Analog Devices AD620AN, AD620ACHIPS, AD620BN Datasheet

0 (0)

a

Low Cost, Low Power

Instrumentation Amplifier

 

 

 

 

 

AD620

 

 

 

FEATURES EASY TO USE

Gain Set with One External Resistor (Gain Range 1 to 1000)

Wide Power Supply Range (62.3 V to 618 V)

Higher Performance than Three Op Amp IA Designs Available in 8-Lead DIP and SOIC Packaging

Low Power, 1.3 mA max Supply Current

EXCELLENT DC PERFORMANCE (“B GRADE”) 50 mV max, Input Offset Voltage

0.6 mV/8C max, Input Offset Drift

1.0 nA max, Input Bias Current

100 dB min Common-Mode Rejection Ratio (G = 10)

LOW NOISE

9 nV/ÖHz, @ 1 kHz, Input Voltage Noise 0.28 mV p-p Noise (0.1 Hz to 10 Hz)

EXCELLENT AC SPECIFICATIONS 120 kHz Bandwidth (G = 100)

15 ms Settling Time to 0.01%

APPLICATIONS

Weigh Scales

ECG and Medical Instrumentation

Transducer Interface

Data Acquisition Systems

Industrial Process Controls

Battery Powered and Portable Equipment

PRODUCT DESCRIPTION

The AD620 is a low cost, high accuracy instrumentation amplifier that requires only one external resistor to set gains of 1 to

CONNECTION DIAGRAM

8-Lead Plastic Mini-DIP (N), Cerdip (Q)

and SOIC (R) Packages

RG

1

 

8

RG

–IN

2

 

7

+VS

+IN

3

 

6

OUTPUT

–V

4

AD620

5

REF

S

 

TOP VIEW

1000. Furthermore, the AD620 features 8-lead SOIC and DIP packaging that is smaller than discrete designs, and offers lower power (only 1.3 mA max supply current), making it a good fit for battery powered, portable (or remote) applications.

The AD620, with its high accuracy of 40 ppm maximum nonlinearity, low offset voltage of 50 mV max and offset drift of 0.6 mV/°C max, is ideal for use in precision data acquisition systems, such as weigh scales and transducer interfaces. Furthermore, the low noise, low input bias current, and low power of the AD620 make it well suited for medical applications such as ECG and noninvasive blood pressure monitors.

The low input bias current of 1.0 nA max is made possible with the use of Superbeta processing in the input stage. The AD620 works well as a preamplifier due to its low input voltage noise of 9 nV/ÖHz at 1 kHz, 0.28 mV p-p in the 0.1 Hz to 10 Hz band, 0.1 pA/ÖHz input current noise. Also, the AD620 is well suited for multiplexed applications with its settling time of 15 ms to 0.01% and its cost is low enough to enable designs with one inamp per channel.

 

30,000

 

 

 

 

SCALE

25,000

 

 

3 OP-AMP

 

 

 

 

IN-AMP

 

 

 

 

(3 OP-07s)

 

OF FULL

 

 

 

 

20,000

 

 

 

 

 

 

 

 

 

PPM

15,000

 

 

 

 

 

AD620A

 

 

 

ERROR,

 

 

 

 

10,000

RG

 

 

 

 

 

 

 

TOTAL

5,000

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

0

5

10

15

20

 

 

 

SUPPLY CURRENT – mA

 

 

Figure 1. Three Op Amp IA Designs vs. AD620

10,000

 

 

 

 

 

 

1,000

 

 

 

 

 

VOLTAGE NOISE – 10Hz) –mV p-p

 

 

TYPICAL STANDARD

 

 

 

 

BIPOLAR INPUT

 

 

 

100

 

IN-AMP

 

 

 

 

 

 

 

 

 

G = 100

 

 

 

10

 

 

 

 

 

RTI (0.1

 

 

 

 

AD620 SUPERbETA

 

 

 

 

 

 

 

 

1

 

 

 

BIPOLAR INPUT

 

 

 

 

 

IN-AMP

 

 

0.1

 

 

 

 

 

 

1k

10k

100k

1M

10M

100M

 

 

 

SOURCE RESISTANCE –V

 

Figure 2. Total Voltage Noise vs. Source Resistance

REV. E

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700

World Wide Web Site: http://www.analog.com

Fax: 781/326-8703

© Analog Devices, Inc., 1999

AD620–SPECIFICATIONS

(Typical @ +258C, VS = 615 V, and RL = 2 kV, unless otherwise noted)

 

 

 

AD620A

 

AD620B

 

 

AD620S1

 

Model

Conditions

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

Units

 

 

 

 

 

 

 

 

 

 

 

 

GAIN

G = 1 + (49.4 k/RG)

 

 

 

 

 

 

 

 

 

 

Gain Range

VOUT = ± 10 V

1

 

10,000

1

 

10,000

1

 

10,000

 

Gain Error2

 

 

 

 

 

 

 

 

 

 

G = 1

 

 

0.03

0.10

 

0.01

0.02

 

0.03

0.10

%

G = 10

 

 

0.15

0.30

 

0.10

0.15

 

0.15

0.30

%

G = 100

 

 

0.15

0.30

 

0.10

0.15

 

0.15

0.30

%

G = 1000

 

 

0.40

0.70

 

0.35

0.50

 

0.40

0.70

%

Nonlinearity,

VOUT = –10 V to +10 V,

 

 

 

 

 

 

 

 

 

 

G = 1–1000

RL = 10 kΩ

 

10

40

 

10

40

 

10

40

ppm

G = 1–100

RL = 2 kΩ

 

10

95

 

10

95

 

10

95

ppm

Gain vs. Temperature

 

 

 

 

 

 

 

 

 

 

ppm/°C

 

G =1

 

 

10

 

 

10

 

 

10

 

Gain >12

 

 

–50

 

 

–50

 

 

–50

ppm/°C

VOLTAGE OFFSET

(Total RTI Error = VOSI + VOSO/G)

 

 

 

 

 

 

 

 

 

Input Offset, VOSI

VS = ±5 V to ±15 V

 

30

125

 

15

50

 

30

125

μV

 

 

 

Over Temperature

VS = ±5 V to ±15 V

 

 

185

 

 

85

 

 

225

μV

Average TC

VS = ±5 V to ±15 V

 

0.3

1.0

 

0.1

0.6

 

0.3

1.0

μV/°C

Output Offset, VOSO

VS = ±15 V

 

400

1000

 

200

500

 

400

1000

μV

 

VS = ±5 V

 

 

1500

 

 

750

 

 

1500

μV

Over Temperature

VS = ±5 V to ±15 V

 

 

2000

 

 

1000

 

 

2000

μV

Average TC

VS = ± 5 V to ±15 V

 

5.0

15

 

2.5

7.0

 

5.0

15

μV/°C

Offset Referred to the

 

 

 

 

 

 

 

 

 

 

 

Input vs.

VS = ±2.3 V to ±18 V

 

 

 

 

 

 

 

 

 

 

Supply (PSR)

 

 

 

 

 

 

 

 

 

 

G = 1

 

80

100

 

80

100

 

80

100

 

dB

G = 10

 

95

120

 

100

120

 

95

120

 

dB

G = 100

 

110

140

 

120

140

 

110

140

 

dB

G = 1000

 

110

140

 

120

140

 

110

140

 

dB

 

 

 

 

 

 

 

 

 

 

 

 

INPUT CURRENT

 

 

 

 

 

 

 

 

 

 

 

Input Bias Current

 

 

0.5

2.0

 

0.5

1.0

 

0.5

2

nA

Over Temperature

 

 

 

2.5

 

 

1.5

 

 

4

nA

Average TC

 

 

3.0

 

 

3.0

 

 

8.0

 

pA/°C

Input Offset Current

 

 

0.3

1.0

 

0.3

0.5

 

0.3

1.0

nA

Over Temperature

 

 

 

1.5

 

 

0.75

 

 

2.0

nA

Average TC

 

 

1.5

 

 

1.5

 

 

8.0

 

pA/°C

 

 

 

 

 

 

 

 

 

 

 

 

INPUT

 

 

 

 

 

 

 

 

 

 

 

Input Impedance

 

 

 

 

 

 

 

 

 

 

GΩipF

Differential

 

 

10i2

 

 

10i2

 

 

10i2

 

Common-Mode

VS = ±2.3 V to ±5 V

 

10i2

 

 

10i2

 

 

10i2

 

GΩipF

Input Voltage Range3

–VS + 1.9

 

+VS – 1.2

–VS + 1.9

 

+VS – 1.2

–VS + 1.9

 

+VS – 1.2

V

Over Temperature

VS = ±5 V to ±18 V

–VS + 2.1

 

+VS – 1.3

–VS + 2.1

 

+VS – 1.3

–VS + 2.1

 

+VS – 1.3

V

 

–VS + 1.9

 

+VS – 1.4

–VS + 1.9

 

+VS – 1.4

–VS + 1.9

 

+VS – 1.4

V

Over Temperature

 

–VS + 2.1

 

+VS – 1.4

–VS + 2.1

 

+VS – 1.4

–VS + 2.3

 

+VS – 1.4

V

Common-Mode Rejection

 

 

 

 

 

 

 

 

 

 

 

Ratio DC to 60 Hz with

 

 

 

 

 

 

 

 

 

 

 

I kΩ Source Imbalance

VCM = 0 V to ±10 V

 

 

 

 

 

 

 

 

 

 

G = 1

 

73

90

 

80

90

 

73

90

 

dB

G = 10

 

93

110

 

100

110

 

93

110

 

dB

G = 100

 

110

130

 

120

130

 

110

130

 

dB

G = 1000

 

110

130

 

120

130

 

110

130

 

dB

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT

RL = 10 kΩ,

 

 

 

 

 

 

 

 

 

 

Output Swing

 

 

 

 

 

 

 

 

 

 

 

VS = ±2.3 V to ±5 V

–VS + 1.1

 

+VS – 1.2

–VS + 1.1

 

+VS – 1.2

–VS + 1.1

 

+VS – 1.2

V

Over Temperature

VS = ±5 V to ±18 V

–VS + 1.4

 

+VS – 1.3

–VS + 1.4

 

+VS – 1.3

–VS + 1.6

 

+VS – 1.3

V

 

–VS + 1.2

 

+VS – 1.4

–VS + 1.2

 

+VS – 1.4

–VS + 1.2

 

+VS – 1.4

V

Over Temperature

 

–VS + 1.6

± 18

+VS – 1.5

–VS + 1.6

± 18

+VS – 1.5

–VS + 2.3

± 18

+VS – 1.5

V

Short Current Circuit

 

 

 

 

 

 

 

mA

 

 

 

 

 

 

 

 

 

 

 

 

–2–

REV. E

 

 

 

 

 

 

 

 

 

 

 

AD620

 

 

 

 

AD620A

 

AD620B

 

AD620S1

 

Model

Conditions

 

Min

Typ

Max

Min

Typ

Max

Min

Typ

Max

Units

 

 

 

 

 

 

 

 

 

 

 

 

 

DYNAMIC RESPONSE

 

 

 

 

 

 

 

 

 

 

 

 

Small Signal –3 dB Bandwidth

 

 

 

 

 

 

 

 

 

 

 

 

G = 1

 

 

 

1000

 

 

1000

 

 

1000

 

kHz

G = 10

 

 

 

800

 

 

800

 

 

800

 

kHz

G = 100

 

 

 

120

 

 

120

 

 

120

 

kHz

G = 1000

 

 

 

12

 

 

12

 

 

12

 

kHz

Slew Rate

 

 

0.75

1.2

 

0.75

1.2

 

0.75

1.2

 

V/ms

Settling Time to 0.01%

10 V Step

 

 

 

 

 

 

 

 

 

 

ms

G = 1–100

 

 

 

15

 

 

15

 

 

15

 

G = 1000

 

 

 

150

 

 

150

 

 

150

 

ms

 

 

 

 

 

 

 

 

 

 

 

 

 

NOISE

 

 

 

 

 

 

 

 

 

 

 

 

 

Total RTI Noise =

 

 

 

 

 

 

 

 

 

 

Voltage Noise, 1 kHz

(e2 ni ) +(eno / G)2

 

 

 

 

 

 

 

 

Input, Voltage Noise, eni

 

 

 

9

13

 

9

13

 

9

13

nV/ÖHz

 

 

 

 

 

Output, Voltage Noise, eno

 

 

 

72

100

 

72

100

 

72

100

nV/ÖHz

RTI, 0.1 Hz to 10 Hz

 

 

 

 

 

 

 

 

 

 

 

mV p-p

G = 1

 

 

 

3.0

 

 

3.0

6.0

 

3.0

6.0

G = 10

 

 

 

0.55

 

 

0.55

0.8

 

0.55

0.8

mV p-p

G = 100–1000

 

 

 

0.28

 

 

0.28

0.4

 

0.28

0.4

mV p-p

Current Noise

f = 1 kHz

 

 

100

 

 

100

 

 

100

 

fA/ÖHz

0.1 Hz to 10 Hz

 

 

 

10

 

 

10

 

 

10

 

pA p-p

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCE INPUT

 

 

 

 

 

 

 

 

 

 

 

kW

RIN

 

 

 

20

 

 

20

 

 

20

 

IIN

VIN+, VREF = 0

 

 

+50

+60

 

+50

+60

 

+50

+60

mA

Voltage Range

 

 

–VS + 1.6

+VS – 1.6

–VS + 1.6

+VS – 1.6

–VS + 1.6

+VS – 1.6

V

Gain to Output

 

 

 

1 ± 0.0001

 

1 ± 0.0001

 

1 ± 0.0001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

POWER SUPPLY

 

 

± 2.3

 

± 18

± 2.3

 

± 18

± 2.3

 

± 18

 

Operating Range4

VS = ±2.3 V to ±18 V

 

 

 

V

Quiescent Current

 

0.9

1.3

 

0.9

1.3

 

0.9

1.3

mA

Over Temperature

 

 

 

1.1

1.6

 

1.1

1.6

 

1.1

1.6

mA

 

 

 

 

 

 

 

 

 

 

 

 

 

TEMPERATURE RANGE

 

 

 

 

 

 

 

 

 

 

 

 

For Specified Performance

 

 

 

–40 to +85

 

 

–40 to +85

 

 

–55 to +125

°C

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES

1See Analog Devices military data sheet for 883B tested specifications. 2Does not include effects of external resistor RG.

3One input grounded. G = 1.

4This is defined as the same supply range which is used to specify PSR.

Specifications subject to change without notice.

REV. E

–3–

AD620

ABSOLUTE MAXIMUM RATINGS1

±18 V

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . .

Internal Power Dissipation2 . . . . . . . . . . . . . .

. . . . . . . 650 mW

Input Voltage (Common Mode) . . . . . . . . . .

. . . . . . . . . . ±VS

Differential Input Voltage . . . . . . . . . . . . . . .

. . . . . . . . .±25 V

Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite

Storage Temperature Range (Q) . . . . . . . . . .

–65°C to +150°C

Storage Temperature Range (N, R) . . . . . . . .

–65°C to +125°C

Operating Temperature Range

–40°C to +85°C

AD620 (A, B) . . . . . . . . . . . . . . . . . . . . . .

AD620 (S) . . . . . . . . . . . . . . . . . . . . . . . .

–55°C to +125°C

Lead Temperature Range

+300°C

(Soldering 10 seconds) . . . . . . . . . . . . . . . .

NOTES

1Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2Specification is for device in free air:

8-Lead Plastic Package: qJA = 95°C/W

8-Lead Cerdip Package: qJA = 110°C/W

8-Lead SOIC Package: qJA = 155°C/W

ORDERING GUIDE

Model

Temperature Ranges

Package Options*

 

 

 

AD620AN

–40°C to +85°C

N-8

AD620BN

–40°C to +85°C

N-8

AD620AR

–40°C to +85°C

SO-8

AD620AR-REEL

–40°C to +85°C

13" REEL

AD620AR-REEL7

–40°C to +85°C

7" REEL

AD620BR

–40°C to +85°C

SO-8

AD620BR-REEL

–40°C to +85°C

13" REEL

AD620BR-REEL7

–40°C to +85°C

7" REEL

AD620ACHIPS

–40°C to +85°C

Die Form

AD620SQ/883B

–55°C to +125°C

Q-8

 

 

 

*N = Plastic DIP; Q = Cerdip; SO = Small Outline.

METALIZATION PHOTOGRAPH

Dimensions shown in inches and (mm).

Contact factory for latest dimensions.

RG*

+VS

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

7

 

6

 

5 REFERENCE

8

0.0708

(1.799)

1

1

2

 

3

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.125

 

 

 

 

–V

RG*

 

 

(3.180)

+IN

 

 

 

S

 

 

 

 

–IN

 

 

 

 

 

 

 

 

 

 

*FOR CHIP APPLICATIONS: THE PADS 1RG AND 8RG MUST BE CONNECTED IN PARALLEL TO THE EXTERNAL GAIN REGISTER RG. DO NOT CONNECT THEM IN SERIES TO RG. FOR UNITY GAIN APPLICATIONS WHERE RG IS NOT REQUIRED, THE PADS 1RG MAY SIMPLY BE BONDED TOGETHER, AS WELL AS THE PADS 8RG.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD620 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!

ESD SENSITIVE DEVICE

–4–

REV. E

Analog Devices AD620AN, AD620ACHIPS, AD620BN Datasheet

AD620

Typical Characteristics (@ +258C, VS = 615 V, RL = 2 kV, unless otherwise noted)

PERCENTAGE OF UNITS

50

SAMPLE SIZE = 360

40

30

20

10

0

–80

–40

0

+40

+80

 

INPUT OFFSET VOLTAGE –mV

 

INPUT BIAS CURRENT – nA

2.0

1.5

1.0

+IB

–I 0.5 B

0

–0.5

–1.0

–1.5

–2.0

–75

–25

25

75

125

175

 

TEMPERATURE –8C

 

 

Figure 3. Typical Distribution of Input Offset Voltage

Figure 6. Input Bias Current vs. Temperature

50

SAMPLE SIZE = 850

 

40

 

 

 

 

UNITS

30

 

 

 

 

OF

 

 

 

 

 

 

 

 

 

PERCENTAGE

20

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

–1200

–600

0

+600

+1200

 

 

INPUT BIAS CURRENT – pA

 

Figure 4. Typical Distribution of Input Bias Current

 

50

 

 

 

 

 

SAMPLE SIZE = 850

 

 

 

 

40

 

 

 

 

UNITS

30

 

 

 

 

OF

 

 

 

 

 

 

 

 

 

PERCENTAGE

20

 

 

 

 

 

10

 

 

 

 

 

0

–200

0

+200

+400

 

–400

 

 

INPUT OFFSET CURRENT – pA

 

Figure 5. Typical Distribution of Input Offset Current

 

2

mV

1.5

VOLTAGE

 

OFFSETIN

1

 

CHANGE

0.5

 

 

0

0

1

2

3

4

5

WARM-UP TIME – Minutes

Figure 7. Change in Input Offset Voltage vs. Warm-Up Time

1000

 

 

 

 

 

 

 

 

GAIN = 1

 

 

 

nV/!Hz

100

 

 

 

 

 

 

 

 

 

 

 

 

 

GAIN = 10

 

 

 

NOISE

 

 

 

 

 

 

 

 

 

 

 

VOLTAGE

10

 

 

 

 

 

 

GAIN = 100, 1,000

 

 

 

 

 

 

 

 

 

 

 

 

GAIN = 1000

 

 

 

 

 

 

BW LIMIT

 

 

 

1

10

 

 

 

 

 

1

100

1k

10k

100k

 

 

 

FREQUENCY – Hz

 

 

Figure 8. Voltage Noise Spectral Density vs. Frequency, (G = 1–1000)

REV. E

–5–

Loading...
+ 11 hidden pages