Atmel TS 83 C 51 U 2, TS 87 C 51 U 2, TS 80 C 51 U 2 Service Manual

0 (0)

TS80C51U2

TS83C51U2

TS87C51U2

Double UART 8-bit CMOS Microcontroller

1. Description

TS80C51U2 is high performance CMOS ROM, OTP and EPROM versions of the 80C51 CMOS single chip 8-bit microcontroller.

The TS80C51U2 retains all features of the 80C51 with extended ROM/EPROM capacity (16 Kbytes), 256 bytes of internal RAM, a 7-source , 4-level interrupt system, an on-chip oscilator and three timer/counters.

In addition, the TS80C51U2 has a second UART, enhanced functions on both UART, enhanced timer 2, a hardware watchdog timer, a dual data pointer, a baud rate generator and a X2 speed improvement mechanism.

The fully static design of the TS80C51U2 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data.

The TS80C51U2 has 2 software-selectable modes of reduced activity for further reduction in power consumption. In the idle mode the CPU is frozen while the timers, the serial port and the interrupt system are still operating. In the power-down mode the RAM is saved and all other functions are inoperative.

2. Features

80C52 Compatible

8051 pin and instruction compatible

Four 8-bit I/O ports

Three 16-bit timer/counters

www.DataSheet4U.com

∙ 256 bytes scratchpad RAM

High-Speed Architecture

∙ 40 MHz @ 5V, 30MHz @ 3V

∙ X2 Speed Improvement capability (6 clocks/ machine cycle)

30 MHz @ 5V, 20 MHz @ 3V (Equivalent to 60 MHz @ 5V, 40 MHz @ 3V)

Second UART

Baud Rate Generator

Dual Data Pointer

On-chip ROM/EPROM (16K-bytes)

Programmable Clock Out and Up/Down Timer/

Counter 2

Hardware Watchdog Timer (One-time enabled with Reset-Out)

Asynchronous port reset

Interrupt Structure with

7 Interrupt sources

4 level priority interrupt system

Full duplex Enhanced UARTs

Framing error detection

Automatic address recognition

Low EMI (inhibit ALE)

Power Control modes

Idle mode

Power-down mode

Power-off Flag

Once mode (On-chip Emulation)

Power supply: 4.5-5.5V, 2.7-5.5V

Temperature ranges: Commercial (0 to 70oC) and Industrial (-40 to 85oC)

Packages: PDIL40, PLCC44, VQFP44 1.4, CQPJ44 (window), CDIL40 (window)

3. The second UART

In this document, UART_0 will make reference to the first UART (present in all Atmel Wireless & Microcontrollers C51 derivatives) and UART_1 will make reference to the second UART, only present in the TS80C51U2 part.

The second UART (UART_1) can be seen as an alternate function of Port 1 (P1.2 or P1.6 for RXD1 and P1.3 or P1.7 for TXD1) or can be connected to (pin6 or pin12) and (pin28 or pin34) of 44-pin package (see Pin

Rev. D - 15 January, 2001

1

TS80C51U2

TS83C51U2

TS87C51U2

configuration). UART_1 is fully compliant with the first one allowing an internal baud rate generator to be the clock source. This common internal baud rate generator can be used independently by each UART or both as clock source allowing to program various speeds.

The TS80C51U2 provides 7 sources of interrupt with four priority levels. UART_1 has a lower priority than Timer 2. The Serial Ports are full duplex meaning they can transmit and receive simultaneously. They are also receive buffered, meaning they can start reception of a second byte before a previously received byte has been read from the receive register. The Serial Port receive and transmit registers of UART_1 are both accessed at Special Function Register SBUF_1. Writing to SBUF_1 loads the transmit register and reading SBUF_1 accesses a physical separate receive register.

The UART_1 port control and status is the Special Function Register SCON_1. This register contains not only the mode selection bit but also the 9th bit for transmit and receive (TB8_1 and RB8_1) and the serial port interrupt bits (TI_1 and RI_1). The automatic address recognition feature is enabled when multiprocessor communication is enabled. Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the Serial Port to examine address of each incoming frame and provides filtering capability.

The UART_1 also comes with Frame error detection, similar to the UART_0.

2

Rev. D - 15 January, 2001

Atmel TS 83 C 51 U 2, TS 87 C 51 U 2, TS 80 C 51 U 2 Service Manual

TS80C51U2

TS83C51U2

TS87C51U2

Table 1. Memory size

PDIL40

 

 

PLCC44

ROM (bytes)

EPROM (bytes)

VQFP44 1.4

 

 

 

 

 

TS80C51U2

0

0

 

 

 

TS83C51U2

16k

0

 

 

 

TS87C51U2

0

16k

 

 

 

4. Block Diagram

 

 

RxD

TxD

 

 

Vcc

Vss

T2EX

T2

RxD1

TxD1

 

 

(2)

(2)

 

 

 

 

(1)

(1)

(3)

(3)

XTAL1

 

 

 

 

 

 

ROM

 

 

 

 

 

 

 

 

RAM

 

 

 

 

 

XTAL2

 

UART_0

/EPROM

Timer2

UART_1

 

256x8

 

 

 

 

 

 

16Kx8

 

 

 

 

ALE/ PROG

 

 

C51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSEN

 

 

CORE

 

IB-bus

 

 

 

 

 

CPU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EA/VPP

 

 

 

 

 

 

 

 

 

 

 

RD

(2)

Timer 0

INT

 

Parallel I/O Ports

 

WatchDog

 

Timer 1

Ctrl

 

 

 

 

 

(2)

Port 0 Port 1 Port 2 Port 3

 

 

WR

 

 

 

 

 

 

 

 

(2)

(2)

(2)

(2)

 

 

 

 

 

 

 

RESET

T0

T1

INT0

INT1

P0

P1

P2

P3

 

 

(1): Alternate function of Port 1

(2): Alternate function of Port 3

(3): See pin description

Rev. D - 15 January, 2001

3

TS80C51U2

TS83C51U2

TS87C51U2

5. SFR Mapping

The Special Function Registers (SFRs) of the TS80C51U2 fall into the following categories:

C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1

I/O port registers: P0, P1, P2, P3

Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H

Serial I/O port registers for UART_0: SADDR_0, SADEN_0, SBUF_0, SCON_0

Serial I/O port registers for UART_1: SADDR_1, SADEN_1, SBUF_1, SCON_1

Baud Rate Generator registers: BRL, BDRCON, BDRCON_1

Power and clock control registers: PCON

HDW Watchdog Timer Reset: WDTRST, WDTPRG

Interrupt system registers: IE, IP, IPH

Others: AUXR, CKCON

F8h

F0h

E8h

E0h

D8h

D0h

C8h

C0h

B8h

B0h

A8h

A0h

98h

90h

88h

80h

Table 2. All SFRs with their address and their reset value

Bit

 

 

Non Bit addressable

 

 

 

address-

 

 

 

 

 

 

 

 

able

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0/8

1/9

2/A

3/B

4/C

5/D

6/E

7/F

 

 

 

 

 

 

 

 

 

FFh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

F7h

0000 0000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EFh

 

 

 

 

 

 

 

 

 

ACC

 

 

 

 

 

 

 

E7h

0000 0000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DFh

 

 

 

 

 

 

 

 

 

PSW

 

 

 

 

 

 

 

D7h

0000 0000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T2CON

T2MOD

RCAP2L

RCAP2H

TL2

TH2

 

 

CFh

0000 0000

XXXX XX00

0000 0000

0000 0000

0000 0000

0000 0000

 

 

 

 

 

SCON_1

SBUF_1

 

 

 

 

 

 

C7h

0000 0000

XXXX XXXX

 

 

 

 

 

 

 

 

 

 

 

 

 

IP

SADEN_0

SADEN_1

 

 

 

 

 

BFh

X000 0000

0000 0000

0000 0000

 

 

 

 

 

 

 

 

 

 

 

P3

 

 

 

 

 

 

IPH

B7h

1111 1111

 

 

 

 

 

 

X000 0000

 

 

 

 

 

 

 

IE

SADDR_0

SADDR_1

 

 

 

 

 

AFh

0X00 0000

0000 0000

0000 0000

 

 

 

 

 

 

 

 

 

 

 

P2

 

AUXR1

 

 

 

WDTRST

WDTPRG

A7h

1111 1111

 

XXXX XXX0

 

 

 

XXXX XXXX

XXXX X000

 

 

 

 

 

SCON_0

SBUF_0

BRL

BDRCON

BDRCON_1

 

 

 

9Fh

0000 0000

XXXX XXXX

0000 0000

0XXX 0000

0X00 00XX

 

 

 

 

 

 

 

P1

 

 

 

 

 

 

 

97h

1111 1111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TCON

TMOD

TL0

TL1

TH0

TH1

AUXR

CKCON

8Fh

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

00XX XXX0

XXXX XXX0

 

 

 

 

 

 

 

 

 

 

P0

SP

DPL

DPH

 

 

 

PCON

87h

1111 1111

0000 0111

0000 0000

0000 0000

 

 

 

00X1 0000

 

 

 

 

0/8

1/9

2/A

3/B

4/C

5/D

6/E

7/F

 

 

 

 

 

 

 

 

 

 

reserved

4

Rev. D - 15 January, 2001

TS80C51U2

TS83C51U2

TS87C51U2

6. Pin Configuration

P1.0 / T2

 

1

 

 

40

 

 

VCC

 

 

 

P1.4

P1.3/TxD1

P1.2/RxD1

 

P1.1/T2EX

P1.0/T2

VSS1/NIC*

VCC P0.0/AD0

P0.1/AD1

P0.2/AD2

P0.3/AD3

 

 

 

 

 

 

 

 

 

P1.1 / T2EX

 

2

 

 

39

 

 

P0.0

/ A0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.2/RxD_1

 

3

 

 

38

 

 

P0.1

/ A1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.3/TxD_1

 

4

 

 

37

 

P0.2 / A2

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.4

 

5

 

 

36

 

 

P0.3 / A3

 

 

6

5

4

3

2

44 43 42 41 40

 

 

 

 

 

 

 

 

P1.5

 

6

 

 

35

 

 

P0.4

/ A4

 

P1.5

7

 

 

 

 

 

 

 

 

 

 

39

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.6/RxD_1

 

7

 

 

34

 

 

P0.5

/ A5

P1.6/RxD_1

8

 

 

 

 

 

 

 

 

 

 

38

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.7/TxD_1

 

8

 

 

33

 

 

P0.6

/ A6

P1.7/TxD_1

9

 

 

 

 

 

 

 

 

 

 

37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RST

 

9

 

 

32

 

 

P0.7

/ A7

 

RST

10

 

 

 

 

 

 

 

 

 

 

36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.0/RxD_0

 

 

 

 

 

 

 

 

 

 

 

 

P3.0/RxD_0

 

10

PDIL/

31

 

 

EA/VPP

11

 

 

PLCC/CQPJ 44

 

 

35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RxD_1

12

 

 

 

 

 

P3.1/TxD_0

 

11

30

 

 

ALE/PROG

 

 

 

 

34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.1/TxD_0

13

 

 

 

 

 

 

 

 

 

 

 

P3.2/INT0

 

 

12 CDIL40

29

 

 

PSEN

 

 

 

 

 

 

 

 

 

 

33

 

 

 

 

 

 

 

 

 

 

 

 

P2.7

/ A15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.3/INT1

 

 

13

 

 

28

 

 

P3.2/INT0

14

 

 

 

 

 

 

 

 

 

 

32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2.6

/ A14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.4/T0

 

14

 

 

27

P3.3/INT1

15

 

 

 

 

 

 

 

 

 

 

31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2.5

/ A13

 

 

 

 

 

 

 

 

 

 

P3.5/T1

 

15

 

 

26

 

 

P3.4/T0

16

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P2.4

/ A12

P3.5/T1

 

 

 

 

 

 

 

 

 

 

 

 

P3.6/WR

 

16

 

 

25

 

17

 

 

 

 

 

 

 

 

 

 

29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

 

 

24

 

 

P2.3

/ A11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.7/RD

 

 

 

 

 

P2.2

/ A10

 

 

18 19 20 21 22 23 24 25 26 27 28

 

18

 

 

23

 

 

 

 

XTAL2

 

 

 

 

 

 

 

 

P3.6/WR

P3.7/RD

XTAL2

 

XTAL1

VSS

NIC*

P2.0/A8 P2.1/A9

P2.2/A10

P2.3/A11

P2.4/A12

XTAL1

 

19

 

 

22

 

 

P2.1

/ A9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

 

20

 

 

21

 

 

P2.0

/ A8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.4

P1.3/TxD_1

P1.2/RxD_1

 

P1.1/T2EX

 

P1.0/T2

 

VSS1/NIC* VCC

 

P0.0/AD0

 

P0.1/AD1

 

P0.2/AD2

 

P0.3/AD3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44 43 42

41

40

39 38

37

36

35

34

 

 

 

 

 

 

 

 

 

P1.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

 

 

P0.4/AD4

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.6/RxD_1

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

 

 

P0.5/AD5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P1.7/TxD_1

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

 

 

P0.6/AD6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RST

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

P0.7/AD7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.0/RxD_0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

VQFP44 1.4

 

 

 

 

EA/VPP

RxD_1

 

 

6

 

 

 

 

 

 

 

 

 

28

 

 

TxD_1

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.1/TxD_0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALE/PROG

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

 

 

 

 

 

P3.2/INT0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSEN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

 

 

P2.7/A15

P3.3/INT1

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.4/T0

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24

 

 

P2.6/A14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P3.5/T1

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

 

 

P2.5/A13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 13 14 15 16 17 18 19 20 21 22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*NIC: No Internal Connection

 

 

 

P3.6/WR

 

P3.7/RD

XTAL2

 

XTAL1

 

VSS

 

NIC* P2.0/A8

 

P2.1/A9

 

P2.2/A10

 

P2.3/A11

 

P2.4/A12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s

P0.4/AD4

P0.5/AD5

P0.6/AD6

P0.7/AD7

EA/VPP

TxD_1

ALE/PROG

PSEN

P2.7/A15

P2.6/A14

P2.5/A13

See “Alternate function on Port 1” on page 32 for accurate RxD_1 and TxD_1 pin location, depending on AUXR register configuration.

Rev. D - 15 January, 2001

5

TS80C51U2

TS83C51U2

TS87C51U2

Table 3. Pin Description for 40/44 pin packages

MNEMONIC

PIN NUMBER

TYPE

 

 

 

 

NAME AND FUNCTION

DIL

LCC

VQFP 1.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VSS

20

22

16

I

 

Ground: 0V reference

Vss1

 

1

39

I

 

Optional Ground: Contact the Sales Office for ground connection.

 

 

 

 

 

 

 

VCC

40

44

38

I

 

Power Supply: This is the power supply voltage for normal, idle and power-

 

down operation

P0.0-P0.7

39-32

43-36

37-30

I/O

 

Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s

 

 

 

 

 

 

written to them float and can be used as high impedance inputs. Port 0 pins must

 

 

 

 

 

 

be polarized to Vcc or Vss in order to prevent any parasitic current consumption.

 

 

 

 

 

 

Port 0 is also the multiplexed low-order address and data bus during access to

 

 

 

 

 

 

external program and data memory. In this application, it uses strong internal

 

 

 

 

 

 

pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM

 

 

 

 

 

 

programming. External pull-ups are required during program verification during

 

 

 

 

 

 

which P0 outputs the code bytes.

 

 

 

 

 

 

 

P1.0-P1.7

1-8

2-9

40-44

I/O

 

Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1

 

 

 

1-3

 

 

pins that have 1s written to them are pulled high by the internal pull-ups and

 

 

 

 

 

 

can be used as inputs. As inputs, Port 1 pins that are externally pulled low will

 

 

 

 

 

 

source current because of the internal pull-ups. Port 1 also receives the low-order

 

 

 

 

 

 

address byte during memory programming and verification.

 

 

 

 

 

 

Alternate functions for TSC8x54/58 Port 1 include:

 

1

2

40

I/O

 

T2 (P1.0): Timer/Counter 2 external count input/Clockout

 

2

3

41

I

 

T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control

 

 

 

 

 

 

Depending on values of (M1UA_1, M0UA_1) bits located into AUXR register,

 

 

 

 

 

 

the UART_1 pins are alternate functins of P1 with two possible locations.

 

 

 

 

 

 

First location:

 

3

4

42

I

 

P1.2: RxD_1, serial input port for UART_1

 

4

5

43

O

 

P1.3: TxD_1, serial output port for UART_1

 

 

 

 

 

 

Second location:

 

7

8

2

I

 

P1.6: RxD_1, serial input port for UART_1

 

8

9

3

O

 

P1.7: TxD_1, serial output port for UART_1

 

 

 

 

 

 

See “Alternate function on Port 1” on page 32

 

 

 

 

 

 

 

P2.0-P2.7

21-28

24-31

18-25

I/O

 

Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2

 

 

 

 

 

 

pins that have 1s written to them are pulled high by the internal pull-ups and

 

 

 

 

 

 

can be used as inputs. As inputs, Port 2 pins that are externally pulled low will

 

 

 

 

 

 

source current because of the internal pull-ups. Port 2 emits the high-order address

 

 

 

 

 

 

byte during fetches from external program memory and during accesses to external

 

 

 

 

 

 

data memory that use 16-bit addresses (MOVX @DPTR).In this application, it

 

 

 

 

 

 

uses strong internal pull-ups emitting 1s. During accesses to external data memory

 

 

 

 

 

 

that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR.

 

 

 

 

 

 

Some Port 2 pins receive the high order address bits during EPROM programming

 

 

 

 

 

 

and verification: P2.0 to P2.5

 

 

 

 

 

 

 

P3.0-P3.7

10-17

11,

5,

I/O

 

Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3

 

 

13-19

7-13

 

 

pins that have 1s written to them are pulled high by the internal pull-ups and

 

 

 

 

 

 

can be used as inputs. As inputs, Port 3 pins that are externally pulled low will

 

 

 

 

 

 

source current because of the internal pull-ups. Port 3 also serves the special

 

 

 

 

 

 

features of the 80C51 family, as listed below.

 

10

11

5

I

 

RxD_0 (P3.0): Serial input port for UART_0

 

11

13

7

O

 

TxD_0 (P3.1): Serial output port for UART_0

 

12

14

8

I

 

 

 

 

(P3.2): External interrupt 0

 

 

INT0

 

13

15

9

I

 

 

 

 

(P3.3): External interrupt 1

 

 

INT1

 

14

16

10

I

 

T0 (P3.4): Timer 0 external input

 

15

17

11

I

 

T1 (P3.5): Timer 1 external input

 

16

18

12

O

 

 

 

(P3.6): External data memory write strobe

 

 

WR

 

17

19

13

O

 

 

(P3.7): External data memory read strobe

 

 

RD

6

Rev. D - 15 January, 2001

TS80C51U2

TS83C51U2

TS87C51U2

Table 3. Pin Description for 40/44 pin packages

 

MNEMONIC

PIN NUMBER

TYPE

 

 

 

 

NAME AND FUNCTION

 

DIL

LCC

VQFP 1.4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset

9

10

4

I

Reset: A high on this pin for two machine cycles while the oscillator is running,

 

 

 

 

 

 

 

 

 

 

resets the device. An internal diffused resistor to VSS permits a power-on reset

 

 

 

 

 

 

 

 

 

 

using only an external capacitor to VCC. If the hardware watchdog reaches its

 

 

 

 

 

 

 

 

 

 

time-out, the reset pin becomes an output during the time the internal reset is

 

 

 

 

 

 

 

 

 

 

activated.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

33

27

O (I)

Address Latch Enable/Program Pulse: Output pulse for latching the low byte

 

ALE/PROG

 

 

 

 

 

 

 

 

 

 

 

of the address during an access to external memory. In normal operation, ALE

 

 

 

 

 

 

 

 

 

 

is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency,

 

 

 

 

 

 

 

 

 

 

and can be used for external timing or clocking. Note that one ALE pulse is

 

 

 

 

 

 

 

 

 

 

skipped during each access to external data memory. This pin is also the program

 

 

 

 

 

 

 

 

 

 

pulse input

 

 

 

during EPROM programming. ALE can be disabled by

 

 

 

 

 

 

 

 

 

 

(PROG)

 

 

 

 

 

 

 

 

 

 

setting SFR’s AUXR.0 bit. With this bit set, ALE will be inactive during internal

 

 

 

 

 

 

 

 

 

 

fetches.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

32

26

O

Program Store ENable: The read strobe to external program memory. When

 

PSEN

 

 

 

 

 

 

 

 

 

 

executing code from the external program memory,

 

is activated twice each

 

 

 

 

 

 

 

 

 

 

PSEN

 

 

 

 

 

 

 

 

 

 

machine cycle, except that two

PSEN

activations are skipped during each access

 

 

 

 

 

 

 

 

 

 

to external data memory.

 

is not activated during fetches from internal

 

 

 

 

 

 

 

 

 

 

PSEN

 

 

 

 

 

 

 

 

 

 

program memory.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

35

29

I

External Access Enable/Programming Supply Voltage:

 

must be externally

 

EA/VPP

EA

 

 

 

 

 

 

 

 

 

 

held low to enable the device to fetch code from external program memory

 

 

 

 

 

 

 

 

 

 

locations 0000H and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is

 

 

 

 

 

 

 

 

 

 

held high, the device executes from internal program memory unless the program

 

 

 

 

 

 

 

 

 

 

counter contains an address greater than 3FFFH (RB) or 7FFFH (RC)

 

must

 

 

 

 

 

 

 

 

 

 

EA

 

 

 

 

 

 

 

 

 

 

be held low for ROMless devices. This pin also receives the 12.75V programming

 

 

 

 

 

 

 

 

 

 

supply voltage (VPP) during EPROM programming. If security level 1 is

 

 

 

 

 

 

 

 

 

 

programmed,

EA

will be internally latched on Reset.

 

XTAL1

19

21

15

I

Crystal 1: Input to the inverting oscillator amplifier and input to the internal

 

 

 

 

 

 

 

 

 

 

clock generator circuits.

 

 

 

 

 

 

 

 

XTAL2

18

20

14

O

Crystal 2: Output from the inverting oscillator amplifier

 

 

 

 

 

 

 

 

RxD_1

-

12

6

I

Serial Input for UART_1. For 44-pin package only.

 

 

 

 

 

 

 

 

 

 

 

 

TxD_1

-

34

28

O

Serial Ouput for UART_1. This pin is pulled up by a 100K resistor when not

 

selected. For 44-pin package only.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rev. D - 15 January, 2001

7

TS87C51U2

7. TS80C51U2 Enhanced Features

In comparison to the original 80C52, the TS80C51U2 implements some new features, which are:

The X2 option.

The second full duplex enhanced UART.

The Baud Rate generator.

The Dual Data Pointer.

The Watchdog.

The 4 level interrupt priority system.

The power-off flag.

The ONCE mode.

The ALE disabling.

Some enhanced features are also located in the UARTs and the timer 2.

7.1X2 Feature

The TS80C51U2 core needs only 6 clock periods per machine cycle. This feature called ”X2” provides the following advantages:

Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.

Save power consumption while keeping same CPU power (oscillator power saving).

Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.

Increase CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

7.1.1 Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed,

the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode.

Figure 2. shows the mode switching waveforms.

 

 

 

 

 

 

XTAL1:2

 

XTAL1

 

 

 

 

2

0

 

state machine: 6 clock cycles.

 

 

 

FXTAL

 

 

 

1

 

CPU control

 

 

 

 

 

 

FOSC

X2

CKCON reg

Figure 1. Clock Generation Diagram

8

Rev. D - 06 december, 2000

TS87C51U2

XTAL1

XTAL1:2

X2 bit

CPU clock

STD Mode X2 Mode STD Mode

Figure 2. Mode Switching Waveforms

The X2 bit in the CKCON register (See Table 4.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

CAUTION

In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UARTs, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

Rev. D - 06 december, 2000

9

TS87C51U2

Table 4. CKCON Register

CKCON - Clock Control Register (8Fh)

7

 

6

 

5

4

3

 

2

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

-

 

-

 

-

-

-

 

-

 

-

X2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit

 

Bit

 

 

 

Description

 

 

 

 

Number

Mnemonic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CPU and peripheral clock bit

 

 

 

 

 

 

0

 

X2

 

Clear to select 12 clock periods per machine cycle (STD mode, FOSC=FXTAL/2).

 

 

 

 

 

 

Set to select 6 clock periods per machine cycle (X2 mode, FOSC=FXTAL).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Value = XXXX XXX0b

Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel-wm.com)

10

Rev. D - 06 december, 2000

TS80C51U2

TS83C51U2

TS87C51U2

7.2 Dual Data Pointer Register Ddptr

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3).

External Data Memory

7

 

0

 

 

 

DPS

DPTR1

 

 

 

 

AUXR1(A2H)

 

DPTR0

 

 

 

 

 

 

DPH(83H) DPL(82H)

Figure 3. Use of Dual Pointer

Rev. D - 15 January, 2001

11

TS80C51U2

TS83C51U2

TS87C51U2

Table 5. AUXR1: Auxiliary Register 1

7

 

6

 

5

 

4

3

 

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

-

 

-

 

-

 

-

-

 

-

-

DPS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit

 

Bit

 

 

 

 

Description

 

 

 

Number

Mnemonic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

-

Reserved

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

-

Reserved

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

-

Reserved

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

-

Reserved

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

-

Reserved

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

-

Reserved

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

-

Reserved

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

DPS

Data Pointer Selection

 

 

 

 

 

 

 

 

Clear to select DPTR0.

 

 

 

 

 

 

 

 

 

 

Set to select DPTR1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Value = XXXX XXX0 Not bit addressable

User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new feature. In that case, the reset value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a ’source’ pointer and the other one as a "destination" pointer.

12

Rev. D - 15 January, 2001

TS80C51U2

TS83C51U2

TS87C51U2

ASSEMBLY LANGUAGE

;Block move using dual data pointers

;Destroys DPTR0, DPTR1, A and PSW

;note: DPS exits opposite of entry state

;unless an extra INC AUXR1 is added

00A2 AUXR1 EQU 0A2H

0000

909000MOV

DPTR,#SOURCE

; address of SOURCE

0003

05A2

INC

AUXR1

; switch data pointers

0005

90A000 MOV DPTR,#DEST

; address of DEST

0008

 

LOOP:

 

0008

05A2

INC

AUXR1

; switch data pointers

000A E0

MOVX A,@DPTR

; get a byte from SOURCE

000B A3

INC

DPTR

; increment SOURCE address

000C 05A2

INC

AUXR1

; switch data pointers

000E F0

MOVX @DPTR,A

; write the byte to DEST

000F A3

INC

DPTR

; increment DEST address

0010

70F6

JNZ

LOOP

; check for 0 terminator

0012

05A2

INC

AUXR1

; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

Rev. D - 15 January, 2001

13

TS80C51U2

TS83C51U2

TS87C51U2

7.3 Timer 2

The timer 2 in the TS80C51U2 is compatible with the timer 2 in the 80C52.

It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2, connected in cascade. It is controlled by T2CON register (See Table 6) and T2MOD register (See Table 7). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects FOSC/12 (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input.

Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON), as described in the Atmel Wireless & Microcontrollers 8- bit Microcontroller Hardware description.

Refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description for the description of Capture and Baud Rate Generator Modes.

In TS80C51U2 Timer 2 includes the following enhancements:

Auto-reload mode with up or down counter

Programmable clock-output

7.3.1 Auto-Reload Mode

The auto-reload mode configures timer 2 as a 16-bit timer or event counter with automatic reload. If DCEN bit in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the Atmel Wireless & Microcontrollers 8-bit Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an Up/down timer/counter as shown in Figure 4. In this mode the T2EX pin controls the direction of count.

When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.

When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.

The EXF2 bit toggles when timer 2 overflows or underflows according to the the direction of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.

14

Rev. D - 15 January, 2001

TS80C51U2

TS83C51U2

TS87C51U2

 

 

 

 

(:6 in X2 mode)

 

XTAL1

 

 

 

 

:12

 

0

 

 

 

 

 

FOSC

 

 

FXTAL

 

 

 

 

1

 

 

 

 

T2

C/T2 TR2

T2CONreg T2CONreg

(DOWN COUNTING RELOAD VALUE)

T2EX:

 

FFh

FFh

if DCEN=1, 1=UP

(8-bit)

(8-bit)

if DCEN=1, 0=DOWN

 

 

if DCEN = 0, up counting

 

 

TOGGLE

T2CONreg

 

 

 

EXF2

TL2

TH2

TF2

TIMER 2

(8-bit)

(8-bit)

INTERRUPT

T2CONreg

 

 

 

RCAP2L

 

RCAP2H

(8-bit)

 

(8-bit)

(UP COUNTING RELOAD VALUE)

Figure 4. Auto-Reload Mode Up/Down Counter (DCEN = 1)

7.3.2 Programmable Clock-Output

In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 5) . The input clock increments TL2 at frequency FOSC/2. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers:

Fosc

Clock OutFrequency = --------------------------------------------------------------------------------------

4 ´ (65536 –RCAP2H ¤ RCAP2L)

For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz (FOSC/216) to 4 MHz (FOSC/4). The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

Set T2OE bit in T2MOD register.

Clear C/T2 bit in T2CON register.

Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.

Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.

Rev. D - 15 January, 2001

15

TS80C51U2

TS83C51U2

TS87C51U2

To start the timer, set TR2 run control bit in T2CON register.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

XTAL1 :2

(:1 in X2 mode)

TR2

T2CON reg TL2 TH2 (8-bit) (8-bit)

OVERFLOW

RCAP2L RCAP2H (8-bit) (8-bit)

Toggle

T2

Q D

T2OE

T2MOD reg

T2EX

EXF2

TIMER 2

INTERRUPT

 

 

T2CON reg

EXEN2

T2CON reg

Figure 5. Clock-Out Mode C/T2 = 0

16

Rev. D - 15 January, 2001

TS80C51U2

TS83C51U2

TS87C51U2

Table 6. T2CON Register

T2CON - Timer 2 Control Register (C8h)

7

 

6

 

5

 

4

3

 

2

 

1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TF2

 

EXF2

 

RCLK

 

TCLK

EXEN2

 

TR2

 

C/T2#

 

CP/RL2#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit

 

Bit

 

 

 

 

Description

 

 

 

 

 

Number

Mnemonic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer 2 overflow Flag

 

 

 

 

 

 

 

 

7

 

TF2

 

Must be cleared by software.

 

 

 

 

 

 

 

 

 

 

 

Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer 2 External Flag

 

 

 

 

 

 

 

 

6

 

EXF2

 

Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1.

 

 

 

When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled.

 

 

 

 

 

 

 

 

Must be cleared by software. EXF2 doesn’t cause an interrupt in Up/down counter mode (DCEN = 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Receive Clock bit for UART_0

 

 

 

 

 

 

 

5

 

RCLK_0

 

Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3.

 

 

 

 

 

 

 

Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transmit Clock bit for UART_0

 

 

 

 

 

 

 

4

 

TCLK_0

 

Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3.

 

 

 

 

 

 

 

Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer 2 External Enable bit

 

 

 

 

 

 

 

3

 

EXEN2

 

Clear to ignore events on T2EX pin for timer 2 operation.

 

 

 

 

 

 

 

Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to

 

 

 

 

 

 

 

clock the serial port.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer 2 Run control bit

 

 

 

 

 

 

 

 

2

 

TR2

 

Clear to turn off timer 2.

 

 

 

 

 

 

 

 

 

 

 

Set to turn on timer 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer/Counter 2 select bit

 

 

 

 

 

 

 

1

 

C/T2#

 

Clear for timer operation (input from internal clock system: FOSC).

 

 

 

 

 

 

 

Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer 2 Capture/Reload bit

 

 

 

 

 

 

 

0

 

CP/RL2#

 

If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on timer 2 overflow.

 

 

Clear to auto-reload on timer 2 overflows or negative transitions on T2EX pin if EXEN2=1.

 

 

 

 

 

 

 

 

 

 

Set to capture on negative transitions on T2EX pin if EXEN2=1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Value = 0000 0000b

Bit addressable

Rev. D - 15 January, 2001

17

TS80C51U2

TS83C51U2

TS87C51U2

Table 7. T2MOD Register

T2MOD - Timer 2 Mode Control Register (C9h)

7

 

6

 

5

 

4

 

3

 

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

-

 

-

 

-

 

-

 

-

T2OE

DCEN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bit

 

Bit

 

 

 

 

 

Description

 

 

 

Number

Mnemonic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

-

Reserved

 

 

 

 

 

 

 

 

The value read from this bit is indeterminate. Do not set this bit.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Timer 2 Output Enable bit

 

 

 

 

 

 

 

1

 

T2OE

 

Clear to program P1.0/T2 as clock input or I/O port.

 

 

 

 

 

 

 

Set to program P1.0/T2 as clock output.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Down Counter Enable bit

 

 

 

 

 

 

 

0

 

DCEN

 

Clear to disable timer 2 as up/down counter.

 

 

 

 

 

 

 

Set to enable timer 2 as up/down counter.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset Value = XXXX XX00b

Not bit addressable

18

Rev. D - 15 January, 2001

TS80C51U2

TS83C51U2

TS87C51U2

7.4 TS80C51U2 Serial I/O Ports enhancements

The serial I/O ports in the TS80C51U2 are compatible with the serial I/O port in the 80C52.

They provide both synchronous and asynchronous communication modes. They operate as Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O ports include the following enhancements:

Framing error detection

Automatic address recognition

As these improvements apply to both UART, most of the time in the following lines, there won’t be any reference to UART_0 or UART_1, but only to UART, generally speaking. Idem for the bits in registers.

7.4.1 Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 6).

SM0/FE

 

SM1

SM2

 

REN

TB8

RB8

TI

RI

SCON_0 for UART_0 (98h)

 

 

 

 

 

 

 

 

 

 

 

 

 

(SCON_1 for UART_1 (C0h))

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set FE bit if stop bit is 0 (framing error)

(SMOD0_0 = 1 for UART_0)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SM0 to UART mode control (SMOD0_0 = 0 for UART_0)

SMOD1_0

SMOD0_0

-

 

POF

GF1

GF0

PD

IDL

PCON for UART_0 (87h)

 

 

 

 

 

 

 

 

 

 

 

(SMOD bits for UART_1 are

 

 

 

 

 

To UART framing error control

 

 

 

 

 

 

 

 

 

located in BDRCON_1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 8.) bit is set.

Rev. D - 15 January, 2001

19

TS80C51U2

TS83C51U2

TS87C51U2

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 7. and Figure 8.).

RXD

D0

D1

D2

D3

D4

D5

D6

D7

 

Start

Data byte

Stop

 

bit

 

bit

RI

 

 

SMOD0=X

 

 

FE

 

 

SMOD0=1

 

 

 

 

 

 

Figure 7. UART Timings in Mode 1

RXD

D0

D1

D2

D3

D4

D5

D6

D7

D8

 

Start

Data byte

Ninth Stop

 

bit

 

bit bit

RI

 

 

 

 

SMOD0=0

 

 

 

 

RI

 

 

 

 

 

 

 

 

SMOD0=1

 

 

 

 

 

 

 

 

 

 

FE

 

 

 

 

SMOD0=1

 

 

 

 

 

 

 

 

 

 

Figure 8. UART Timings in Modes 2 and 3

7.4.2 Automatic Address Recognition

The automatic address recognition feature is enabled for each UART when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device’s address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

NOTE: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

7.4.3 Given Address

Each UART has an individual address that is specified in SADDR_0 or SADDR_1 register; the SADEN_0 or SADEN_1 register is a mask byte that contains don’t-care bits (defined by zeros) to form the device’s given address. The don’t-care bits provide the flexibility to address one or more slaves at a time. The following example

20

Rev. D - 15 January, 2001

TS80C51U2

TS83C51U2

TS87C51U2

illustrates how a given address is formed.

To address a device by its individual address, the SADEN mask byte must be 1111 1111b. For example:

SADDR

0101 0110b

SADEN

1111 1100b

Given

0101 01XXb

The following is an example of how to use given addresses to address different slaves:

Slave A:

SADDR

1111 0001b

 

SADEN

1111 1010b

 

Given

1111 0X0Xb

Slave B:

SADDR

1111 0011b

 

SADEN

1111 1001b

 

Given

1111 0XX1b

Slave C:

SADDR

1111 0010b

 

SADEN

1111 1101b

 

Given

1111 00X1b

The SADEN byte is selected so that each slave may be addressed separately.

For slave A, bit 0 (the LSB) is a don’t-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b).

For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don’t care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b).

To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).

7.4.4 Broadcast Address

A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don’t-care bits, e.g.:

SADDR

0101 0110b

SADEN

1111 1100b

Broadcast =SADDR OR SADEN

1111 111Xb

The use of don’t-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

Slave A:

SADDR

1111

0001b

 

SADEN

1111

1010b

 

Broadcast

1111

1X11b,

Slave B:

SADDR

1111

0011b

 

SADEN

1111

1001b

 

Broadcast

1111

1X11B,

Slave C:

SADDR=

1111

0010b

 

SADEN

1111

1101b

 

Broadcast

1111

1111b

For slaves A and B, bit 2 is a don’t care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

7.4.5 Reset Addresses

On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are XXXX XXXXb (all don’t-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

Rev. D - 15 January, 2001

21

Loading...
+ 46 hidden pages