AMD Advanced Micro Devices AM7969-175JC, AM7969-175DC, AM7969-125V-BXA, AM7969-125VB3A, AM7969-125JC Datasheet

...
0 (0)

TAXIchipTM Integrated Circuits

Transparent Asynchronous

Transmitter/Receiver Interface

Am7968/Am7969-125

Am7968/Am7969-175

Data Sheet

and

Technical Manual

1994

ã 1994 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchantability or fitness for a particular application. AMDâ assumes no responsibility for the use of any circuitry other than the circuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice. AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

Trademarks

AMD and the AMD logo are registered trademarks of Advanced Micro Devices, Inc.

TAXIchip and TAXI are trademarks of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

TABLE OF CONTENTS

 

Am7968/Am7969 TAXIchip Integrated Circuits

 

Am7968/Am7969

Data Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 1

Am7968/Am7969

Technical Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

Chapter 1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

 

1.1

The Am7968 TAXITM Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

 

1.2 The Am7969 TAXI Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

Chapter 2

Using the TAXIchip Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

 

2.1 Data and Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

52

 

2.2

Operational Modes: Local, Cascade and Test . . . . . . . . . . . . . . . . . . . . . . . .

53

Chapter 3

Data Encoding, Violation and Syncs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53

 

3.1

Data Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53

 

3.2

Violation Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

 

3.3

TAXI PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

Chapter 4

Clock Generation and Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

 

4.1

TAXI Transmitter Clock Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

 

 

4.1.1 Local Mode Transmitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60

 

4.2

TAXI Receiver Clock Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60

 

 

4.2.1 Cascade Mode Receivers (Am7969-125 only) . . . . . . . . . . . . . . . . . .

61

Chapter 5

Interfacing with the Serial Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

61

 

5.1

Very Short Link, DC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

62

 

5.2

Terminated, DC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

 

5.3

Terminated, AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

 

5.4

Baseline Wander and the AC Coupling Capacitor . . . . . . . . . . . . . . . . . . . . .

64

 

5.5

Interfacing to Fiber Optic Transmitters/Receivers . . . . . . . . . . . . . . . . . . . . .

66

 

 

5.5.1 DC-Coupled TAXl-Fiber Optic Transceiver Interface . . . . . . . . . . . . .

66

 

 

5.5.2 AC-Coupled TAXl-Fiber Optic Transceiver Interface . . . . . . . . . . . . .

68

 

5.6

Interfacing to Coaxial Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68

 

5.7

Interfacing to Twisted-Pair Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

70

Chapter 6

Board Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

71

 

6.1

Printed Circuit Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

71

 

 

6.1.1 Rules for Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

71

 

6.2

Layout using Fiber Optic Data Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

73

Table of Contents

iii

AMD

Chapter 7 Cascade Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

74

7.1 Transmit Cascaded Data with a Single TAXI Transmitter . . . . . . . . . . . . . . . 76 7.2 Receivers In Cascade Mode: Connections (Am7969-125 only) . . . . . . . . . . . 79 7.3 Auto-Repeat Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.3.1 Receiver Connections in Auto-Repeat Configuration . . . . . . . . . . . . . 81 7.3.2 Timing Limitations of the Auto-Repeat Configuration . . . . . . . . . . . . . 84 7.4 Unbalanced Configuration (Am7968/Am7969-125 only) . . . . . . . . . . . . . . . . 85

Chapter 8

Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

86

 

8.1

Transmitter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

87

 

8.2

Receiver Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89

 

8.3 Timing Relationships in Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89

Appendix A Optical Components Manufacturers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

90

Appendix B Error Detection Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

91

Appendix C

TAXI TIPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

94

iv

Table of Contents

FINAL

Am7968/Am7969

Advanced

TAXIchipTM Integrated Circuits

Micro

Devices

(Transparent Asynchronous Xmitter-Receiver Interface)

 

DISTINCTIVE CHARACTERISTICS

Parallel TTL bus interface

Eight Data and four Command Pins

or nine Data and three Command Pins

or ten Data and two Command Pins

Transparent synchronous serial link

+5 V ECL Serial I/O

AC or DC coupled

NRZI 4B/5B, 5B/6B encoding/decoding

Drive coaxial cable or twisted pair directly

Easy interface with fiber optic data links

32–140 Mbps (4–17.5 Mbyte/s) data throughput

Asynchronous input using STRB/ACK

Automatic MUX/DEMUX of Data and Command

Complete on-chip PLL, Crystal Oscillator

Single +5 V supply operation

28-pin PLCC or DIP or LCC

GENERAL DESCRIPTION

The Am7968 TAXIchip Transmitter and Am7969 TAXIchip Receiver Chipset is a general-purpose interface for very high-speed (4–17.5 Mbyte/s, 40–175 Mbaud serially) point-to-point communications over coaxial or fiber-optic media. The TAXIchip set emulates a pseudo-parallel register. They load data into one side and output it on the other, except in this case, the “other” side is separated by a long serial link.

The speed of a TAXIchip system is adjustable over a range of frequencies, with parallel bus transfer rates of 4 Mbyte/s at the low end, and up to 17.5 Mbyte/s at the high end. The flexible bus interface scheme of the TAXIchip set accepts bytes that are either 8, 9, or 10 bits wide. Byte transfers can be Data or Command signaling.

BLOCK DIAGRAM

Am7968

 

 

Data

Command

 

 

N

M

Strobe (STRB)

Strobe &

Input Latch

Acknowledge (ACK

Acknowledge

 

 

 

X1

 

 

 

 

 

 

Oscillator

Encoder Latch

 

 

 

 

and

 

 

 

 

X2

Clock Gen.

 

 

 

Clock (CLK)

 

 

 

 

Data Mode Select (DMS)

 

Data Encoder

 

 

 

 

 

 

 

 

 

Shifter

Media

(SEROUT+) Serial Out +

Test Serial In

Serial Interface

Interface

(SEROUT–) Serial Out –

 

(TSERIN)

 

 

 

 

 

 

 

Test/Local Select (TLS)

 

 

07370F-1

Note:

 

 

 

 

 

 

 

 

 

N can be 8, 9, or 10 bits; total of N + M = 12.

Publication# 07370 Rev. F Amendment /0

Issue Date: April 1994

AMD

 

 

 

BLOCK DIAGRAM (continued)

 

 

Am7969

 

 

 

 

 

 

(X1)

 

 

 

Oscillator

Serial In+ (SERIN+)

Media

 

and

Shifter

Clock Gen.

 

Serial In– (SERIN–)

Interface

 

(X2)

 

 

 

PLL Clock

 

 

Decoder Latch

Generator

 

 

 

(DMS) Data Mode Select

 

Data Decoder

Byte Sync

(CNB) Catch Next Byte

 

 

Logic

(IGM) I-Got-Mine

 

Output Latch

 

(CLK) Clock

 

N

M

(DSTRB) Data Strobe

(VLTN)

 

 

 

 

 

Violation

Data Command

(CSTRB) Command Strobe

Note:

 

 

N can be 8, 9, or 10 bits Total of N + M = 12

07370F-2

 

CONNECTION DIAGRAMS

Top View

Am7968

DIPs

 

 

 

 

 

 

 

ACK

 

1

 

28

 

DI5

 

 

 

 

 

 

 

STRB

 

2

 

27

 

DI4

SEROUT+

 

3

 

26

 

DI3

 

 

 

 

 

 

 

 

SEROUT–

 

4

 

25

 

DI2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC2 (ECL)

 

5

 

24

 

DI1

 

 

 

 

 

 

 

VCC1 (TTL)

 

6

 

23

 

DI0

 

 

 

 

 

 

 

 

 

 

 

 

VCC3 (CML)

 

7

 

22

 

GND1 (TTL)

RESET

 

 

 

 

 

 

 

8

 

21

 

GND2 (CML)

DMS

 

 

 

 

 

X1

 

9

 

20

 

TLS

 

 

 

 

 

X2

 

10

 

19

 

 

 

 

 

 

 

 

TSERIN

 

11

 

18

 

CLK

 

 

 

 

 

 

 

CI0

 

12

 

17

 

DI6

CI1

 

 

 

 

 

DI7

 

13

 

16

 

DI9/CI2

 

 

 

 

 

DI8/CI3

 

14

 

15

 

 

 

 

 

 

 

07370F-3

 

 

 

 

 

 

Note:

Pin 1 is marked for orientation.

LCC/PLCC

 

 

 

SEROUT-

SEROUT+

STRB

ACK

DI5

DI4

DI3

 

 

 

 

3

2

1

28

27

26

 

 

 

 

4

 

VCC2 (ECL)

5

 

 

 

 

 

 

25

DI2

VCC1 (TTL)

6

 

 

 

 

 

 

24

DI1

VCC3 (TTL)

7

 

 

 

 

 

 

23

DI0

RESET

8

 

 

 

 

 

 

22

GND1 (TTL)

DMS

9

 

 

 

 

 

 

21

GND2 (CML)

TLS

10

 

 

 

 

 

20

X1

TSERIN

11

 

 

 

 

 

19

X2

 

12

13

14

15

16

17

18

07370F-4

 

 

 

 

 

 

 

 

 

 

 

 

 

CI0

CI1

DI9/CI2

DI8/CI3

DI7

DI6

CLK

 

2

Am7968/Am7969

AMD

CONNECTION DIAGRAMS (continued)

Top View

Am7969

DIPs

LCC/PLCC

 

 

 

 

 

 

 

DO3

 

1

 

28

 

DO4

DO2

 

 

 

 

 

DO5

 

2

 

27

 

DO1

 

3

 

26

 

DO6

 

 

 

 

 

 

 

 

DO0

 

4

 

25

 

DO7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IGM

 

5

 

24

 

CNB

 

 

 

 

 

 

 

RESET

 

6

 

23

 

X2

 

 

 

 

 

 

 

VCC1 (TTL)

 

7

 

22

 

X1

 

 

 

 

 

 

 

VCC2 (CML)

 

8

 

21

 

GND2 (CML)

 

 

 

 

 

SERIN+

 

 

 

 

 

GND1 (TTL)

 

9

 

20

 

SERIN–

 

 

 

 

 

CLK

 

10

 

19

 

 

 

 

 

 

 

 

DMS

 

11

 

18

 

DO8/CO3

DSTRB

 

 

 

 

 

DO9/C02

 

12

 

17

 

 

 

 

 

 

 

 

CSTRB

 

13

 

16

 

CO1

VLTN

 

 

 

 

 

CO0

 

14

 

15

 

 

 

 

 

 

 

07370F-5

 

 

 

 

 

 

Note:

Pin 1 is marked for orientation.

 

 

 

DO0

DO1

DO2

DO3

DO4

DO5

DO6

 

 

 

 

3

2

1

28

27

26

 

 

 

 

4

 

IGM

5

 

 

 

 

 

 

25

DO7

RESET

6

 

 

 

 

 

 

24

CNB

VCC1 (TTL)

7

 

 

 

 

 

 

23

X2

VCC2 (CML)

8

 

 

 

 

 

 

22

X1

SERIN+

9

 

 

 

 

 

 

21

GND2 (CML)

SERIN-

10

 

 

 

 

 

20

GND1 (TTL)

DMS

11

 

 

 

 

 

19

CLK

 

12

13

14

15

16

17

18

 

 

 

 

DSTRB

CSTRB

VLTN

CO0

CO1

DO9/CO2

DO8/CO3

07370F-6

 

 

 

 

 

 

 

 

 

 

LOGIC SYMBOLS

Am7968

Am7969

TLS

DMS

RESET

CNB

DMS

RESET

12

 

2

2

 

12

DIn/CIm

 

SEROUT+

SERIN+

 

DOn/COm

STRB

 

 

 

 

VLTN

 

 

 

 

 

 

 

ACK

 

 

DSTRB

X1

 

 

X1

 

 

 

 

 

 

 

CSTRB

X2

 

 

X2

 

IGM

 

 

 

 

 

TSERIN

 

CLK

 

 

CLK

07370F-7

07370F-8

VCC = Power Supply (3)

VCC = Power Supply (2)

GND = Ground (2)

GND = Ground (2)

Am7968/Am7969

3

AMD

ORDERING INFORMATION Standard Products

AMD standard products are available in several packages and operating ranges. The ordering number (Valid Combination) is formed by a combination of:

AM7968

 

D

C

AM7969

–125

DEVICE NUMBER/DESCRIPTION

Am7968 TAXIchip Transmitter

Am7969 TAXIchip Receiver

Valid Combinations

AM7968-125

AM7969-125

DC, JC

AM7968-175

AM7969-175

TEMPERATURE RANGE

C = Commerical (0°C to +70°C)

PACKAGE TYPE

D = 28-Pin Ceramic DIP (CD 028)

J= 28-Pin Plastic Leaded Chip Carrier (PL 028)

SPEED OPTION

-125 = Max Serial Encoded Transmission Rate is 125 MHz

-175 = Max Serial Encoded Transmission Rate is 175 MHz

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

4

Am7968/Am7969

AMD

MILITARY ORDERING INFORMATION

CPL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. CPL (Controlled

Products List) products are compliant with MIL-STD-883C requirements with exceptions for VCC or operating temperature. The order number (Valid Combination) is formed by a combination of:

AM7968

-125

/L

 

C

AM7969

K

C = Controlled Product List

TEMPERATURE RANGE

K = –30 °C to 125°C

M = –55 °C to 125°C

PACKAGE TYPE

D = 28-Pin Ceramic DIP (CD 028)

L = 28-Pin Ceramic Leadless Chip

Carrier (CL 028)

SPEED OPTION

-125 = Max Serial Encoded Transmission Rate is 125 MHz

DEVICE NUMBER/DESCRIPTION

Am7968 – TAXIchip Transmitter (Local Mode only)

Am7969 – TAXIchip Receiver (Local Mode only)

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

 

 

 

 

Group A Tests

 

 

 

 

 

Group A tests consist of Subgroups

 

 

 

 

1, 2, 3, 7, 8, 9, 10, 11.

 

 

 

 

Valid Combinations

 

 

 

 

 

 

 

Pkg

Temps (TC)

VCC

CPL Part Number

SMD Part Number

 

APL Part Number

 

 

 

 

 

 

 

LCC

–30 °C to 125°C

4.5 V to 5.5 V

AM7968-125/LKC

 

 

 

 

 

 

 

 

 

 

LCC

–55 °C to 125°C

4.75 V to 5.5 V

 

5962-9052701M3A

 

AM7968-125V/B3A

 

 

 

 

 

 

 

DIP

–30 °C to 125°C

4.5 V to 5.5 V

AM7968-125/DKC

 

 

 

 

 

 

 

 

 

 

DIP

–55 °C to 125°C

4.75 V to 5.5 V

 

5962-9052701MXA

 

AM7968-125V/BXA

 

 

 

 

 

 

 

LCC

–30 °C to 125°C

4.5 V to 5.5 V

AM7969-125/LKC

 

 

 

 

 

 

 

 

 

 

LCC

–55 °C to 125°C

4.75 V to 5.5 V

 

5962-9052801M3A

 

AM7969-125V/B3A

 

 

 

 

 

 

 

DIP

–30 °C to 125°C

4.5 V to 5.5 V

AM7969-125/DKC

 

 

 

 

 

 

 

 

 

 

DIP

–55 °C to 125°C

4.75 V to 5.5 V

 

5962-9052801MXA

 

AM7969-125V/BXA

 

 

 

 

 

 

 

Am7968/Am7969

5

AMD

PIN DESCRIPTION

Command. When it is wired to VCC, the Am7968

Am7968 TAXIchip Transmitter

Transmitter will assume Data to be nine bits wide, with

three bits of Command. If DMS is left floating (or termi-

ACK

nated to 1/2 VCC), the Am7968 will assume Data to be

Input-Strobe Acknowledge (TTL Output)

ten bits wide, with two bits of Command.

ACK High signifies that the Am7968 is ready to accept

GND1, GND2

new Data and Command. The timing of ACK’s response

Ground Pins

to STRB depends on the condition of the Input Latch (in

GND1 is a TTL I/O Ground and GND2 is an internal

given CLK cycle).

If the Input Latch is empty, data is immediately stored

Logic and Analog Ground.

RESET

and ACK closely follows STRB. If the Input Latch con-

tains previously stored data when STRB is asserted,

PLL RESET (Input)

ACK is delayed until the next falling edge of CLK. Note

This pin is normally left open, but can be momentarily

that for ACK to rise STRB must maintain HIGH for both

grounded to force the internal PLL to reactivate lock.

of the above conditions.

This allows for correction in the unlikely occurrence of

 

CI0 – CI1

PLL lockup on application of power.

 

Parallel Command In (TTL Inputs)

These two inputs accept parallel command information from the host system. If one or more command bits are logic “1”, the command bit pattern is latched, encoded, and transmitted in place of any pattern on the Data inputs.

RESET has an internal pull-up resistor which causes it to float high when left unconnected (50 K ohm nominal).

If this board is driven by a board Reset signal, an open drain (or open collector) style output should be used to insure the High level signal is at VCC.

CLK

Clock (TTL I/O)

CLK is an I/O pin that supplies the byte-rate clock reference to drive all internal logic. When TLS is connected to ground (Local mode), CLK is enabled as a free-running (byte-rate) clock output which runs at the Crystal Oscillator frequency; this output can be used to drive the X1 input of TAXIchip Receivers or other system logic. In Test mode CLK becomes an input. In Test Mode 1 CLK is a Byte rate input and in Test Mode 2 it is a Bit rate input.

DI0 – DI7

Parallel Data In (TTL Inputs)

These eight inputs accept parallel data from the host system, to be latched, encoded and transmitted.

DI8/CI3

Parallel Data (8) In or Command (3) In (TTL Input)

DI8/CI3 input is either Data or Command, depending upon the state of DMS.

DI9/CI2

Parallel Data (9) In or Command (2) In (TTL Input)

DI9/CI2 input is either Data or Command, depending upon the state of DMS.

DMS

Data Mode Select (Input)

Data Mode Select input determines the Data pattern width. When it is wired to GND, the Am7968 Transmitter will assume Data to be eight bits wide, with four bits of

SEROUT+, SEROUT–

Differential Serial Data Out (Differential Open Emitter ECL Outputs)

These differential ECL outputs generate data at ECL voltage levels referenced to +5.0 V. When connected to appropriated pull down resistors, they are capable of driving 50-Ω terminated lines, either directly or through isolating capacitors.

STRB

Input Strobe Signal (TTL Input)

A rising edge on the STRB input causes the Data (DI0 – DI9) or the Command (CI0 – CI3) inputs to be latched into the Am7968 Transmitter. The STRB signal is normally taken LOW after ACK has risen.

TLS

Test/Local Select (Input)

TLS input determines the mode of operation. When TLS is wired to GND, the Am7968 Transmitter assumes a Local mode connection to the media. It will output NRZI encoded data, and will enable its CLK output driver. The TLS pin should always be grounded during normal operation.

When TLS is wired to VCC (Test Mode 1),the serial data is NRZ, CLK becomes an input, and ACK timing is modified. This mode is only used for Automatic Test Equipment (ATE) testing at full speed.

When this input is left unconnected, it floats to an intermediate level which puts the Am7968 Transmitter into its Test Mode 2. In Test Mode 2, the internal clock

6

Am7968/Am7969

VCC3
VCC1, VCC2, and VCC3
are +5.0 volt nominal power supply pins. VCC1 powers TTL I/O, VCC2 powers ECL and
powers internal Logic and Analog circuitry.
multiplier is switched out, and the internal logic is clocked directly from the CLK pin. Test Mode 2 is included to ease Automatic Test Equipment (A.T.E.) testing by making the internal logic of the Transmitter synchronous to the external clock instead of the internal PLL.
TSERIN
Test Serial Input (Pseudo ECL Input)
This pin is left unconnected in Local Mode operation. TSERIN can be used to input serial data patterns into the Shifter in Test Mode 1 operation.
VCC1, VCC2, VCC3
Power Supply

AMD

X1, X2

Crystal Oscillator Inputs (Inputs)

The two crystal input pins connect to an internal parallel mode oscillator which operates at the fundamental frequency of the external crystal. The byte rate matches the crystal frequency. During normal operation, the byte rate is set by the crystal frequency.

Alternatively, X1 can be driven by an external TTL frequency source. In multiple TAXI systems this external source could be another Am7968’s CLK output.

Am7968/Am7969

7

AMD

Am7969 TAXIchip Receiver

CLK

Clock (TTL Output)

This is a free-running clock output which runs at the byte rate, and is synchronous with the serial input. It falls at the time that the Decoder Latch is loaded from the Shifter, and rises at mid-byte. The CLK output of the Receiver is not suitable as a frequency source for another TAXI Transmitter or Receiver. It is intended to be used by the host system as a clock synchronous with the received data.

CNB

Catch Next Byte Input (TTL Input)

If this input is connected to the CLK output, the Receiver will be in the Local mode, and each received byte will be captured, decoded and latched to the outputs.

If the CNB input is HIGH, it allows the Am7969 Receiver to capture the first byte after a sync. The Am7969 Receiver will wait for another sync before latching the data out, and capturing another. If CNB is toggled LOW, it will react as if it had decoded a sync byte.

In Cascade mode, CNB input is typically connected to an upstream Am7969’s IGM output. The first Am7969 Receiver in line will have its CNB input connected to VCC.

For Am7969-175 applications, an inverter is required between CLK and CNB for speeds above 140 MHz. See Figure 3 and Timing Specifications T47A, T47B, T48, and T49.

CO0 – CO1

Parallel Command Out (TTL Output)

These two outputs reflect the most recent Command data received by the Am7969 Receiver.

CSTRB

Command Data Strobe (TTL Output)

The rising edge of this output signals the presence of new Command data on the CO0 – CO3 lines. Command bits are valid just before the rising edge of CSTRB.

DMS

Data Mode Select (Input)

DMS selects the Data pattern width. When it is wired to GND, the Am7969 Receiver will assume Data to be eight bits wide, with four bits of Command. When it is wired to VCC the Am7969 Receiver will assume Data to be nine bits wide, with three bits of Command. If DMS is left floating (or terminated to 1/2 VCC), the Am7969 Receiver will assume Data to be ten bits wide, with two bits of Command.

DO0 – DO7

Parallel Data Out (TTL Outputs)

These eight outputs reflect the most recent Data received by the Am7969 Receiver.

DO8/CO3

Parallel Data (8) Out or Command (3) Out (TTL Output)

DO8/CO3 output will be either a Data or Command bit, depending upon the state of DMS.

DO9/CO2

Parallel Data (9) Out or Command (2) Out (TTL Output)

DO9/CO2 output will be either a Data or Command bit, depending upon the state of DMS.

DSTRB

Output Data Strobe (TTL Output)

The rising edge of this output signals the presence of new Data on the DO0 – DO9 lines. Data is valid just before the rising edge of DSTRB.

GND1, GND2

Ground

GND1 is a TTL I/O Ground, GND2 is an internal Logic and Analog Ground.

IGM

I-Got-Mine (TTL Output)

This pin signals cascaded Am7969 Receivers that their upstream neighbor has captured its assigned data byte. IGM falls at the mid-byte when the first half of a sync byte is detected in the Shifter. It rises at mid-byte when it detects a non-sync pattern. During Local mode operation the IGM signal is undefined.

RESET

PLL RESET (Input)

This pin is normally left open, but can be momentarily grounded to force the internal PLL to reactivate lock. This allows for correction in the unlikely occurance of PLL Lockup on application of power.

RESET has an internal pull-up resistor (50 K nominal) which causes it to float high when left unconnected.

If this board is driven by a board Reset signal, an open drain (or open collector) style output should be used to insure the High level signal is at VCC.

SERIN+, SERIN–

Differential Serial Data In (ECL Inputs)

Data is shifted serially into the Shifter. The SERIN+ and SERIN– differential ECL inputs accept ECL voltage

8

Am7968/Am7969

AMD

swings, which are referenced to +5.0 V. When SERIN– is grounded, the Am7969 is put into Test Mode; SERIN+ becomes a single-ended ECL input, the PLL clock generator is bypassed, and X1 determines the bit rate (rather than the byte rate). Both pins have internal pull down resistors which cause unterminated inputs to stay low.

VCC1, VCC2

Power Supply

VCC1 and VCC2 are +5.0 volt nominal power supply pins. VCC1 powers TTL I/O, and VCC2 powers internal Logic and Analog circuitry.

same time DOi or COi change and will be followed by either DSTRB or CSTRB. This pin goes LOW when the next valid byte is decoded.

X1, X2

Crystal Oscillator Inputs (Inputs)

These two crystal input pins connect to an internal parallel/mode oscillator which oscillates at the fundamental frequency external crystal. During normal operation, the byte rate is set by the crystal frequency. Alternatively, X1 can be driven by an external frequency source. In multiple TAXI systems, this external source could be a TAXI Transmitter’s CLK output or an external TTL frequency source.

VLTN

Violation (TTL Output)

The rising edge of this output indicates that a transmission error has been detected. It changes state at the

Am7968/Am7969

9

FUNCTIONAL DESCRIPTION

information remains unchanged. If a Command pattern

System Configuration

is sent to the output latch or if Sync is received, CSTRB

is pulsed and Data outputs remain in their previous

The TAXIchip system provides a means of connecting

state. Reception of a Sync pattern clears the Command

parallel data systems over a serial link (Figure 2). In

outputs to all 0’s, since Sync is a legal command.

LOCAL Mode (normal operation mode) each TX/RX

Noise-induced bit errors can distort transmitted bit pat-

pair is connected over a serial link which can be a Fiber

terns. The Am7969 Receiver logic detects most noise-

Optic or Copper Media (Figure 3).

induced transmission errors. Invalid bit patterns are

The Am7968 Transmitter accepts inputs from a sending

recognized and indicated by the assertion of the viola-

host system using a simple STRB/ACK handshake.

tion (VLTN) output pin. This signal rises to a logic “1”

Parallel bits are saved by the Am7968’s input latch on

state at the same time that Data or Command outputs

the rising edge of a STRB input. The input latch can be

change and remains HIGH until a valid pattern is

updated on every CLK cycle; if it still contains previously

detected by the Data Decoder. The error detection

stored data when a second STRB pulse arrives, Data is

method used in the Receiver cannot identify bit

stored in the input latch, and the second ACK response

errors which transform one valid Command or Data pat-

is delayed until the next CLK cycle.

tern to another. Fault-sensitive systems should use ad-

The inputs to an Am7968 Transmitter can be either Data

ditional

error checking mechanisms to guarantee

message integrity.

or Command and may originate from two different parts

 

 

of the host system. A byte cycle may contain Data or

Am7968 Transmitter

Command, but not both. Data represents the normal

The Transmitter accepts messages from its parallel in-

data channel message traffic between host systems.

put pins (Command or Data). Once latched into an

Commands can come from a communication control

Am7968, a parallel message is encoded, serialized, and

section of the host system. Commands occur at a rela-

shifted out to the serial link. The idle time between trans-

tively infrequent rate but have priority over Data. Exam-

mitted bytes (evident by lack of STRB) is filled with

ples include communication specific commands such

Sync bytes.

as REQUEST-TO-SEND or CLEAR-TO-SEND; or

 

 

application specific commands such as MESSAGE-

Am7969 Receiver

ADDRESS-FOLLOWS, MESSAGE-TYPE-FOLLOWS,

Receivers accept differential signals on the SERIN+/

INITIALIZE YOUR SYSTEM, ERROR, RETRANSMIT,

SERIN–

input pins. This information, previously

HALT, etc.

encoded by an Am7968 Transmitter, is loaded into

 

The Am7968 Transmitter switches between Data and

a decoder.

Command by examining Command input patterns. All

When serial patterns are received, they are decoded

0s on Command input pins cause information on the

and routed to the appropriate outputs. If the received

Am7968’s Data input pins to be latched into the device

message is a Command, it is stored in the output latch,

on the rising edge of STRB. All other Command patterns

appears at the Command output pins, and CSTRB is

cause a Command symbol to be sent in response to an

pulsed; Data output pins continue holding the last Data

input strobe. The pattern on the Data inputs is ignored

byte and DSTRB stays inactive. If a Data message fol-

when a Command symbol is sent. In either case, if there

lows the reception of a Command, Command output

is no STRB before the next byte boundary, a Sync sym-

pins continue holding the previous Command byte and

bol will be transmitted. The sync pattern maintains link

CSTRB stays inactive. The command outputs will retain

synchronization and provides an adequate signal transi-

their states until another Command signal is received

tion density to keep the Receiver Phase-Locked-Loop

(Sync is considered to be a valid command which, when

(PLL) circuits in lock. It was chosen for its unique pattern

decoded, sets Command outputs to “0” and issues a re-

which never occurs in any Data or Command mes-

sulting CSTRB).

sages. This feature allows Sync to be used to establish

 

 

byte boundaries.

Byte Width

 

The Sync pattern utilized by TAXIchip set keeps the

The TAXIchip set has twelve parallel interface pins

automatic gain control (AGC) fiber-optic transceiver cir-

which are designated to carry either Command or Data

cuits in their normal range because the pattern has zero

bits. The Data Mode Select (DMS) pin on each chip can

DC offset.

be set to select one of three modes of operation: eight

AMD

Data and four Command bits, nine Data and three Com-

 

 

The Am7969 Receiver detects the difference between

Data and Command patterns and routes each to the

mand, or ten Data and two Command. This allows the

proper Output Latch. When a new Data pattern enters

system designer to select the byte-width which best

the output latch, DSTRB is pulsed and Command

suits system needs.

10

Am7968/Am7969

 

 

AMD

 

 

 

Am7968 Encoder/Am7969 Decoder

pattern during each clock cycle in which no new Data or

To guarantee that the Am7969’s PLL can stay locked

Command messages are being transmitted.

 

 

 

 

 

onto an incoming bit stream, the data encoding scheme

Cascade Mode (for –125 only)

 

 

must provide an adequate number of transitions in each

For very wide parallel buses, TAXI Receiver’s (commer-

data pattern. This implies a limit on the maximum time

cial temperature parts only) can be Cascaded. The

allowed between transitions. The TAXIchip set encod-

Am7969 Receivers all have their SERIN+ and SERIN–

ing scheme is based on the ANSI X3T9.5 (FDDI) com-

pins connected to the media (or an optical data link).

mittee’s 4-bit/5-bit (4B/5B) code.

IGM of each Am7969 is connected to CNB of its down-

 

An ANSI X3T9.5 system used an 8-bit parallel data pat-

stream neighbor or is left unconnected on the Receiver

tern. This pattern is divided into two 4-bit nibbles which

farthest downstream. CNB of the first Receiver is tied

are each encoded into a 5-bit symbol. Of the thirty-two

HIGH, making this device the only Receiver in the chain

patterns possible with these five bits, sixteen are chosen

that can act on the first non-Sync pattern in a message

to represent the sixteen input Data patterns. Some of

(see below).

 

 

the others are used as Command symbols. Those re-

Each TAXIchip Receiver monitors the serial link and a

maining represent invalid patterns that fail either the

special acknowledgment scheme is used to direct sym-

run-length test or DC balance tests.

bols into each of the Am7969s. When a Catch-Next-

 

Transmitters in 8-bit mode use two 4B/5B encoders to

Byte (CNB) input is HIGH, the Receiver will capture the

encode eight Data bits into a 10-bit pattern. In 9-bit

next non-Sync symbol from the serial link. At this point,

mode, Transmitters use one 5B/6B encoder and one

the device forces its I-Got-Mine (IGM) pin HIGH to tell

4B/5B encoder to code nine Data bits into an 11-bit pat-

the downstream Receiver to capture the next symbol.

tern. In 10-bit mode, two 5B/6B encoders are used to

The Receiver then waits for the Sync symbol or for its

change ten bits of Data into a 12-bit pattern (see Tables

CNB to be set LOW before transferring the message to

1 and 2 for encoding patterns).

its output latch. IGM is forced LOW whenever a Sync

The Am7968 Transmitter further encodes all symbols

byte is detected or when CNB goes LOW. This IGM-

CNB exchange continues down the chain until the last

using NRZI (Non Return to Zero, Invert on Ones). NRZI

Receiver captures its respective byte. The next byte to

represents a “1” by a transition and a “0” by the lack of

appear on the serial link will be a Sync symbol which is

transition. In this system a “1” can be a HIGH-to-LOW or

detected by all of the cascaded Am7969s. On the follow-

LOW-to-HIGH transition. This combination of 4B/5B

ing Clock cycle their messages are transferred to the

and NRZI encoding ensures at least two transitions per

output latch of each device and sent to the receiving

symbol and permits a maximum of three consecutive

host. IGM pins on all Receivers are also set LOW when

non-transition bit times. The Am7969 then uses the

the first half of the Sync symbol is detected.

 

 

same method to decode incoming symbols so that the

 

 

 

 

 

whole encoding/decoding process is transparent to

Asynchronous Operation

 

 

the user.

Inputs to the Am7968 Transmitter Input Latch can be

 

Most Serially transmitted data patterns with this code

asynchronous to its internal clock. Data STRB will latch

will have the same average amount of HIGH and LOW

data into the Am7968 Transmitter and an internal clock

times. This near DC balance minimizes pattern-sensi-

will transfer the data to the Encoder Latch at the first

tive decoding errors which are caused by jitter in AC-

byte boundary. Data can be entered at any rate less

coupled systems.

than the maximum transfer rate without regard to actual

Operational Modes

byte boundaries. As data rates approach the TAXI

BYTE RATE, care must be taken to insure that the 2

In normal operational mode, a single Transmitter/

BYTE FIFO inside TAXI Transmitter is not over filled.

STRB/ACK handshake will assure that every byte is

Receiver pair is used to transfer 8, 9, or 10 bits of parallel

transferred correctly. At higher byte rates, where delays

Data over a private serial link. (On the Am7968, the TLS

and setup/hold times make the STRB/ACK handshake

pin is tied to ground and TSERIN is left unconnected).

impractical, STRB should be synchronized with CLK.

On the Am7969, CNB must be connected to the CLK

 

 

 

output. The Am7969 Receiver continuously deserial-

Synchronous Operation

 

 

izes the incoming bit stream, decodes the resulting pat-

 

 

The Transmitter may be strobed synchronous by tying

terns, and saves parallel data at its output latches (see

Figure 3).

the strobe to the input clock. When doing this a provision

Local mode provides a fast and efficient parallel

should be make to inhibit the strobe periodically to en-

sure proper byte alignment. In the absence of a strobe,

throughout because data can be transferred on every

Syncs will be transmitted on the serial link which will al-

clock cycle. On the other hand, it is not necessary for the

low the receiver to re-align the byte boundaries. In addi-

host to match the byte rate set by the Transmitter’s crys-

tion it is essential that the delay between the falling edge

tal oscillator; the Am7968 automatically sends a Sync

 

 

 

 

 

 

Am7968/Am7969

11

AMD

of the internal byte clock (CLK) and the rising edge of strobe does not violate tBB specification shown in the SWITCHING CHARACTERISTICS Section.

The internal byte clock controls the flow of data from the input register through the shift register. The falling edge of the internal byte clock delineates the end of one byte from the start of the next. Due to various tolerances in the PLL, the period of the internal byte clock may vary slightly. This effect may cause a shift in the location of the byte boundary with respect to the falling edge of the clock. This variation may move the byte boundary and therefore creates a window during which the part should not be strobed. This window called the t6 window, is shown in the figure below. If the part is strobed during the t6 window data will not be lost however, a sync may be added and the transmitter latency will be increased by one byte time.

Strobe Stayout Area

(t6 window)

CLK

–9/8(t1/n) + 9 ns

20 ns

07370F-9

Nominal Byte

Boundary

Sync Acquisition

In case of errors which cause Am7969 Receivers to lose byte/symbol sync, and on power-up, internal logic detects this loss-re-acquisition of sync and modifies the CLK output. CLK output is actually a buffered version of the signal which controls Data transfers inside the Am7969 Receiver on byte boundaries. Byte boundaries move when the Am7969 Receiver loses, and reacquires sync. To protect slave systems (which may use this output as a clock synchronous with the incoming

data) from having clocks which are too narrow, the output logic will stretch an output pulse when the pulse would have been less than a byte-time long. The data being processed just prior to this re-acquisition of sync will be lost. The Sync symbol, and all subsequent data will be processed correctly.

TAXI User Test Modes

TLS input can be used to force the Am7968 Transmitter into either of the two Test modes. If TLS is open or terminated to approximately VCC/2 (Test Mode 2), the internal VCO is switched out and everything is clocked directly from the CLK input. The serial output data rate will be at the CLK bit rate and not at 10X, 11X, or 12X, as is the case in normal operation. Test Mode 2 will allow testing of the logic in the Latches, Encoder, and Shifter without having to first stabilize the PLL clock multiplier. In Test Mode 1 (TLS wired to VCC), the PLL is enabled and the chip operates normally, except that the output is an NRZ stream (CLK is an input & ACK function is slightly modified). This will allow testing of all functions at full rate without needing to perform match loop tests to accommodate the data inversion characteristics of NRZI.

Differential SERIN+/SERIN– inputs can be used to force the Am7969 Receiver into its Test mode. This will allow testing of the logic in the Latches, Decoder, and Shifter without having to first stabilize the the PLL. If SERIN– is tied to ground, the internal VCO is switched out and X1 becomes the internal bit rate clock. The serial data rate will be at the CLK bit rate, not at 10X, 11X, or 12X, as is the case in normal operation. In this mode, SERIN+ becomes a single-ended serial data input with nominal 100K ECL threshold voltages (Referenced to +5 volts).

These Test Mode switches make the parts determinate, synchronous systems, instead of statistical, asynchronous ones. An automatic test system will be able to clock each part through the functional test patterns at any rate or sequence that is convenient. After the logic has been verified, the part can be put back into the normal mode, and the PLL functions verified knowing that the rest of the chip is functional.

12

Am7968/Am7969

 

 

 

AMD

 

 

Oscillator

frequency (1st harmonic) and at all odd harmonics of

The Am7968 and Am7969 contain an inverting amplifier

this frequency (even harmonic resonance is not me-

chanically possible). Unless

otherwise constrained,

intended to form the basis of a parallel mode oscillator.

crystal oscillators operate

at

their fundamental

The design of this oscillator considered several factors

frequencies.

 

 

related to its application.

 

 

 

 

 

The first consideration is the desired frequency accu-

A typical crystal specification for use in this circuit is:

 

 

 

racy. This may be subdivided into several areas. An os-

Fundamental Frequency 3.3 MHz–17.5 MHz ± 0.1%

cillator is considered stable if it is insensitive to

Resonance: Mode

 

Parallel

variations in temperature and supply voltage, and if it is

 

Load Capacitor (Correlation)

 

30 pF

unaffected by individual component changes and aging.

 

Operating Temperature Range

 

0°C to 70°C

The design of the TAXIchip set is such that the degree to

 

which these goals are met is determined primarily by the

Temperature Stability

 

±100 ppm

choice of external components. Various types of crystal

Drive Level (Correlation)

 

2 mW

are available and the manufacturers’ literature should

Effective Series Resistance

 

25 Ω (max)

be consulted to determine the appropriate type. For

Holder Type

 

Low profile

good temperature stability, zero temperature coefficient

 

Aging for 10 years

 

±10 ppm

capacitors should be used (Type NPO).

 

It is good practice to ground the case of the crystal to

 

The mechanism by which a crystal resonates is electro-

eliminate stray pick-up and keep all connections as

mechanical. This resonance occurs at a fundamental

short as possible.

 

 

 

 

 

 

RESET

Am7968 or, Am7969

Power On RESET (Optional)

X1

 

X2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

07370F-10

C* = 220 pF for 4.0–12.5 MHz crystal, 150 pF for a 12.5–17.5 MHz Crystal.

*C determined by crystal specifications and trace capacities. Values shown are typical.

Figure 1. Connections for 4.0 MHz–17.5 MHz

Am7968/Am7969

13

AMD

Table 1. TAXIchip Encoder Patterns

 

4B/5B Encoder Scheme

 

 

5B/6B Encoder Scheme

 

 

 

 

 

 

 

 

 

 

 

 

4-Bit

 

5-Bit

 

5-Bit

 

6-Bit

HEX

 

Binary

 

Encoded

HEX

Binary

 

Encoded

Data

 

Data

 

Symbol

Data

Data*

 

Symbol

0

 

0000

 

11110

00

00000

 

110110

1

 

0001

 

01001

01

00001

 

010001

2

 

0010

 

10100

02

00010

 

100100

3

 

0011

 

10101

03

00011

 

100101

4

 

0100

 

01010

04

00100

 

010010

5

 

0101

 

01011

05

00101

 

010011

6

 

0110

 

01110

06

00110

 

010110

7

 

0111

 

01111

07

00111

 

010111

8

 

1000

 

10010

08

01000

 

100010

9

 

1001

 

10011

09

01001

 

110001

A

 

1010

 

10110

0A

01010

 

110111

B

 

1011

 

10111

0B

01011

 

100111

C

 

1100

 

11010

0C

01100

 

110010

D

 

1101

 

11011

0D

01101

 

110011

E

 

1110

 

11100

0E

01110

 

110100

F

 

1111

 

11101

0F

01111

 

110101

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

10000

 

111110

 

 

 

 

 

11

10001

 

011001

 

 

 

 

 

12

10010

 

101001

 

 

 

 

 

13

10011

 

101101

 

 

 

 

 

14

10100

 

011010

 

 

 

 

 

15

10101

 

011011

 

 

 

 

 

16

10110

 

011110

 

 

 

 

 

17

10111

 

011111

 

 

 

 

 

18

11000

 

101010

 

 

 

 

 

19

11001

 

101011

 

 

 

 

 

1A

11010

 

101110

 

 

 

 

 

1B

11011

 

101111

 

 

 

 

 

1C

11100

 

111010

 

 

 

 

 

1D

11101

 

111011

 

 

 

 

 

1E

11110

 

111100

 

 

 

 

 

1F

11111

 

111101

* Note:

HEX data is parallel input data which is represented by the 4- or 5-bit binary data listed in the column to the immediate right of HEX data. Binary bits are listed from left to right in the following order.

8-Bit Mode: D7, D6, D5, D4, (4-Bit Binary), and D3, D2, D1, D0, (4-Bit Binary)

9-Bit Mode: D8, D7, D6, D5, D4, (5-Bit Binary), and D3, D2, D1, D0, (4-Bit Binary)

10-Bit Mode: D8, D7, D6, D5, D4, (5-Bit Binary), and D9,D3, D2, D1, D0, (5-Bit Binary)

Serial bits are shifted out with the most significant bit of the most significant nibble coming out first.

14

Am7968/Am7969

 

 

 

 

 

 

 

AMD

 

 

 

 

 

 

 

 

 

 

Table 2. TAXIchip Command Symbols

 

 

 

 

 

 

 

 

 

 

Am7968 Transmitter

 

 

 

 

Am7969 Receiver

 

 

 

 

 

 

 

 

Command Input

 

 

 

 

Command Output

 

 

 

 

 

 

 

 

 

 

 

Encoded

 

 

 

 

HEX

Binary

 

Symbol

Mnemonic

 

HEX

Binary

 

 

 

 

 

 

 

 

8-Bit Mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0000

 

XXXXX XXXXX

Data

 

No Change

No Change

 

 

 

 

 

 

(Note 2)

(Note 2)

 

 

 

 

 

 

 

 

No STRB

No STRB

 

11000 10001

JK (8-bit Sync)

 

0

0000

(Note 1)

(Note 1)

 

 

 

 

 

 

1

0001

 

11111 11111

I I

 

1

0001

2

0010

 

01101 01101

TT

 

2

0010

3

0011

 

01101 11001

TS

 

3

0011

4

0100

 

11111 00100

I H

 

4

0100

5

0101

 

01101 00111

TR

 

5

0101

6

0110

 

11001 00111

SR

 

6

0110

7

0111

 

11001 11001

SS

 

7

0111

8 (Note 3)

1000

 

00100 00100

HH

 

8

1000

9

1001

 

00100 11111

HI

 

9

1001

A (Note 3)

1010

 

00100 00000

HQ

 

A

1010

B

1011

 

00111 00111

RR

 

B

1011

C

1100

 

00111 11001

RS

 

C

1100

D (Note 3)

1101

 

00000 00100

QH

 

D

1101

E (Note 3)

1110

 

00000 11111

Q I

 

E

1110

F (Note 3)

1111

 

00000 00000

QQ

 

F

1111

 

 

 

 

 

 

 

 

9-Bit Mode

 

 

 

 

 

 

 

0

000

 

XXXXXX XXXXX

Data

 

No Change

No Change

 

 

 

 

 

 

(Note 2)

(Note 2)

No STRB

No STRB

 

011000 10001

LK (9-bit Sync)

 

0

000

(Note 1)

(Note 1)

 

 

 

 

 

 

1

001

 

111111 11111

I ’ I

 

1

001

2

010

 

011101 01101

T ’ T

 

2

010

3

011

 

011101 11001

T’S

 

3

011

4

100

 

111111 00100

I’ H

 

4

100

 

 

 

 

 

 

 

 

5

101

 

011101 00111

T’R

 

5

101

6

110

 

111001 00111

S’R

 

6

110

 

 

 

 

 

 

 

 

7

111

 

111001 11001

S’S

 

7

111

 

 

 

 

 

 

 

 

10-Bit Mode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

00

 

XXXXXX XXXXXX

Data

 

No Change

No Change

 

 

 

 

 

 

(Note 2)

(Note 2)

 

 

 

 

 

 

 

 

No STRB

No STRB

 

011000 100011

LM (10-bit Sync)

 

0

00

(Note 1)

(Note 1)

 

 

 

 

 

 

1

01

 

111111 111111

I ’ I ’

 

1

01

2

10

 

011101 011101

T ’ T ’

 

2

10

3

11

 

011101 111001

T ’ S ’

 

3

11

Notes:

1.Command pattern Sync cannot be explicitly sent by Am7968 Transmitter with any combination of inputs and STRB, but is used to pad between user data.

2.A strobe with all Os on the Command input lines will cause Data to be sent. See Table 1.

3.While these Commands are legal data and will not disrupt normal operation if used occasionally, they

may cause data errors if grouped into recurrent fields. Normal PLL operation cannot be guaranteed if one or more of these commands is continuously repeated.

Am7968/Am7969

15

AMD

Am7968 Transmitter Functional Block

 

CLK (input is multiplied by ten (8-bit mode), eleven (9-bit

Description

 

 

 

mode), or twelve (10-bit mode), using the internal PLL to

(Refer to page 1)

 

 

 

create the bit rate.

 

 

 

 

 

 

Crystal Oscillator/Clock Generator

 

The working frequency can be varied between 3.3 MHz

The serial link speed is derived from a master frequency

and 17.5 MHz. The crystal frequency required to

achieve the maximum 175 Mbaud on the serial link, and

source (byte rate). This source can either be the built-in

the resultant usable data transfer rate will be:

Crystal Oscillator, or a clock signal applied through the

 

 

X1 pin. This signal is buffered and sent to the CLK out-

 

 

put when Am7968 Transmitter is in Local mode.

 

 

 

 

 

 

 

 

 

Crystal

 

Am7968-125 Input and Am7969-125

Internal

Mode

Frequency

 

Maximum Parallel Throughput

Divide Ratio

8-Bit

12.50 MHz

 

80 ns/pattern (100 Mbit/sec)

125/10

 

 

 

 

 

9-Bit

11.36 MHz

 

88 ns/pattern (102 Mbit/sec)

125/11

 

 

 

 

 

10-Bit

10.42 MHz

 

96 ns/pattern (104 Mbit/sec)

125/12

 

 

 

 

 

 

Crystal

 

Am7968-175 Input and Am7969-175

Internal

Mode

Frequency

 

Maximum Parallel Throughput

Divide Ratio

 

 

 

 

 

8-Bit

17.50 MHz

 

57.1 ns/pattern (140 Mbit/sec)

175/10

 

 

 

 

 

9-Bit

15.90 MHz

 

62.8 ns/pattern (143 Mbit/sec)

175/11

 

 

 

 

 

10-Bit

14.58 MHz

 

68.5 ns/pattern (145 Mbit/sec)

175/12

Input Latch

The Am7968’s Input Latch accommodates asynchronous strobing of Data and Command by being divided into two stages.

If STRB is asserted when both stages are empty, Data or Command bits are transferred directly to the second stage of the Input Latch and ACK rises shortly after STRB. This pattern is now ready to move to the Encoder Latch at the next falling edge of CLK.

An input pattern is strobed into the first stage of the Input Latch only when the second stage is BUSY (contains previously stored data). The Transmitter will be BUSY when STRB is asserted a second time in a given CLK cycle. Contents of the first stage are not protected from subsequent STRBs within the same CLK cycle. At the falling edge of CLK, previously stored data is transferred from the second stage to the Encoder Latch and the new data is clocked into the second stage of the Input Latch. If in Local mode, ACK will rise at this time.

Encoder Latch

Input to the Encoder Latch is clocked by an internal signal which is synchronous with the shifted byte being sent on the serial link. Whenever a new input pattern is strobed into the Input Latch, the data is transferred to the Encoder Latch at the next opportunity.

Data Encoder

Encodes twelve data inputs (8, 9, 10 Data bits or 4, 3, 2 Command inputs) into 10, 11, or 12 bits. The Command data inputs control the transmitted symbol. If all Command inputs are LOW, the symbol for the Data bits will be sent. If Command inputs have any other pattern then the symbol representing that Command will be transmitted.

Shifter

The Shifter is parallel-loaded from the Encoder at the first available byte boundary, and then shifted until the next byte boundary. The Shifter is being serially loaded at all times. As data is being shifted out of the Transmitter, the shifter fills from the LSB. If parallel data is available at the end of the byte, it is parallel-loaded into the Shifter and begins shifting out during the next clock cycle. Otherwise, the serially loaded data fills the next byte. The serial data which loads into the Shifter is generated by an internal state machine which generates a repeating Sync pattern.

Media Interface

The Media Interface is differential ECL, referenced to +5 V. It is capable of driving lines terminated with 50 Ω to (VCC - 2.0) volts.

16

Am7968/Am7969

 

AMD

 

 

 

Am7969 Receiver Functional Block

when the first byte after a Sync symbol is transferred.

Description

Parallel outputs are made on a byte boundary, after

(Refer to page 1)

CNB falls, or when Sync is detected.

Crystal Oscillator/Clock Generator

The I-Got-Mine (IGM) signal will fall when the first half of

The data recovery PLL in the Am7969 must be supplied

a Sync is detected in the Shifter or when CNB goes

with a reference frequency at the expected byte rate of

LOW. It will remain LOW until the first half of a non-Sync

the data to be recovered. The source of this frequency

byte is detected in the Shifter, whereupon it will rise (as-

can either be the built-in Crystal Oscillator, or an exter-

suming that the CNB input is HIGH). A continuous

nal clock signal applied through the X1 pin. The refer-

stream of normal data or command bytes will cause IGM

ence frequency source is then multiplied by ten (8-bit

to go HIGH and remain HIGH. A continuous stream of

mode), eleven (9-bit mode) or twelve (10-bit mode) us-

Sync’s will cause IGM to stay LOW. IGM will go HIGH

ing an internal PLL.

during the byte before data appears at the output. This

Media Interface

feature could be used to generate an early warning of in-

coming data.

 

SERIN+, SERIN– inputs are to be driven by differential

Decoder Latch

ECL voltages, referenced to +5 V. Serial data at these

 

 

inputs will serve as the reference for PLL tracking.

Data is loaded from the Shifter to this latch at each

PLL Clock Generator

symbol/byte boundary. It serves as the input to the

Data Decoder.

 

A PLL Clock recovery loop follows the incoming data

Data Decoder

and allows the encoded clock and data stream to be de-

 

 

coded into a separated clock and data pattern. It uses

Decodes ten, eleven, or twelve data inputs into twelve

the crystal oscillator and clock generator to predict the

outputs. In 8-bit mode, data is decoded into either an

expected frequency of data and will track jittered data

8-bit Data pattern or a 4-bit Command pattern. In 9-bit

with a characteristically small offset frequency.

mode, data is decoded into either a 9-bit Data pattern or

Shifter

a 3-bit Command pattern. In 10-bit mode, data is de-

coded into either a 10-bit Data pattern or a 2-bit Com-

 

The Shifter is serially loaded from the Media Interface,

mand pattern.

using the bit clock generated by PLL.

The decoder separates Data symbols from Command

Byte Sync Logic

symbols, and causes the appropriate strobe output to

The incoming data stream is a continuous stream of

be asserted.

 

 

data bits, without any significant signal which denotes

Parallel Output Latch

byte boundaries. This logic will continuously monitor the

Output Latch will be clocked by the byte clock, and will

data stream, and upon discovering the reserved code

reflect the most recent data on the link. Any Data pattern

used for Am7969 Receiver Sync, will initialize a

will be latched to the Data outputs and will not affect the

synchronous counter which counts bits, and indicates

status of the Command outputs. Likewise, any Com-

byte boundaries.

mand pattern will be latched to the Command outputs

 

The logic signal that times data transfers from the Shif-

without affecting the state of the Data outputs.

ter to the Decoder Latch is buffered and sent to the CLK

Any data transfer, either Data or Command will be syn-

output. CLK output from the Receiver is not suitable as a

chronous with an appropriate output strobe. However,

frequency source for another TAXI Transmitter or Re-

there will be CSTRBs when there is no active data on the

ceiver. It is intended to be used by the host system as a

link, since Sync is a valid Command code.

clock synchronous with the received data. This output is

 

 

synchronous with the byte boundary and is synchronous

Any pattern which does not decode to a valid Command

with the Receiver’s internal byte clock.

or Data pattern is flagged as a violation. The output of

 

Byte Sync Logic is responsible for generating the inter-

the decoder during these violations is indeterminate and

will result in either a CSTRB or DSTRB output when the

nal strobe signals for Parallel Output Latches. It also

indeterminate pattern is transferred to the output latch.

generates the IGM (I-Got-Mine) signal in Test mode

 

 

Am7968/Am7969

17

AMD

Command

M

 

M

Command

Source

Command

 

Command

Destination

 

Signals

 

Signals

 

Message

STRB

 

CSTRB

 

 

 

VLTN

Data Path

Transfer

 

 

 

Am7968

Control

Control

 

Am7969

ACK

Transmission

DSTRB

Logic

Logic

 

Media

 

 

 

 

 

 

Data

N

N

 

Data

Source

Data

 

Data

Destination

 

 

 

 

Signals

 

Signals

 

07370F-11

Note:

N can be 8, 9, or 10 bits of parallel data; total of N + M = 12.

Figure 2. TAXIchip System Block Diagram

18

Am7968/Am7969

AMD Advanced Micro Devices AM7969-175JC, AM7969-175DC, AM7969-125V-BXA, AM7969-125VB3A, AM7969-125JC Datasheet

AMD

Message Transfer Control Logic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data

 

 

 

Command

 

 

 

 

 

 

 

 

 

 

Source

 

 

 

 

Source

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DI0

– DI7

 

 

 

CI0

– CI3

STRB ACK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SEROUT+

TAXI TX #1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SEROUT–

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Note 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Note 1)

 

 

 

 

 

 

X2

 

 

 

 

 

 

 

TLS

DMS

 

X1

 

 

CLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 MHz to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17.5 MHz

 

 

 

 

 

Message Transfer Control Logic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data

 

 

 

Command

 

 

 

 

 

 

 

 

 

 

Source

 

 

 

Source

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DI0

– DI8

 

 

 

CI0

– CI2

STRB

ACK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SEROUT+

TAXI TX #2

 

 

 

 

 

 

SEROUT–

 

 

 

 

 

 

 

 

 

 

TLS

DMS

 

 

 

X1

 

X2

 

 

 

CLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Note 2)

(Note 4)

 

3.3 MHz to

 

 

 

 

17.5 MHz

*

 

 

 

 

 

 

 

SERIN+ SERIN–

X1

X2

DMS

CLOCK

CNB

TAXI RX #1

 

IGM

 

 

 

 

 

VLTN

DSTRB DO0– DO7

CO0 – CO3

CSTRB

 

8

 

4

 

 

Data

 

 

Command

Destination

 

 

Destination

To Other Stages

 

 

(Note 4)

 

 

 

 

 

3.3 MHz to

 

 

 

 

 

17.5 MHz

 

 

 

 

 

 

 

*

 

 

SERIN+ SERIN–

X1

X2

DMS

CLOCK

CNB

 

TAXI RX #2

 

 

IGM

 

DO0 – DO8

CO0 – CO2

 

VLTN

DSTRB

CSTRB

 

9

 

 

 

3

 

 

Data

 

Command

 

Destination

 

Destination

 

 

 

Data Path Control Logic

 

Data Path Control Logic

 

 

 

 

 

 

Notes:

 

 

07370F-12

 

 

 

1.

DMS = GND = 8 Bit Mode

TLS = GND = Local Mode

Pin 11 = Don’t Connect = Local Mode

2.

DMS = VCC = 9 Bit Mode

TLS = GND = Local Mode

Pin 11 = Don’t Connect = Local Mode

3.Two 8-bit local mode systems in parallel will result in an effective data rate of 200 Mbps.

4.Use inverter for operation above 140 MHz only.

*Alternatively, the X1 inputs may be driven by external TTL frequency sources.

Figure 3. TAXIchip System in Local Mode

Am7968/Am7969

19

AMD

From Serial Media

 

 

SERIN– SERIN+

 

 

 

 

 

 

 

 

 

 

SERIN– SERIN+

 

 

 

 

 

 

 

 

 

 

SERIN– SERIN+

 

 

 

 

 

 

 

 

 

 

VCC

 

RX1

 

 

 

 

 

DMS

 

 

 

 

 

 

 

 

RX2

DMS

 

 

 

 

 

 

 

 

RX3

DMS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Am7969

 

 

 

 

 

 

 

 

 

 

Am7969

 

 

 

 

 

 

 

 

 

 

Am7969

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primary RX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CNB

 

 

 

 

 

IGM

 

 

 

 

 

 

 

 

CNB

IGM

 

 

 

 

 

 

 

 

CNB

IGM

 

 

 

 

 

 

 

N/C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLK

X2

X1

 

 

 

 

 

 

 

 

 

 

 

X2

X1

 

 

 

 

 

 

 

 

 

 

X2

X1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

07370F-13

Crystal

OSC

Figure 4. Cascaded Receiver Clock Connections (Commercial –125 only)

20

Am7968/Am7969

AMD

Am7968/Am7969-125 ABSOLUTE MAXIMUM RATINGS

StorageTemperature . . . . . . . . . . . . –65 °C to +150°C

Ambient Temperature

Under Bias . . . . . . . . . . . . . . . . . . . –55 °C to +125°C

Supply Voltage to Ground

Potential Continuous . . . . . . . . . . . . –0.5 V to +7.0 V

DC Voltage Applied to

Outputs . . . . . . . . . . . . . . . . . . . . . –0.5 V to V CC Max DC Input Voltage . . . . . . . . . . . . . . . –0.5 V to +5.5 V DC Output Current . . . . . . . . . . . . . . . . . . . ±100 mA DC Input Current . . . . . . . . . . . . . –30 mA to +5.0 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices

Temperature (TA) . . . . . . . . . . . . . . . . . 0°C to +70°C Supply Voltage (VCC) . . . . . . . . . . . . +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Am7968/Am7969-125

21

AMD

DC CHARACTERISTICS over operating range unless otherwise specified Am7968-125 TAXIchip Transmitter

Parameter

 

 

 

 

 

 

 

Symbol

Parameter Description

Test Conditions (Note 1)

Min

Max

Unit

 

 

 

 

 

 

 

Bus Interface Signals: DI0–DI7, DI8/CI3, DI9/CI2, CI0–CI1, STRB, ACK, CLK

 

 

 

VOH1

Output HIGH Voltage

VCC = Min, IOH = –1 mA

2.4

 

V

 

ACK

VIN = 0 or 3 V

 

 

 

 

 

 

 

 

 

 

 

 

VOH2

Output HIGH Voltage

VCC = Min, IOH = –3 mA

2.4

 

V

 

CLK

VIN = 0 or 3 V

 

 

 

 

 

 

 

 

 

 

 

 

VOL

Output LOW Voltage

VCC = Min, IOL = 8 mA

 

0.45

V

 

ACK, CLK

VIN = 0 or 3 V

 

 

 

 

 

 

 

 

 

 

 

 

VIH

Input HIGH Voltage

VCC = Max (Note 9)

2.0

 

V

 

 

 

 

 

 

 

VIL

Input LOW Voltage

VCC = Max (Note 9)

 

0.8

V

 

 

 

 

 

 

 

VI

Input Clamp Voltage

VCC = Min IIN = –18 mA

 

–1.5

V

 

 

 

 

 

 

 

 

IIL

Input LOW Current

VCC = Max, VIN

= 0.4 V

 

–400

A

 

 

 

 

 

 

 

 

IIH

Input HIGH Current

VCC = Max, VIN

= 2.7 V

 

50

A

 

 

 

 

 

 

 

 

II

Input Leakage Current

VCC = Max,

 

All Inputs

 

50

A

 

 

VIN = 5.5 V

 

Except CLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLK Input

 

150

A

 

 

 

 

 

 

 

 

ISC

Output Short Circuit

(Note 4)

 

 

–15

–85

mA

 

Current ACK, CLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serial Interface Signals: SEROUT+, SEROUT–

 

 

 

 

 

 

 

 

 

 

 

 

VOH

Output HIGH Voltage

VCC = Min ECL Load

VCC

VCC

V

 

 

 

 

 

–1.025

–0.88

 

 

 

 

 

 

 

 

VOL

Output LOW Voltage

VCC = Min ECL Load

VCC

VCC

V

 

 

 

 

 

–1.81

–1.62

 

 

 

 

 

 

 

 

 

Miscellaneous Signals: X1, VCC1, VCC2, VCC3

 

 

 

 

 

 

 

 

 

 

 

 

 

VIHX

Input HIGH Voltage X1

 

 

 

2.0

 

V

 

 

 

 

 

 

 

 

VILX

Input LOW Voltage X1

 

 

 

 

0.8

V

 

 

 

 

 

 

 

 

IILX

Input LOW Current X1

VIN = 0.45 V

 

 

 

–900

A

 

 

 

 

 

 

 

 

IIHX

Input HIGH Current X1

VIN = 2.4 V

 

 

 

+600

A

 

 

 

 

 

 

 

 

ICC

Supply Current

SEROUT = ECL

 

Pin VCC1 (TTL)

 

20

mA

 

 

Load, DMS = 0

 

 

 

 

 

 

 

 

Pin VCC2 (ECL)

 

45

mA

 

 

VCC1 = VCC2 =

 

 

 

 

 

 

 

 

 

 

 

VCC3 = Max

 

Pin VCC3 (CML)

 

200

mA

 

 

 

 

 

 

 

 

*See notes following end of Switching Characteristics tables.

22

Am7968/Am7969-125

 

 

 

 

 

 

AMD

Am7969-125 TAXIchip Receiver

 

 

 

 

 

 

Parameter

 

 

 

 

 

 

 

Symbol

Parameter Description

Test Conditions (Note 1)

Min

Max

 

Unit

 

 

 

 

 

 

 

 

Bus Interface Signals: DO0–DO7, DO8/CO3, DO9/CO2, CO0–CO1, DSTRB, CSTRB, IGM, CLK, CNB, VLTN

 

 

 

 

 

 

 

 

 

VOH

Output HIGH Voltage

VCC = Min, IOH = –1 mA

2.4

 

 

V

 

 

VIN = 0 or 3 V

 

 

 

 

 

 

 

 

 

 

 

 

 

VOL

Output LOW Voltage

VCC = Min, IOL = 8 mA

 

0.45

 

V

 

 

VIN = 0 or 3 V

 

 

 

 

 

 

 

 

 

 

 

 

 

VIH

Input HIGH Voltage

VCC = Max (Note 9)

 

2.0

 

 

V

 

 

 

 

 

 

 

 

VIL

Input LOW Voltage

VCC = Max (Note 9)

 

 

0.8

 

V

 

 

 

 

 

 

 

 

VI

Input Clamp Voltage

VCC = Min, IIN = –18 mA

 

–1.5

 

V

 

 

 

 

 

 

 

 

IIL

Input LOW Current

VCC = Max, VIN = 0.4 V

 

–400

 

A

 

 

 

 

 

 

 

 

IIH

Input HIGH Current

VCC = Max, VIN = 2.7 V

 

50

 

A

 

 

 

 

 

 

 

 

II

Input Leakage Current

VCC = Max, VIN = 5.5 V

 

50

 

A

 

 

 

 

 

 

 

 

ISC

Output Short Circuit

 

 

–15

–85

 

mA

 

Current (Note 4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serial Interface Signals: SERIN+, SERIN–

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIHS

Input HIGH Voltage

(Notes 9, 21)

 

VCC

VCC

 

V

 

SERIN+

 

 

–1.165

–0.88

 

 

 

 

 

 

 

 

 

 

VILS

Input LOW Voltage

(Notes 9, 21)

 

VCC

VCC

 

V

 

SERIN+

 

 

–1.81

–1.475

 

 

 

 

 

 

 

 

 

 

VTHT

Test Mode Threshold

VCC = Max

 

 

0.25

 

V

 

SERIN–

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDIF

Differential Input Voltage

 

 

0.3

1.1

 

V

 

 

 

 

 

 

 

 

VICM

Input Common Mode

(Note 6)

 

3.05

VCC

 

V

 

Voltage

 

 

 

–0.55

 

 

 

 

 

 

 

 

 

 

IIL

Input LOW Current

VCC = Max, VIN = VCC –1.81 V

0.5

 

 

A

 

 

 

 

 

 

 

 

IIH

Input HIGH Current

VCC = Max,

 

 

220

 

A

 

 

VIN = VCC –0.88 V

 

 

 

 

 

 

 

 

 

 

 

 

 

Miscellaneous Signals: X1, VCC1, VCC2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIHX

Input HIGH Threshold X1

 

 

2.0

 

 

V

 

 

 

 

 

 

 

 

VILX

Input LOW Threshold X1

 

 

 

0.8

 

V

 

 

 

 

 

 

 

 

IILX

Input LOW Current X1

VIN = 0.45 V

 

 

–900

 

A

 

 

 

 

 

 

 

 

IIHX

Input HIGH Current X1

VIN = 2.4 V

 

 

+600

 

A

 

 

 

 

 

 

 

 

ICC

Supply Current

VCC1 = VCC2 = Max

Pin VCC1 (TTL)

 

50

 

mA

 

 

 

 

 

 

 

 

 

 

DMS = 0 V

Pin VCC2 (CML)

 

300

 

mA

 

 

 

 

 

 

 

 

Am7968/Am7969-125

23

AMD

SWITCHING CHARACTERISTICS (Note 20)

Am7968-125 TAXIchip Transmitter (Notes 10, 13, 22)

 

Parameter

 

 

 

 

 

 

 

 

 

 

 

No.

Symbol

Parameter Description

Test Conditions

 

 

Min

 

 

Max

Units

Bus Interface Signals: DI0–DI7, DI8/CI3, DI9/CI2, CI0–CI1, STRB, ACK, CLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

tP

CLK Period

 

 

 

8n

 

 

25n

ns

2

tPW

CLK Pulse Width HIGH

 

 

 

30

 

 

 

 

 

ns

3

tPW

CLK Pulse Width LOW

 

 

 

30

 

 

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

4

tPW

STRB Pulse Width HIGH (Note 7)

 

 

 

15

 

 

 

 

 

ns

5

tPW

STRB Pulse Width LOW

 

 

 

15

 

 

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

6

tBB

Internal Byte Boundary to CLK↓

 

 

–9t 1

 

 

 

20

ns

 

 

(Note 11)

 

 

8n +9

 

 

 

 

 

 

9

tS

Data–STRB Setup Time

 

 

 

5

 

 

 

 

 

ns

10

tH

Data–STRB Hold Time

 

 

 

15

 

 

 

 

 

ns

11

tH

ACK↑ to STRB↓ Hold (Note 8)

TTL Output Load

 

 

0

 

 

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

12

tH

ACK↓ to STRB↑ Hold

TTL Output Load

 

 

0

 

 

 

 

 

ns

13

tPD

STRB↑ to ACK↑ (Note 18)

TTL Output Load

 

 

 

 

 

 

40

ns

14

tPD

STRB↓ to ACK↓

TTL Output Load

 

 

 

 

 

 

23

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

15

tPD

CLK↓ to ACK↑ (Note 18)

TTL Output Load

 

 

 

 

 

3t1

+ 33

ns

 

 

 

 

 

 

 

 

 

n

 

 

Serial Interface Signals: SEROUT+, SEROUT– (Note 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

tSK

SEROUT± Skew

ECL Output Load

 

–200

+200

ps

23

tR

SEROUT± Output Rise Time

ECL Output Load

 

 

.45

 

 

 

 

2

ns

24

tF

SEROUT± Output Fall Time

ECL Output Load

 

 

.45

 

 

 

 

2

ns

26

tPW

SEROUT ± Pulse Width LOW

ECL Output Load

 

t1

– 5%

 

 

t1

 

+ 5%

ns

 

 

 

 

 

n

 

 

n

 

 

27

tPW

SEROUT ± Pulse Width HIGH

ECL Output Load

 

t1

– 5%

 

 

t1

 

+ 5%

ns

 

 

 

 

 

n

 

 

n

 

 

Miscellaneous Signals: X1 (Note 15)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

tPW

X1 Pulse Width HIGH (Note 12)

TTL Output Load on CLK

 

 

35

 

 

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

30

tPW

X1 Pulse Width LOW (Note 12)

TTL Output Load on CLK

 

 

35

 

 

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

32

tPD

X1 ↑ to CLK↑

TTL Load

 

 

 

 

 

 

32

ns

 

 

 

 

 

 

 

 

 

 

 

 

33

tPD

X1 ↓ to CLK↓

TTL Load

 

 

 

 

 

 

32

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

24

Am7968/Am7969-125

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AMD

Am7969-125 TAXIchip Receiver (Notes 13, 14, 22)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No.

Symbol

Parameter Description

Test Conditions

 

 

 

 

Min

 

 

 

Max

Unit

Bus Interface Signals:

DO0–DO7,DO8/CO3,DO9/CO2,CO0–CO1,DSTRB,CSTRB, IGM,CLK,CNB,VLTN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35

tP

CLK Period (Note 24)

 

 

 

 

 

 

8n

 

 

25n

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

tPD

Data Valid to STRB↑ Delay

TTL Output Load

 

 

 

 

2t35

 

 

 

 

 

 

 

ns

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

37

tPD

CLK↓ to STRB↑

TTL Output Load

 

 

 

 

 

 

 

 

 

 

 

 

2t35

+15

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

38

tPD

CLK↑ to STRB↓

TTL Output Load

 

 

 

t35

–7

 

 

 

 

 

 

 

ns

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

38a

tPD

STRB↑ to CLK↑ (Note 23)

TTL Output Load

 

3t35

–14

 

 

 

 

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

39

tPD

CLK↓ to Data Valid Delay

TTL Output Load

 

 

 

 

 

 

 

 

 

 

 

-

 

t35

+23

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

tPW

STRB Pulse Width HIGH

TTL Output Load

 

 

 

 

5t35

 

 

 

5t35

ns

 

 

 

 

 

 

 

 

2n

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41

tPW

CLK Pulse Width HIGH

TTL Output Load

 

5t35

–15

 

 

 

 

 

 

 

ns

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42

tPW

CLK Pulse Width LOW

TTL Output Load

 

5t35

–15

 

 

 

 

 

 

 

ns

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43

tPD

SERIN to CLK↓ Delay

TTL Output Load

 

t35

+17

 

2t35

+26

ns

 

 

 

 

 

2n

 

 

 

n

 

 

44

tPD

CLK↑ to IGM↓

TTL Output Load

 

 

 

 

 

 

 

 

 

 

 

 

2t35

 

+7

ns

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45

tPD

CLK↑ to IGM↑

TTL Output Load

 

 

 

 

 

 

 

 

 

 

 

 

2t35

 

+10

ns

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46

tPD

CNB↓ to IGM↓

TTL Output Load

 

 

 

 

 

 

 

 

 

 

 

 

20

 

ns

47

tS

CNB↑ to CLK↑ Setup Time

 

-

 

 

2t35

–32

 

 

 

 

 

 

 

ns

 

 

(Note 5)

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47A

tS

CNB↓ to CLK↑ Setup Time

 

-

 

 

t35

–31

 

 

 

 

 

 

 

ns

 

 

(Note 19)

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

48

tH

CNB↓ to CLK↑ Hold

 

 

 

2t35

+5

 

 

 

 

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49

tPW

CNB Pulse Width LOW

 

 

 

 

 

2t35

 

 

 

 

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serial Interface Signals: SERIN+, SERIN–

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

57

tJ

SERIN± Peak to Peak Input Jitter

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

ns

 

 

Tolerance (Note 16)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Miscellaneous Signals: X1 (Note 15)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

tPW

X1 Pulse Width HIGH

 

 

35

 

 

 

 

 

 

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

61

tPW

X1 Pulse Width LOW

 

 

35

 

 

 

 

 

 

 

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Am7968/Am7969-125

25

AMD

(Page intentionally left blank)

26

Am7968/Am7969-175

Loading...
+ 97 hidden pages