ATMEL TS68C429AVR, TS68C429AVF, TS68C429AMRB-C, TS68C429AMR, TS68C429AMFB-C Datasheet

...
0 (0)

Features

8 Independent Receivers (Rx)

3 Independent Transmitters (Tx)

Full TS68K Family Microprocessor Interface Compatibility

16-bit Data-bus

ARINC 429 Interface: “1” and “0” Lines, RZ Code

Support all ARINC 429 Data Rate Transfer and up to 2.5 Mbit/s

Multi Label Capability

Parity Control: Odd, Even, No Parity, Interrupt Capability

Independent Programmable Frequency for Rx and Tx Channels

8 Messages FIFO per Tx Channel

Independent Interrupt Request Line for Rx and Tx Functions

Vectored Interrupts

Daisy Chain Capability

Direct Addressing of all Registers

Test Modes Capability

20 MHz Operating Frequency

Self-test Capability for Receiver Label Memories and Transmit FiFO

Low Power: 400 mW

Description

The TS68C429A is an ARINC 429 controller. It is an enhanced version of the EF 4442 and it is designed to be connected to the new 16or 32-bit microprocessors, especially these of the Atmel TS68K family.

Screening

MIL-STD-883, class B

DESC Drawing 5962-955180

Atmel Standards

Application Note

A detailed application note is available “AN 68C429A” on request.

R suffix

F suffix

PGA 84

CQFP 132

Ceramic Pin Grid Array

Ceramic Quad Flat Pack

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CMOS ARINC 429 Multichannel Receiver/ Transmitter (MRT)

TS68C429A

Rev. 2120A–HIREL–08/02

1

Hardware Overview The TS68C429A is a high performance ARINC 429 controller designed to interface primary to the Atmel TS68K family microprocessor in a straight forward fashion (see “Application Notes” on page 33). It can be connected to any TS68K processor family with an asynchronous bus with some additional logic in some cases.

As shown in Figure 1, the TS68C429A is divided into five main blocks, the microprocessor interface unit (MIU), the logical control unit (LCU), the interrupt control unit (ICU), the receiver channel unit (RCU) and the transmitter channel unit (TCU).

The MIU handles the interface protocol of the host processor. Through this unit, the host sees the TS68C429A as a set of registers.

The LCU controls the internal data flow and initializes the TS68C429A.

The ICU manages one interrupt line for the RCU and one for the TCU. Each of these two parts has a daisy chain capability. All channels have a dedicated vectored interrupt answer. Receiver channels priority is programmable.

The RCU is composed of 8 ARINC receiver channels made of:

a serial to parallel converter to translate the two serial signals (the “1” and “0” in RZ code) into two 16-bit words,

a memory to store the valid labels,

a control logic to check the validity of the received message,

a buffer to keep the last valid received message.

The TCU is composed of three ARINC transmitter channels made of:

a parallel to serial converter to translate the messages into two serial signals (the “1” and “0” in RZ code),

a FIFO memory to store eight 32-bit ARINC messages,

a control logic to synchronize the message transmitter (parity, gap, speed, etc.).

Test facility: Rx inputs can be internally connected to TX3 output.

Self-test facility: The receiver control label matrix and transmitter FIFO can be tested. This self-test can be used to verify the integrity of the TS68C429A memories.

2 TS68C429A

2120A–HIREL–08/02

TS68C429A

Figure 1. Simplified Block Diagram

3

2120A–HIREL–08/02

Package

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

See “Package Mechanical Data” on page 40 and “Terminal Connections” on page 41.

Figure 1.

Signal Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pin Name

 

Type

Function

 

 

 

 

 

 

A0-8

 

I

Address bus. The address bus is used to select one of the internal registers during a processor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

read or write cycle.

 

 

 

 

 

 

D0-15

 

I/O

This bi-directional bus is used to receive data from or transmit data to an internal register during a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

processor read or write cycle. During an interrupt acknowledge cycle, the vector number is given

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on the lower data bus (D0 - D7).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

Chip select (active low). This input is used to select the chip for internal register access.

 

CS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

access (D0-D7).

 

LDS

Lower data strobe. This input (active low) validates lower data during R/W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

access (D8-D15).

 

UDS

Upper data strobe. This input (active low) validates upper data during R/W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

Read/write. This input defines a data transfer as a read (high) or a write (low) cycle.

 

R/W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

Data transfer acknowledge. If the bus cycle is a processor read, the chip asserts

 

 

to

 

DTACK

DTACK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

indicate that the information on the data bus is valid. If the bus cycle is a processor write,

DTACK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

acknowledges the acceptance of the data by the MRT. DTACK will be asserted during chip select

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

access (CS asserted) or interrupt acknowledge cycle (IACKTX or

IACKRK

asserted).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

Interrupt transmit request. This open drain output signals to the processor that an interrupt is

 

IRQTX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pending from the transmission part of the MRT. There are 6 causes that can generate an

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

interrupt request (2 per channel: FIFO empty and end of transmission).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

Interrupt transmit acknowledge. If

 

 

 

is active, the MRT will begin an interrupt acknowledge

 

IACKTX

IRQTX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cycle. The MRT will generate a vector number to the processor which is the highest priority

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

channel requesting interrupt service.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

Interrupt transmit enable in. This input, together with

 

 

 

 

signal, provides a daisy chained

 

IEITX

IEOTX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

interrupt structure for a vectored scheme. IEITX (active low) indicates that no higher priority

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

device is requesting interrupt service.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

Interrupt transmit enable out. This output, together with

 

 

 

signal, provides a daisy chained

 

IEOTX

IEITX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

interrupt structure for a vectored interrupt scheme. IEOTX (active low) indicates to lower priority

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

devices that neither the TS68C429A nor any highest priority peripheral is requesting an interrupt.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

Interrupt transmit request. This open drain output signals to the processor that an interrupt is

 

IRQRX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pending from the receiving part of the chip. There are 9 causes that can generate an interrupt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

request (1 per channel: valid message received, and 1 for bad parity on a received message).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

Interrupt receive acknowledge. Same function as

 

 

 

 

 

but for receiver part.

 

IACKRX

IACKTX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

Interrupt receive enable in. Same function as

 

 

 

but for receiver part.

 

IEIRX

IEITX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

Interrupt receive enable out. Same function as

 

 

 

 

but for receiver part.

 

IEORX

IEOTX

 

 

 

 

 

 

TX1H

 

O

Transmission “1” line of the channel 1.

 

 

 

 

 

 

TX1L

 

O

Transmission “0” line of the channel 1.

 

 

 

 

 

 

TX2H

 

O

Transmission “1” line of the channel 2.

 

 

 

 

 

 

TX2L

 

O

Transmission “0” line of the channel 2.

 

 

 

 

 

 

TX3H

 

O

Transmission “1” line of the channel 3.

 

 

 

 

 

 

TX3L

 

O

Transmission “0” line of the channel 3.

 

 

 

 

 

 

RX1H

 

I

Receiving “1” line of the channel 1.

 

 

 

 

 

 

RX1L

 

I

Receiving “0” line of the channel 1.

 

 

 

 

 

 

RX2H

 

I

Receiving “1” line of the channel 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 TS68C429A

2120A–HIREL–08/02

TS68C429A

Figure 1. Signal Description (Continued)

 

Pin Name

Type

Function

 

 

 

 

 

RX2L

I

Receiving “0” line of the channel 2.

 

 

 

 

 

RX3H

I

Receiving “1” line of the channel 3.

 

 

 

 

 

RX3L

I

Receiving “0” line of the channel 3.

 

 

 

 

 

RX4H

I

Receiving “1” line of the channel 4.

 

 

 

 

 

RX4L

I

Receiving “0” line of the channel 4.

 

 

 

 

 

RX5H

I

Receiving “1” line of the channel 5.

 

 

 

 

 

RX5L

I

Receiving “0” line of the channel 5.

 

 

 

 

 

RX6H

I

Receiving “1” line of the channel 6.

 

 

 

 

 

RX6L

I

Receiving “0” line of the channel 6.

 

 

 

 

 

RX7H

I

Receiving “1” line of the channel 7.

 

 

 

 

 

RX7L

I

Receiving “0” line of the channel 7.

 

 

 

 

 

RX8H

I

Receiving “1” line of the channel 8.

 

 

 

 

 

RX8L

I

Receiving “0” line of the channel 8.

 

 

 

 

 

 

 

 

I

This input (active low) will initialize the TS68C429A registers.

 

RESET

 

 

 

 

 

VCC/GND

I

These inputs supply power to the chip. The VCC is powered at +5 volts and GND is the ground

 

 

 

 

connection.

 

 

 

 

 

CLK-SYS

I

The clock input is a single-phase signal used for internal timing of processor interface.

 

 

 

 

 

CLK-ARINC

I

This input provides the timing clock to synchronize received/transmitted messaged.

 

 

 

 

 

5

2120A–HIREL–08/02

Figure 2 illustrates the functional signal groups.

Figure 2. Functional Signal Groups Diagram

Scope

Applicable

Documents

MIL-STD-883

This drawing describes the specified requirements for the ARINC multi channel receiver/transmitter, in compliance either with MIL-STD-863 class B or SMD drawing.

1.MIL-STD-883: test methods and procedures for electronics

2.MIL-STD-38535: general specifications for microcircuits.

3.MIL-STD-1835 microcircuit case outlines.

4.DESC/SMD.

Requirements

General

The microcircuits are in accordance with the applicable document and as specified

 

herein.

6 TS68C429A

2120A–HIREL–08/02

 

 

 

 

TS68C429A

 

 

 

 

 

Design and Construction

 

 

 

 

 

 

 

 

 

 

 

Terminal Connections

Depending on the package, the terminal connections is detailed in “Terminal Connec-

 

 

tions” on page 41.

 

Package

The circuits are packaged in a hermetically sealed ceramic package which is conform to

 

 

case outlines of MIL-STD 1835 (when defined):

 

 

PGA 84,

 

 

CQFP 132.

Special Recommended Conditions for CMOS Devices

The precise case outlines are described at the end of this specification (“Package Mechanical Data” on page 40) and into MIL-STD-1835.

CMOS Latch-up

The CMOS cell is basically composed of two complementary transistors (a P-channel and an N-channel), and, in the steady state, only one transistor is turned-on. The active P-channel transistor sources current when the output is a logic high and presents a high impedance when the output is a logic low. Thus the overall result is extremely low power consumption because there is no power loss through the active P-channel transistor. Also since only once transistor is determined by leakage currents.

Because the basic CMOS cell is composed of two complementary transistors, a parasitic semiconductor controlled rectifier (SCR) formed and may be triggered when an input exceeds the supply voltage. The SCR that is formed by this high input causes the device to become “latched” in a mode that may result in excessive current drain and eventual destruction of the device. Although the device is implemented with input protection diodes, care should be exercised to ensure that the maximum input voltages specification is not exceeded from voltage transients; others may require no additional circuitry.

CMOS/TTL Levels

The TS68C429A doesn’t satisfy totally the input/output drive requirements of TTL logic devices, see Table 4.

Electrical Characteristics

Table 1. Absolute Maximum Ratings

Symbol

Parameter

Test Conditions

Min

Max

Unit

VCC

Supply Voltage

 

-0.3

+7.0

V

VI

Input Voltage

 

-0.3

+7.0

V

Pdmax

Max Power Dissipation

 

 

400

mW

Tcase

Operating Temperature

M suffix

-55

+125

°C

 

 

 

 

V suffix

-40

+85

°C

 

 

 

 

 

 

 

 

Tstg

Storage Temperature

 

-55

+150

°C

Tj

Junction Temperature

 

 

+160

°C

Tleads

Lead Temperature

Max 5 sec. soldering

 

+270

°C

7

2120A–HIREL–08/02

Unless otherwise stated, all voltages are referenced to the reference terminal.

Table 2. Recommended Condition of Use

Symbol

Parameter

Test conditions

Min

Max

Units

VCC

Supply Voltage

 

4.5

5.5

V

VIL

Low Level Input Voltage

 

-0.5

0.8

V

VIH

High Level Input Voltage

 

2.25

5.8

V

Tcase

Operating Temperature

M suffix

-55

+125

°C

 

 

 

 

V suffix

-40

+85

°C

 

 

 

 

 

 

 

 

CL

Output Loading Capacitance

 

 

130

pF

tr(c)

Clock Rise Time (See Figure 3)

 

 

5

ns

tf(c)

Clock Fall Time (See Figure 3)

 

 

5

ns

fc

Clock System Frequency

 

0.5

20

MHz

(See Figure 3)

 

 

 

 

 

 

 

 

 

 

 

 

This device contains protective circuitry against damage due to high static voltages or electrical fields: however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or VCC).

Figure 3. Clock Input Timing Diagram

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tcyc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.25V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCL

 

 

 

 

 

 

 

tCH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tCF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Timing measurements are referenced to and from a low of 0.8-volt and a high voltage of 2.25 volts, unless otherwise noted. The voltage swing through this range should start outside and pass through the range such that the rise or fall will be linear between 0.8-volt and 2.25 volts.

Table 3. Thermal Characteristics

Package

Symbol

Parameter

Value

Unit

 

 

 

 

 

PGA 68

θJ-A

Thermal Resistance Junction-to-ambient

28

°C/W

θJ-C

Thermal Resistance Junction-to-case

2

°C/W

 

CQFP 132

θJ-A

Thermal Resistance Junction-to-ambient

27

°C/W

θJ-C

Thermal Resistance Junction-to-case

3

°C/W

 

8 TS68C429A

2120A–HIREL–08/02

 

 

 

 

TS68C429A

 

 

 

 

 

Power Considerations

 

 

 

The average chip-junction temperature, TJ, in °C can be obtained from:

 

 

 

TJ = TA + (PD θJA)

(1)

 

TA = Ambient Temperature, °C

θJA = Package Thermal Resistance, Junction-to-Ambient, °C/W

PD = PINT + PI/O

PINT = ICC x VCC, Watts—Chip Internal Power

PI/O = Power Dissipation on Input and Output Pins—User Determined For most applications PI/O < PINT and can be neglected.

An approximate relationship between PD and TJ (if PI/O is neglected) is:

PD = K: (TJ + 273)

(2)

Solving equations (1) and (2) for K gives:

K = P

D

(T

A

+ 273) + θ

JA

P

2

(3)

 

 

 

 

D

 

Mechanical and

Environment

Marking

where K is a constant pertaining to the particular part K can be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA.

The total thermal resistance of a package (θJA) can be separated into two components, θJC and θCA, representing the barrier to heat flow from the semiconductor junction to the package (case), surface (θJC) and from the case to the outside ambient (θCA). These terms are related by the equation:

θJA = θJC + θCA

(4)

θJC is device related and cannot be influenced by the user. However, θCA is user dependent and can be minimized by such thermal management techniques as heat sinks, ambient air cooling and thermal convection. Thus, good thermal management on the part of the user can significantly reduce θCA so that θJA approximately equals θJC. Substitution of θJC for θJA in equation (1) will result in a lower semiconductor junction temperature.

The microcircuits shall meet all mechanical environmental requirements of either MIL- STD-883 for class B devices or DESC devices.

The document where are defined the marking are identified in the related reference documents. Each microcircuit are legibly and permanently marked with the following information as minimum:

Atmel logo

Manufacturer’s part number

Class B identification

Date-code of inspection lot

ESD identifier if available

Country of manufacturing

9

2120A–HIREL–08/02

Quality Conformance

Inspection

DESC/MIL-STD-883

Is in accordance with MIL-M-38510 and method 5005 of MIL-STD-883. Group A and B inspections are performed on each production lot. Group C and D inspections are performed on a periodic basis.

Electrical

Characteristics

General Requirements

All static and dynamic electrical characteristics specified for inspection purposes and the relevant measurement conditions are given below:

Table 4, Table 5: Static electrical characteristics for the electrical variants.

Table 6, Table 7, Table 8: Dynamic electrical characteristics.

For static characteristics (Table 4, Table 5), test methods refer to IEC 748-2 method number, where existing.

For dynamic characteristics (Table 6, Table 7, Table 8), test methods refer to clause 5.5 of this specification.

Table 4. DC Electrical Characteristics

With -55°C Tcase +125°C or -40° Tcase +85°C; VCC = 5V ± 10%.

Symbol

Parameter

 

Min

Max

Unit

VIH

 

Input High Voltage

 

2.25

VCC + 0.3

V

VIL

 

Input Low Voltage

 

-0.5

0.8

V

VOH

 

Output High Voltage (except

 

 

 

 

 

open drain outputs)

2.7

 

V

 

IRQRX,

IRQTX:

 

VOL

 

Output Low Voltage

 

 

0.5

V

 

 

Output Source Current (except

 

 

 

 

 

 

 

 

IOH

 

IRQRX,

(Vout = 2.7V)

 

-8

mA

 

IRQTX: open drain outputs)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IOL

 

Output Sink Current

(Vout = 0.5V)

 

8

mA

ILI

 

Input Leakage Current

(Vin = 0 to VCC)

 

±20

µA

IDD

 

Dynamic Current(1)

(Tcase = Tmin VDD

 

65

mA

 

 

 

 

 

 

 

 

= Vmax)

 

 

 

Note: 1.

IDD is measured with all I/O pins at 0V, all input pins at 0V except signals CS, IACKxx, LDS, UDS at 5V and CLK-SYS and

 

CLK-ARINC which run at tcyc mini.

 

 

 

 

Table 5. Capacitance (TA = 25°C)

Symbol

Parameter

Max

Unit

Cin

Input Capacitance

10

pF

Cout

HI-Z Output Capacitance

20

pF

10 TS68C429A

2120A–HIREL–08/02

 

 

 

 

 

 

 

 

 

 

 

 

TS68C429A

 

 

 

 

 

 

 

 

 

 

 

 

 

Clock Timing

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Clock System (CLK SYS)

 

 

 

 

 

 

 

Symbol

Parameter

 

Min

Max

 

Unit

 

 

 

 

 

 

 

 

 

 

 

tcyc S

Clock Period

 

50

2000

 

ns

 

 

tCLS, tCHS

Clock Pulse Width

 

20

 

 

ns

 

 

tcrS, tcfS

Rise and Fall Times

 

 

5

 

ns

 

Table 7. Clock ARINC (CLK ARINC)

 

 

 

 

 

 

 

Symbol

Parameter

 

Min

Max

 

Unit

 

 

 

 

 

 

 

 

 

 

 

tcyc A

Cycle Time(1)

 

200

8000

 

ns

 

 

tCLA, tCHA

Clock Pulse Width

 

240

 

 

ns

 

 

tcrA, tcfA

Rise and Fall Times

 

 

5

 

ns

 

Note: 1.

tcyc A 4 x tcyc S.

 

 

 

 

 

 

 

 

 

 

 

 

AC Electrical

 

With VCC = 5 VDC ± 10% VSS = 0 VDC.

 

 

 

 

Characteristics

 

 

 

 

 

 

must be understood as generic signals (xx = RX and TX).

 

 

IEIxx,

IEOxx,

IACKxx,

 

Figure 4.

Read Cycle

 

 

 

 

 

 

 

 

 

 

 

Notes: 1. LDS/UDS can be asserted on the next or previous CLK-SYS period after CS goes low but (4) must be met for the next period.

2. The cycle ends when the first of CS, LDS/UDS goes high.

11

2120A–HIREL–08/02

ATMEL TS68C429AVR, TS68C429AVF, TS68C429AMRB-C, TS68C429AMR, TS68C429AMFB-C Datasheet

Figure 5. Write Cycle

3. LDS/UDS can be asserted on the same or previous CLK-SYS period as CS but (3) and (4) must be met.

Figure 6. Interrupt Cycle (IEIxx = 0)

Notes: 1. If UDS = 1, D15-D8 stay hi-z else D15-D8 drive the bus with a stable unknown value.

2.If IEOxx goes low, neither vector nor DTACK are generated, else IEOxx stays inactive and a vector is generated (D7-D0 and DTACK).

12 TS68C429A

2120A–HIREL–08/02

TS68C429A

Figure 7. Interrupt Cycle (IEIxx = 1)

Notes: 1. If UDS = 1, D15-D8 stay hi-z else D15-D8 drive the bus with a stable unknown value.

2.If IEOxx goes low, neither vector nor DTACK are generated, else IEOxx stays inactive and a vector is generated (D7-D0 and DTACK).

Table 8. Timing Characteristic

Number

Symbol

Parameter

Min

Max

T/G(1)

Unit

1

tAVCSL

 

Address valid to

 

 

 

 

 

 

low

0

-

T

ns

CS

2

tRWVCSL

 

R/W valid to

 

 

 

 

 

 

 

 

low

0

-

T

ns

CS

3

tDIVDSL

 

Data in valid to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

-

T

ns

LDS/UDS low

4

tSVCL

 

CS,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

-

T

ns

LDS/UDS, IACKxx valid to CLK-SYS low

5

tCLDKL

 

CLK-SYS low to

 

 

 

 

 

 

 

 

 

low

-

45

T

ns

DTACK

6

tCLDOV

 

CLK-SYS low to data out valid

-

50

T

ns

7

tDKLDOV

 

 

 

 

 

 

 

 

 

low to data out valid

-

10

G

ns

 

DTACK

8

tSHDKH

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

35

G

ns

 

CS

LDS/UDS or IACKxx high to DTACK high

9

tSHDXZ

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

50

G

ns

 

CS

LDS/UDS or IACKxx high to DTACK hi-z

10

tSHDOZ

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

25

G

ns

 

CS

LDS/UDS or IACKxx high to data out hi-z

11

tILIOL

 

 

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

low to

 

 

 

 

 

low

-

35

T

ns

 

IEIxx

IACKxx

IEOxx

12

tIKHIOH

 

 

 

 

 

 

 

high to IEOxx high

-

40

T

ns

 

IACKxx

13

tIILDKL

 

 

 

 

 

low to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

low

-

40

T

ns

 

IEIxx

DTACK

14

tIILDOV

 

 

 

 

 

low to data out valid

-

45

T

ns

 

IEIxx

15

tSH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

-

T

ns

 

CS,

IACKxx,

LDS/UDS inactive time

16

tDKLSH

 

 

 

 

 

 

 

 

low to

 

 

 

 

 

 

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

0

-

G

ns

 

DTACK

CS

LDS/UDS or IACKxx high

17

tSHAH

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

-

G

ns

 

CS

LDS/UDS high to address hold time

13

2120A–HIREL–08/02

Loading...
+ 30 hidden pages