marked is the airflow which will be supplied in emergency heat mode and heating mode on air conditioners when electric heat is primary heating source. To ensure safe heater operation in heat-pump heating mode, when electric heaters are energized, the ECM2.3/5.0 will run the higher of heat pump airflow and electric heater airflow. The factory default selection is largest heater range approved. (See Fig. 7.)

B. AC/HP Size

The factory default setting for air conditioner or heat pump size is largest unit meant for application with model of fan coil purchased. The installer needs to select air conditioner or heat pump size to ensure that airflow delivered falls within proper range for size of unit installed in all operational modes. (See Fig. 7.)

Unpack unit and move to final location. Remove carton taking care not to damage unit. Inspect equipment for damage prior to installation. File claim with shipping company if shipment is damaged or incomplete.

9

Loading...
+ 21 hidden pages